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Stabilization of thermoacoustic oscillators by delay coupling
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This paper presents a numerical description of amplitude death in delay-coupled thermoacoustic oscillators.
An oscillator is a gas-filled resonance tube with a temperature gradient. Delay coupling is introduced by hollow
tubes that connect the oscillators. Thermoacoustic oscillators and their connecting tubes are modeled by linear
acoustic equations. For them, two coupling methods are tested: single-tube and double-tube coupling. For single-
tube coupling, amplitude death occurs when the connecting tube length is one-quarter or three-quarters of the
wavelength of the oscillation frequency and when the tube diameter is greater than 62.5% of the resonance tube
diameter. For double-tube coupling, amplitude death occurs with specific combinations of the tube lengths given
by integer multiples of the half-wavelength. The required tube diameter is as small as 7.5% of the resonance tube
diameter. Death regions for the double-tube coupling are verified from the experimentally obtained results. Com-
parison with the delay-coupled van der Pol oscillators highlights acoustic aspects of the double-tube coupling.
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I. INTRODUCTION

Amplitude death refers to complete annihilation of self-
sustained oscillations observed when two or more oscillators
are mutually coupled [1–9]. Although dissipative coupling is
unable to stop oscillations of the coupled identical oscillators
with zero detuning, Reddy et al. demonstrated that time-delay
coupling led to the amplitude death in the absence of detuning
[10]. Amplitude death was studied theoretically for paradig-
matic model oscillators [10,11], where islandlike death re-
gions were found under specific combinations of delay time
and coupling strength. More recently, various delay-coupling
methods [12–15] were studied. For example, a coupling using
multiple delay times has been shown to suppress oscillations
of the coupled oscillators even with an extremely long de-
lay time [16]. Because finite propagation speeds of signals
are ubiquitous in nature, delay-induced amplitude death is
expected to occur in various real systems, as well as those
reported in coupled laser systems [17], electronic circuits [18],
and chemical reaction systems [7].

This study explores the amplitude death regions that exist
when two thermoacoustic oscillators are coupled with a time
delay. A thermoacoustic oscillator is made of a gas-filled res-
onance tube that has a local temperature gradient. The gas in
the resonance tube begins to oscillate spontaneously when the
temperature gradient becomes sufficiently large. The resulting
intense acoustic oscillations are often dangerous and harmful.
For example, Taconis oscillation [19], i.e., thermoacoustic
oscillations in a narrow tube that is put into a liquid-helium
vessel from outside, causes rapid evaporation of liquid helium.
Combustion oscillations [20,21] in gas turbine engine com-
bustors are also unwanted thermoacoustic oscillations because
they can engender severe damage to the engine structure.
Development of a simple and reliable suppression method is
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an urgent necessity for the further development of combustion
systems, such as those using a lean premixed combustion
reaction.

Recently, the amplitude death phenomenon was explored
experimentally in thermoacoustic oscillators that were cou-
pled with delay and diffusive couplings [6]. Delay coupling
was introduced simply by a hollow tube connecting the two
resonance tubes. The delay time was controlled through the
tube length because the propagation time for the acoustic wave
to pass through the tube gives the delay time. The experi-
mental death regions on the plane of the coupling strength
versus the delay time were compared with delay-coupled van
der Pol systems. Although qualitative agreement was achieved
between them, the coupling term for the coupled van der Pol
systems was assumed using the difference between the signal
of one oscillator and the delayed signal of the other, without
consideration of the acoustic properties of the gas column in
the connecting tube. Using a numerical approach, amplitude
death in coupled thermoacoustic oscillators was studied by
Thomas et al. [22]. After they derived a model equation of
a Rijke tube thermoacoustic oscillator based on the acoustic
basic equation, they discussed the result of time-delay and
dissipative couplings to elucidate the possibility of amplitude
death. The coupling terms are, however, expressed by the
difference between acoustic variables without stating how
such couplings are realized in real acoustic systems.

For full acoustic modeling of the coupled thermoacoustic
oscillator, we adopt linear acoustic theory [23,24], which
has been established in a study of marginal conditions of
thermoacoustic oscillations [25–29]. Two thermoacoustic os-
cillators and connecting tubes are modeled using linearized
hydrodynamic equations. The tube length and diameter are
chosen as calculation parameters. The resulting death regions
are compared with the experimentally obtained results. This
paper describes the finding that coupling by the two tubes,
each having a different length, can achieve amplitude death
with a smaller radius than the single-tube coupling. The
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present result is compared with those obtained for coupled van
der Pol oscillators to demonstrate the importance of acoustic
modeling of the connecting tube.

II. PHYSICAL MODEL FOR COUPLED
THERMOACOUSTIC OSCILLATORS

A. Thermoacoustic oscillator

A thermoacoustic oscillator employed in this study is pre-
sented in Fig. 1(a). This type of oscillator, which is made
of a resonance tube installed with a stack and adjacent heat
exchangers, is known as a standing-wave thermoacoustic
oscillator [30]. For this study, a circular tube of diameter
D = 40 mm and length L = 860 mm is used as a resonance
tube. The tube, with both ends closed, contains 1-bar air as
the working gas. The stack is located in the resonance tube
with its central position separated from the end by 180 mm.
The stack is assumed to have many circular pores of 1.12 mm
diameter and 40 mm length; the stack porosity is 0.78. Also,
the stack is sandwiched between hot and cold heat exchang-
ers, each of which is made of parallel plates with 0.5 mm
thickness and 20 mm length, placed with 1 mm spacing.
The temporal mean gas temperature, TC , in the cold heat
exchanger is constant at room temperature (297 K), whereas
TH in the hot heat exchanger is varied as a control parameter

to induce thermoacoustic oscillation. The temporal mean gas
temperature is changed linearly from TC to TH in the stack
and also in the thermal buffer tube: an empty tube with 40 mm
diameter and 30 mm length. In other parts of the oscillