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Capture and chaotic scattering of a charged particle by a magnetic monopole
under a uniform electric field
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Motivated by the realization of a magnetic monopole of Berry curvature by the energy crossing point, we
study theoretically the effect of a magnetic monopole under a uniform electric field in semiclassical wave-packet
dynamics, which is relevant to many physical situations such as relaxation through the diabolic point. We found
that the competition between backward scattering by a monopole magnetic field and acceleration by an electric
field leads to a bound state, i.e., capture of a particle near the monopole. Furthermore, the nonlinearity induced
by the magnetic monopole leads to chaotic behavior in transient dynamics, i.e., transient chaos. We computed
the characteristic quantities of the strange saddle, which gives rise to transient chaos, and we verified that the
abrupt bifurcation occurs as we tune the system parameter toward the parameter region in which the system is
solvable.
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I. INTRODUCTION

Ever since Dirac pointed out the possible existence of a
magnetic monopole by considering the 2π ambiguity of the
phase of an electron wave function [1], it has attracted broad
theoretical interest and appeared in many areas of physics
[2–4]. In particular, the magnetic monopole of Berry cur-
vature [5] or a synthetic gauge field [6,7] appears both in
real [8–10] and momentum [11–14] space, and it has a drastic
effect on the transport property as it modifies the semiclassical
equation of motion for the wave packet of particles [15–18].

Actually, the history of the magnetic monopole [19–23]
dates back to the late 1800s, when Darboux and Poincaré
studied the problem of electron scattering by a magnetic
monopole [24,25]. This problem is known to be exactly
solvable, and it exhibits some unusual properties [22] (see
Appendixes A and B for a review of the exact solution). In
this paper we will show that, upon introducing a uniform
electric field, the peculiar nature of this scattering problem
leads to chaotic dynamics, i.e., chaotic scattering [26–31]. We
note that although the formulation itself is purely classical,
our model can be viewed as a semiclassical approximation,
i.e., considering the first order in h̄ expansion of wave-packet
dynamics in a multilevel system [18]. Here Berry curvature,
which appears in the form of a magnetic field, is a quantum
correction to purely classical dynamics, and it is known that
the energy crossing point acts as a magnetic monopole [5,32],
so our model can be viewed as a semiclassical approximation
to relaxation dynamics in a two-level system, where the wave
packet passes near the degenerate point.

II. MODEL

We study numerically the equation describing the dynam-
ics of a particle under the influence of a monopole magnetic

field and a uniform electric field:

m
d2�r
dt2

= f �ez + qmqe

d�r
dt

× �r
r3

, (1)

where m is the mass of the particle, f is the uniform force
along the z direction, and qm and qe are the magnetic charge
of the monopole sitting at the origin and the electric charge
of the particle, respectively. This equation has two conserved
quantities, i.e., the energy and the angular momentum along
the z direction:

E = m

2
(�̇r )2 − f z, Jz = m(xẏ − yẋ ) − qmqe

z

r
, (2)

where the second term of Jz comes from the angular mo-
mentum of the electromagnetic field. We can utilize Jz con-
servation to reduce one degree of freedom, as follows. The
Lagrangian for our model can be written as

L = m

2
(ρ̇2 + ż2 + ρ2φ̇2) − qmqe

z√
ρ2 + z2

φ̇ + f z, (3)

where (ρ, φ, z) represent the cylindrical coordinates, and
the vector potential Aφ = −qmqez/

√
ρ2 + z2 comes from the

magnetic monopole at the origin. Since φ is the cyclic coor-
dinate of the system, the conjugate momentum Jz, Eq. (2), is
conserved. Then, we can construct the Routhian [33]:

R = L − Jzφ̇|φ̇=(Jz+qmqe
z√

ρ2+z2
)/(mρ2 )

= m

2
(ρ̇2 + ż2)

− 1

2mρ2

(
Jz + qmqe

z√
z2 + ρ2

)2

+ f z. (4)
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FIG. 1. The distribution of Ueff in the (ρ, z) plane for (a)
Jz/(qmqe ) = 0.9 and (b) Jz/(qmqe ) = √

32/27 + 0.01. The color
represents the potential height Ũ := Ueff/(f rc ), where rc :=
|qmqe|2/3/(mf )1/3, as is shown in the right of (b). We can see the
potential saddle that we highlighted with a red circle for (a), while
the saddle disappears for (b).

The dynamics is now described by two degrees of freedom
(ρ, z), and the potential energy is modified as follows:

m
d2z

dt2
= −∂Ueff

∂z
,

m
d2ρ

dt2
= −∂Ueff

∂ρ
,

Ueff := −f z +

(
Jz + qmqez√

z2 + ρ2

)2

2mρ2
.

(5)

The form of the potential depends on the value of Jz, which is
determined from the initial conditions according to Eq. (2). As
we can see from Fig. 1(a), there exists a potential saddle for a
particular parameter range of Jz. If we consider the dynamics
of the particle starting from the initial position inside the
potential pocket bounded by the saddle and the potential
walls, the particle bounces back and forth inside the pocket
and eventually goes over the saddle. Therefore, the saddle and
the potential pocket that it bounds are crucial ingredients for
this scattering problem; and we discuss the conditions for its
existence in the next section.

Since the diverging magnetic field leads to an infinite cy-
clotron frequency, it invalidates the numerical calculation for
the trajectory passing near the origin. To avoid this difficulty,
we introduce a smeared magnetic charge:

p(�r ) = 1

ξ 3
√

π3

∫
d �R e

− |�r− �R|2
ξ2 qmδ( �R) = qme

− r2

ξ2

ξ 3
√

π3
. (6)

The magnetic field produced by this magnetic charge is the
same as the monopole for r � ξ , and it converges to 0 as
r → 0.

III. RESULT

We performed numerical calculation of Eq. (1) with the
Runge-Kutta method and the implicit Tajima method [34]. We
can regard the dynamics described by Eq. (1) as a problem of
charged particle scattering by a magnetic monopole. There are
two important physical observables: tpass, which is the time it
takes for the particle to get out of the scattering region, which
we define as r � 2rc [rc := |qmqe|2/3/(mf )1/3], and rmin :=
mint {r (t )}, which determines whether our approximation of
the point magnetic charge by the smeared one is good or
not. We set the initial velocity to zero, we vary z(0) = z0

FIG. 2. The time when the particle got out of the scat-
tering region r � 2rc (tpass) and the minimum value of r (t )
[rmin := mint (r (t ))] for the initial position (x0, 0, z0 ). Here rc :=
|qmqe|2/3/(mf )1/3 and tc := (m|qmqe|)1/3/f 2/3. Numerical calcula-
tion was done with an implicit Tajima method. The black dashed
line represents the values without the monopole magnetic field. Note
that each plot is shown with an offset. The values of the offset are
given by the values of the dashed line at x0 = 0. For small x0 and z0,
tpass is larger than t/tc = 20, and the plot of tpass at these values is not
shown.

and x(0) = x0 to adjust the incident velocity and the impact
parameter, respectively, and we set qmqe < 0. We show the
result of the numerical calculation in Fig. 2. For the small x0

(small Jz) and small |z0| (small energy) regions, we observed
that tpass becomes larger than the numerically accessible time
region. This fact can be understood from the geometry of
the effective potential, Eq. (5): For this region, the particle
cannot escape from the scattering region since the height
of the potential saddle is higher than the initial energy; the
condition for the existence of this region can be obtained as
shown below.

If we vary the two parameters (x0, z0), Jz(x0, z0) and
E0(z0) change, and for small E0 and large Jz the region with
E � E0 is separated and confined to the finite region, as we
can see from Fig. 3(c), thereby leading to the infinite tpass. For
smaller Jz, the two regions are connected by a saddle with
energy height Esaddle < E0, leading to finite tpass. To obtain
the analytical expression of the boundary between these two
cases in the (Jz, E0) plane, we observe that

Ueff = E0 ⇔ 2 sin v cos2 vR3 + 2ε0 cos2 vR2

− (sin v + J̃z)2 = 0, (7)

where Z := rcz, P := rcρ, R := rcr , Z = R sin v, P =
R cos v, rc = |qmqe|2/3/(mf )1/3, J̃z := Jz/(qmqe ), and ε0 :=
E0/(f rc ). The necessary condition for the merger of two
separate regions is that the discriminant for this third-order
polynomial for R is zero:

sin4 v + 2J̃z sin3 v + (
J̃ 2

z + α
)

sin2 v − α = 0, (8)

where α := 8ε3
0/27. Furthermore, we impose the condition

that the discriminant for this fourth-order polynomial for sin v

is zero:

α2
[
α3 + (

3J̃ 2
z + 8

)
α2 + (

3J̃ 4
z − 20J̃ 2

z + 16
)
α

+ J̃ 4
z

(
J̃ 2

z − 1
)] = 0. (9)
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FIG. 3. (a) The boundary separating the trapping orbit and the escaping orbit. The dots are the results of numerical calculation, and the line
represents the analytic expression Eq. (10). (b), (c) The contour plot for the energy range 0 < ε < ε0 = 0.3 and J̃z = 0.55 and 0.59 for (b) and
(c), respectively. The parameter values for (b) and (c) are shown by the blue down-triangle and the red up-triangle in (a), respectively.

Solving this equation for α, we obtain five solutions. Choosing
the relevant solution, we obtain

ε0 =
(

−9

8
(8 + 3J̃z) + 9

2

4 + 27J̃ 2
z

G
+ 9

8
G

) 1
3

, (10)

where G is given as(
64 − 1080J̃ 2

z − 729J̃ 4
z

2
+ 3

√
3

2

√
J̃ 2

z

( − 32 + 27J̃ 2
z

)3

) 1
3

.

(11)

The plot of this curve is shown by the solid line in Fig. 3(a). In
addition, we obtain the value of Jz where the saddle point of
the potential energy vanishes: Above J̃ 2

z = 32/27, the right-
hand side of Eq. (10) becomes complex, meaning that there is
no saddle in the potential energy. Since the chaotic scattering
is caused by the pocket of energy minimum bounded by the
saddle, we expect no chaotic scattering above this Jz, so we
concentrate on the dynamics for this range of Jz.

In addition, we can see the complicated peak structure in
the region with a small impact parameter, and as is shown in
Fig. 4, each peak has a fractal structure, and the scattering
angle �, which is the relative angle between the initial and

FIG. 4. (a) The peak structure of tpass around x0/rc
∼= 0.45 at

z0/rc = −1. The inset shows the detailed peak structure of the left
peak, and we can clearly see the self-similarity of the peak. We
showed (1) and (2), which is the parameter point we take for the
dynamics shown in Fig. 5. We define the parameter points (n) for
all n larger than 2 for finer structures in the same way. (b) The rapid
variation of � := cos−1[vz(tpass )/

√�v(tpass ) · �v(tpass )] near the fractal
peak, which is the characteristic feature of chaotic scattering [30,31].

the final velocity, varies very wildly near this peak structure.
We show the dynamics at each hierarchy of the fractal in
Fig. 5. We checked the convergence of the peak structure
and the small error of conserved quantities, so this peak
structure is not an artifact of the finite precision of the
numerical calculation. Actually, this fractal structure of tpass

is a characteristic feature of the chaotic scattering [30,31],
which is a representative example of the transient chaos of
Hamiltonian systems [35,36].

To understand why chaotic scattering occurs and why
there are multiple peaks for each z0, it is convenient to go
back to the f = 0 limit of Eq. (1). As we mentioned in
the Introduction, this model is solved exactly. Among some
peculiar characteristics, one notable feature is the impact
parameter (x0) dependence of the scattering angle: There
are multiple backscattering points (so-called glory scattering)
located at qeqm/(mvx0) = √

4n2 − 1 (n = 1, 2, . . . ), where v

represents the initial velocity [37,38]. This is in sharp contrast
to the scattering angle in the Rutherford scattering, which
has a monotonic impact parameter dependence. If we regard
each backscattering point as a potential hill, the situation
is formally similar to the scattering problem by multiple
scatterers, which is known to exhibit chaotic behavior at a
transient time scale [30,31]. Moreover, for fixed z0 there are
infinitely many x0 where the particle is backscattered, and this
leads to infinitely many well-separated peak structures (see
Appendix C).

The chaotic scattering can be understood as a conse-
quence of the fractional dimension of the saddle induced

FIG. 5. (a) z(t ) and (b) ρ(t ). The value of x0 at (n) is defined in
Fig. 4. We can see the correspondence between the number of the
oscillation and the number of the hierarchy.
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by horseshoe mapping [39]. The fact that the saddle has a
fractal dimension has a drastic consequence on the physical
quantities: The dimension of generic crossing of the stable
manifold of the saddle and the one-parameter family of initial
conditions in phase space becomes fractional. As a result,
at each intersection the time it takes for the particle to get
out of the scattering region (tpass) is infinite, so tpass has a
peak on the set with a fractional dimension. The dimension
of crossing can be calculated as follows [40]: Our model is
a Hamiltonian system with two degrees of freedom [Eq. (5)].
Within each energy shell, the dimension of phase space is 3.
Noting that Eq. (5) has time-reversal symmetry, the dimen-
sions of the stable and the unstable manifold are the same.
Since the dimension of the intersection of the two subsets
S1 and S2 in the d-dimensional manifold (d = 3 in our case)
is given by D(S1 ∩ S2) = D(S1) + D(S2) − d, where D(S)
represents the dimension of S, and the saddle is given by the
intersection of the stable and the unstable manifold, D(Sst ) =
[D(Ssad) + 3]/2, where Ssad and Sst represent the saddle and
the stable manifold of the saddle. Therefore, the dimension of
crossing, which we refer to as the fractal dimension, is given
by dfra = 1 + D(Sst ) − 3 = [D(Ssad) − 1]/2.

Concerning the dynamics on the saddle, the positivity of
the Lyapunov exponent itself does not immediately imply
chaotic behavior, which can be quantitatively understood
from the following Kantz-Grassberger formula [31,36,41,42]:∑

λi>0 λi = κ + hKS, where λi’s are the Lyapunov expo-
nents of the invariant set, κ is the escape rate, i.e., κ :=
limT →∞ −(1/T ) ln(N (T )/N (0)) [N (T ) is the number of
particles remaining in the scattering region at t = T ], and hKS

is the Kolmogorov-Sinai entropy, of which a nonzero value
implies chaos. This equation represents the fact that the insta-
bility of the invariant set (Lyapunov exponent) leads to two
phenomena: the escape of the particle from the scattering re-
gion, and the growth of the information, which is a character-
istic feature of chaos. As we can see, positive λi with hKS = 0
is possible because of the finite escape rate κ in contrast to the
case with the attractor. For the numerical calculation, Young’s
formula [42,43] is useful: For a Hamiltonian system with two
degrees of freedom, it is hKS = λ(D1 − 1)/2, where D1 is the
information dimension in 3D phase space, and it is defined by

D1 := lim
q→1

Dq := lim
q→1

lim
δ→0

1

q − 1

log
∑

i p
q

i

log δ
, (12)

where δ is the linear size of the box we use to divide the phase
space to define the measure pi , and Dq is the Rényi dimen-
sion. Compared to the box-counting dimension of the invari-
ant set (D0), the information dimension reflects the property
of the dynamics on the set through the invariant measure pi .

As is explained above, the information of the saddle that
characterizes the chaotic behavior can be understood from the
following quantities: κ , λi , D0, D1, and hKS. In the following,
we calculate the characteristic quantities of the fractal peak
for z0 = −1 near x0 = 0.45 to confirm that what we found is
transient chaos [31].

First, we calculate the uncertainty exponent [36]. [We
defined |tpass(x0 + ε) − tpass(x0)| > 0.5 as the uncertain
pair [44].] We obtained dfra = 1 − dunc = 0.259 ± 0.008. We
calculated this exponent for different values of the dimension-

FIG. 6. The abrupt bifurcation observed by varying the force
term toward zero. F = f r̃c/E is the dimensionless force parameter,
where r̃c = |qmqe|/

√
mE and E is the total energy of the particle.

F = 1 corresponds to the original parameter, and F = 0 corresponds
to the solvable, zero force limit. We can see that the fractal dimension
abruptly drops to zero around F ∼ 0.87. The value of F used to
calculate the quantities discussed in the main text corresponds to
F = 1.

less force parameter F = f r̃c/E, where r̃c = |qmqe|/
√

mE,
with the total energy E fixed. The F = 1 limit corresponds
to the original model Eq. (1) with �r (0) = (x0, 0,−r̃c ) and
�v(0) = �0, while F = 0 corresponds to f = 0 in Eq. (1) (i.e.,
the solvable limit [22]) with �r (0) = (x0, 0,−r̃c ) and �v(0) =
(0, 0,

√
2E/m) [45]. We found that the abrupt bifurcation

similar to the potential scattering problem [31] occurs around
F ∼ 0.87; see Fig. 6.

Secondly, we calculate the invariant measure of the strange
saddle on the Poincaré section defined by z = −0.5rc. We
note that our system has two degrees of freedom with en-
ergy conservation; see Eq. (5). Accordingly, the dimension
of the Poincaré section is 3 − 1 = 2 (remember that the
phase-space dimension is 3), and we take the coordinate
as (ρ, dρ/dt ), where ρ =

√
x2 + y2. The result is shown

in Fig. 7. From this invariant measure, we can calculate

FIG. 7. The invariant measure of the strange saddle on the
Poincaré section defined by z = −0.5rc and vz > 0, obtained by the
PIM-triple method [31,46]. The number of points on the Poincaré
section obtained from the single trajectory is 3403, and we divide the
(ρ, dρ/dt ) plane into 50 × 50 boxes to calculate the histogram. The
color represents the height of the histogram, as is shown in the right
of the figure.
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FIG. 8. Calculation of (a) the Lyapunov exponent and (b) the
escape rate. (a) We calculate χ (t ) by evolving the two nearby phase-
space points, and we measure the deviation αi after a time τi to obtain
χ (t ) = (1/

∑
i τi )

∑
i αi , from which we obtain the Lyapunov expo-

nent from the limiting value [31,35]. (b) The dotted line represents
the numerically obtained number of surviving particles as a function
of time, and the solid line is the fitting curve. The slope of the curve
is the escape rate.

the Rényi dimension Dq in three-dimensional phase space
by adding 1 (which corresponds to the direction of time
evolution) to the fractal dimension of the saddle on the
Poincaré section, defined in Eq. (12). We obtain D2 =
1.51 ± 0.02, D1 = 1.52 ± 0.02, and D0 = 1.54 ± 0.01, so
D0 and D1 are almost the same within the error in our
model.

Finally, we calculate the Lyapunov exponent λ and the
escape rate κ; see Fig. 8. We note that, since our system
is a Hamiltonian system with two degrees of freedom, the
energy conservation leads to a zero Lyapunov exponent, and
the direction of flow corresponds to another direction with
a zero Lyapunov exponent. In addition, since the symplectic
structure leads to the symmetric distribution of the Lyapunov
exponents around zero, the calculation of the one positive
Lyapunov exponent is enough. We obtained λ = 0.9437 ±
0.0002 and κ = 0.676 ± 0.001. If we substitute these val-
ues into the Kantz-Grassberger formula and Young’s for-
mula, we obtain the information dimension of the saddle,
D1 = 1 + 2(1 − κ/λ) = 1.568 ± 0.002, which is in accor-
dance with the result of the calculated information dimen-
sion of the saddle D1. In addition, from Young’s formula
we obtain hKS = 0.268 ± 0.001. Also, the value of D0 is
consistent with the uncertainty exponent from the formula
D0 = 1 + 2dfra = 1.52 ± 0.02.

Next, we discuss the stability of the chaotic behavior
against the dissipative perturbation [47–49], i.e., the −η�̇r
term on the right-hand side of Eq. (1); see Figs. 9 and 10.
The effect of dissipation on transient chaos has been studied
and is termed “doubly transient chaos” [50,51]. The two
notable features in their models are as follows [50,51]: The
dissipation leads to an exponential increase in the escape
rate, and the fractal dimension decreases monotonically for
a finer scale (ε → 0). The former is in accordance with our
model, while the latter is in stark contrast: As for the former,
as is shown in Fig. 10(b), the escape rate suddenly starts to
increase around t ∼ 150 after a long plateau region, in which
κ ∼ 0, in accordance with the expression of the escape rate
in the presence of dissipation: κ = exp[γ t + ln(κ0)] [50]. As
for the latter, we found that as we see a finer scale, the fractal

FIG. 9. (a) tpass and (b) rmin. The value of η is shown above (a).
As we can see, as we increase the strength of dissipation, the fractal
peak becomes broad with rapid variation and rmin is very close to
zero, which means that this behavior depends strongly on the way
we regularize the monopole singularity. Note that the plots are shifted
upward.

dimension rapidly grows and saturates at 1; see Fig. 10. The
fractal dimension may eventually decrease if we see a much
finer scale [50]. Also, we note that this behavior may be
due to the peculiarity of our model. Indeed, we observed a
similar kind of monotonic increase in the fractal dimension
in a slightly modified model in the absence of dissipation (see
Appendix C), where we can attribute the increase in the fractal
dimension to the infinite number of backscattering points.
We note that this behavior depends strongly on the way we
regularize the monopole singularity, since rmin is very close to
zero around the peaks; see Fig. 9. We also found that as we
increase the dissipation further, tpass becomes smooth, and the
chaos disappears.

We further verified the stability against the perturbation
that breaks Jz conservation, i.e., the deformation of mass
along the x direction. We calculated the fractal dimension and
found that it remains finite upon deformation; see Fig. 11.
From these results, we believe that the chaotic behavior we
found can be observed in the experiments in which various
perturbations exist.

FIG. 10. (a) The fraction of an uncertain pair, and (b) the minus
logarithm of the number of surviving particles. (a) As we can see,
the uncertainty exponent dunc given by the slope in (a) (the fractal
dimension given by dfra = 1 − dunc) decreases (increases) as we see
a finer scale (ε → 0), which is in stark contrast to doubly transient
chaos. The value of η is as shown in the legend. (b) The inset
shows the early time behavior, which shows linear behavior in time.
After some time (around t = 100), the number of escaping particles
suddenly increases, which indicates a monotonic increase in the
escape rate.
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FIG. 11. The fractal dimension against the mass deformation,
�mx . �mx = mx − 1 and �mx = 0 is the original parameter. By
increasing �mx , the mass along the x direction becomes large and
the system becomes increasingly anisotropic.

IV. SUMMARY AND DISCUSSION

We found a fractal peak structure in tpass in the problem
of charged particle scattering by a magnetic monopole in the
presence of a uniform electric field, and we verified that it is a
consequence of the fractal nature of the saddle by calculating
the quantities that characterize the saddle. Although our model
has a single scatter, i.e., a monopole, the unusual nature of
the scattering angle effectively leads to the scattering problem
between multiple potential hills. We observed two bifurcation
routes (i) by varying the electric field toward zero, where the
model is solvable; and (ii) by introducing dissipation through
the intermediate region where the fractal dimension increases
monotonically as the scale becomes finer. We clarified the
stability of the chaotic behavior against the perturbations that
exist in the real experiments.

In addition, we found a divergence of tpass, i.e., capture
of the particle by the monopole. This is caused by the fact
that the region that is accessible by the particle is bounded
near the monopole, and we analytically derived the param-
eter region where the capturing occurs. The capturing ob-
served here may serve as a mechanism for the bottleneck
effect in which the relaxation of the excited state toward
the ground state in a Born-Oppenheimer energy landscape is
slowed down by the Berry curvature coming from the diabolic
point.

Future work will involve a detailed discussion of
symmetry-breaking deformation, i.e., mass deformation, by
extending the discussion of “geometric magnetism” and “de-
terministic friction” [16,52] using an invariant measure on the
saddle [42].

ACKNOWLEDGMENTS

The authors thank H. Ishizuka and X.-X. Zhang for useful
discussions. This work was supported by JSPS KAKENHI
Grant No. JP18J21329 (K.M.), JSPS KAKENHI Grants No.
JP26103006, No. JP18H03676, and ImPACT Program of the
Council for Science, Technology and Innovation (Cabinet
office, Government of Japan), and JST CREST Grant No.
JPMJCR16F1, Japan (N.N.).

APPENDIX A: DYNAMICS OF A CHARGED PARTICLE
IN THE PRESENCE OF A MONOPOLE

Here, we review the analytic solution in the case of
f = 0 [24,25,53] for completeness. The equation of motion
is

m�̈r = qeqm

�̇r × �r
r3

. (A1)

By taking the inner product with �̇r and the outer product with
�r , we obtain four conserved quantities:

E := m

2
(�̇r )2, �J := m�r × �̇r − qeqm

�r
r

=: �L − qeqm

�r
r
.

(A2)

Among them, the independent conserved quantities are E, Jz,
and | �J |. If we take the inner product with �r and Eq. (A1), we
obtain �r · �̈r = 0, so

d2r2

dt2
= 2(�̇r )2 = 4E

m
,

∴ r (t ) =
√

(�v0)2t2 + 2(�r0 · �v0)t + (�r0)2 = |�v0t + �r0|,
(A3)

where �r (0) = �r0 and �̇r (0) = �v0. We assume that �r0 is not
parallel to �v0. Here, we take �J along the z direction and we
take the spherical coordinate (r, θ, φ). Then,

�J · �r
r

= −qeqm ⇔ cos θ = −qeqm

J
= −qeqm√

L2 + (qeqm)2
.

(A4)

Finally, we take the inner product of �J and �L:

�J · �L = J 2 − (qeqm)2 ⇔ Lz = J sin2 θ. (A5)

Since Lz = mr2 sin2 θφ̇, we obtain

φ̇ = J

mr2
,

∴ φ(t ) = 1

sin θ

[
arctan

(
(�v0)2t + �r0 · �v0

|�r0 × �v0|
)

− arctan

( �r0 · �v0

|�r0 × �v0|
)]

. (A6)

Combining Eqs. (A3), (A4), and (A6), we obtained an analyt-
ical solution. From Eq. (A4), we can see that the motion of
the particle is restricted on the cone oriented along �J with an
angle θ0 = cos−1(−qeqm/J ). Here we note that the motion is
similar to the motion in the absence of the monopole in two
aspects: the motion is restricted to the two-dimensional plane
(i.e., the cone), and the trajectory on that plane is geodesic.
To see the first aspect in more detail, we fix �r0 and �v0 and
show the form of the cone in Fig. 12. Here, we set �L(0) along
the z axis to show the difference between the qeqm < 0 and
qeqm > 0 cases (note the difference of the coordinate system
from the analytic solution). We consider the process in which
we start from qeqm = 0 and gradually increase to |qeqm|. That
results in two modifications: The direction of the total angular
momentum tilts toward the position of the particle, �r0, and the
surface where the trajectory of the particle lies is bent from
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FIG. 12. The cone on which the trajectory of the particle lies (shown in blue) in the case of (a) qeqm < 0 and (b) qeqm > 0. We can see
that the tilting direction of �J and the bending direction of the x-y plane into the cone differ in the two cases. The black dot represents the
initial position of the particle, and the red, purple, and green arrows represent �J , �L(0), and �v0, respectively. We took the z axis along the �L(0)
direction, which coincides with �J in the case of qeqm = 0, and the orange plane represents the x-y plane.

the x-y plane into the cone. We note that, since the x-y plane
is tangential to the cone at �r0 and the initial velocity is along
the x-y plane, the particle will not get out of the cone [45].
Since the trajectory of the particle at qeqm = 0 is the geodesic
on the x-y plane, we expect the motion of the particle on the
cone to also be the geodesic. To verify that this is correct, we
define χ as the angle between �r0 and �v0. Then,

�r0 · �v0

|�r0 × �v0| = cot χ = tan
(π

2
− χ

)
, (A7)

so from Eq. (A6),

(�v0)2t + �r0 · �v0

|�r0 × �v0| = tan
(

sin θφ(t ) + π

2
− χ

)
= − cot[sin θφ(t ) − χ ],

therefore,

(�v0)2r (t )2 + (�r0 · �v0)2 − (�v0)2(�r0)2

|�r0 × �v0|2
= cot2[sin θφ(t ) − χ ] [∵ Eq. (A3)]

⇔ (�v0)2r (t )2

|�r0 × �v0|2 = cot2[sin θφ(t ) − χ ] + 1

∴ r (t ) sin[χ − sin θφ(t )] = r0 sin χ. (A8)

To understand this equation, we expand the cone to obtain its
development, and we consider the two-dimensional motion
on that. Then, the quantity sin θφ(t ) represents the angle
between �r0 and �r (t ) in the development of the cone. Since
χ represents the angle between �r0 and �v0, the above equation
can be rewritten as

�v0 · �r (t ) = �v0 · �r0 on the development of the cone. (A9)

This means that the motion of the particle is a straight line
on the development. In other words, the trajectory is geodesic
for the flat metric induced by (locally) identifying the devel-
opment of the cone with two-dimensional Euclidean space.

In this sense, the trajectory is still “straight,” although in
three-dimensional space it looks complicated.

One important feature that is relevant for the main text
is Eq. (A3). It means that the monopole does not attract the
particle to cause the delay in the passing of the particle near
the origin.

APPENDIX B: HAMILTON-JACOBI EQUATION

Here we solve the f = 0 case with the Hamilton-Jacobi
method, which may serve as a good starting point for further
analysis with perturbation theory. The Hamiltonian for Eq. (3)
obtained by the Legendre transformation is the following:

H = p2
r

2m
+ 1

2mr2

[
p2

θ + 1

sin2 θ
(pφ + qmqe cos θ )2

]
. (B1)

The Hamilton-Jacobi equation for this Hamiltonian is

∂S

∂t
+ H

(
qi,

∂S

∂qi

)
= 0

⇔ ∂S

∂t
+ 1

2m

(
∂S

∂r

)2

+ 1

2mr2

[(
∂S

∂θ

)2

+ 1

sin2 θ

(
∂S

∂φ
+ qmqe cos θ

)2
]

= 0.

(B2)

Since the energy is conserved, φ is the cyclic coordinate, and r

and θ are separable, and we set S = −εt + Wr (r ) + Wθ (θ ) +
αφφ to obtain(

∂Wθ

∂θ

)2

+ 1

sin2 θ
(αφ + qmqe cos θ )2 = α2

θ − (qeqm)2,

(B3)(
∂Wr

∂r

)2

+ α2
θ − (qeqm)2

r2
= 2mε, (B4)
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FIG. 13. L1, tpass, and � as a function of L0 at A = B = 10. As we can see, the peak of tpass is near the region where L0 = L1 holds.

where αθ and αφ correspond to | �J | and Jz, respectively. At this
point, ε, αθ , and αφ are constants of motion. These equations
can be transformed to

Wθ = −
∫

dθ

√
α2

θ − (qeqm)2 − 1

sin2 θ
(qeqm cos θ + αφ )2,

(B5)

Wr =
∫

dr

√
2mε − α2

θ − (qeqm)2

r2
, (B6)

where we chose the minus sign for Wθ just for convenience.
Then, we calculate βi (qi, αi ) := ∂S

∂αi
, which are canonically

conjugate to αi and are the remaining constants of motion. Af-
ter a somewhat long but straightforward calculation, we obtain

βφ := ∂S

∂αφ

= φ − π

2
+ arctan

[
cos A sin i − cos i sin A sin ψ

cos ψ sin A

]
,

(B7)

βθ := ∂S

∂αθ

= 1

sin A

(
π

2
− arctan

[√
2mεr2

α2
θ sin2 A

− 1

])
+ ψ, (B8)

β0 : = ∂S

∂ε
= −t +

√
m

2ε

√
r2 − α2

θ sin2 A

2mε
, (B9)

where

cos θ = sin A sin i sin ψ + cos A cos i, (B10)

cos A := −qeqm

αθ

, (B11)

cos i := αφ

αθ

. (B12)

By solving Eqs. (B7), (B8), and (B9) for (r, ψ, φ), noting
that we are free to add �S(αi ) to S to shift each βi by any
function of αi , we obtain

r (t ) =
√

2ε

m
(t + β0)2 + α2

θ sin2 A

2mε
, (B13)

ψ (t ) = βθ + 1

sin A
arctan

[
2ε

αθ sin A
(t + β0)

]
, (B14)

φ(t ) = βφ − arctan

[
cos A sin i − cos i sin A sin ψ (t )

cos ψ (t ) sin A

]
.

(B15)

Note that if we substitute

β0 = �v0 · �r0

(v0)2
, (B16)

βθ = − 1

sin A
arctan

[
2εβ0

αθ sin A

]
(B17)

into Eqs. (B13) and (B14), we reproduce Eqs. (A3) and (A6).

APPENDIX C: ON THE PEAK STRUCTURE OF tpass

To understand the peak structure of tpass, we consider the
following toy model, which can be smoothly deformed to
our model: We put the potential barrier at the z = −A < 0

FIG. 14. The fraction of an uncertain pair. As we can see, the
uncertainty exponent dunc given by the slope (the fractal dimension
given by dfra = 1 − dunc) decreases (increases) as we see a finer scale
(ε → 0). The calculation was done for the peak around L0 = 0.6
with A = B = 10; see Fig. 13(b).
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FIG. 15. L1, tpass, and � as a function of L0. As we can see, the peak of tpass is near the region where L0 = L1 holds.

plane, and we consider the motion of the particle bouncing
back and forth between this potential barrier and the magnetic
monopole at the origin. We start from the limit where the
barrier is steplike and far from the origin, and we smoothly
vary the position and thickness of the barrier to reach the limit
where the potential can be regarded as the one imitating the
uniform electric field.

More concretely, we consider a potential of the form
U (z) = 1 − tanh[(z + A)/B], where A represents the posi-
tion of the wall and B represents the width of the slope
of the potential. We set the initial condition as �v0 = �0 and
(x0, y0, z0) = (0, 0,−A), and we calculate L = |�r × �v| and
vz at the first two intersections with the Poincaré section at
z = −A + 1 with vz > 0. We note that, because of Jz and E

conservation, the effective phase-space degree of freedom is 3,
so the Poincaré map is defined as (Ln, vz,n) → (Ln+1, vz,n+1).
We show L1, tpass, and � := arccos(�v0 · �v1) as a function of
L0 in Fig. 13. As we can see, a complicated peak structure
is observed near the point where L0 = L1 holds. We note
that near these regions, � ∼ 0, so we speculate that the
Poincaré map can be approximated as (Ln) → (Ln+1) at least
for this initial regime. By considering the web diagram in
Fig. 13(a), we can understand the complicated peak struc-
ture of Fig. 13(b): The particles that start from the points
sandwiched between the crossing points of blue and black
lines go to the smaller L region, and among them some
particles again get to the region sandwiched between the
crossing points and mapped to the smaller L region, and so on.
Therefore, we conclude that the complicated peak structure
of tpass [Fig. 13(b)] and the monotonic increase of the fractal

dimension as a function of scale (Fig. 14) are caused by the
infinite number of backscattering points, around which L is
mapped to a smaller value.

As we deform A and B to reach the model that is similar to
our model with a uniform electric field, these peak structures
evolve into a fractal peak; see Fig. 15. So, from the argument
above, we speculate that the multiple backscattering points
play the role of the potential hills in the usual chaotic scatter-
ing [30,31], thereby producing the infinite number of symbols
sequence by labeling each backscattering point by an integer.

APPENDIX D: THE CHANGE OF Ueff FROM
THE VARIATION OF f

We consider a one-parameter family that connects the
equation of motion for Eq. (5), where U (ρ, z) = −f z, to the
one where U (ρ, z) = 0, which is the solvable limit. We define
r̃c = |qmqe|/

√
mE and t̃c = |qmqe|/E. Then the equation of

motion can be rewritten as

d2Z̃

dτ̃ 2
= −∂Ũeff

∂Z̃
,

d2P̃

dτ̃ 2
= −∂Ũeff

∂P̃
,

Ũeff := −FZ̃ + 1

2

(
Jz

qmqe

+ Z̃√
Z̃2 + P̃ 2

)2

,

(D1)

where Z̃ = z/r̃c, P̃ = ρ/r̃c, τ̃ = t/t̃c, and F = f r̃c/E. The
change of Ueff as a function of F is shown in Fig. 16.

FIG. 16. The change of Ueff by varying the dimensionless force parameter, F . Here we set Jz/(qmqe ) = 0.9, and (a) F = 1, (b) F = 0.5,
and (c) F = 0.
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[7] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep.

Prog. Phys. 77, 126401 (2014).
[8] P. Zhang, Y. Li, and C. P. Sun, Eur. Phys. J. D 36, 229

(2005).
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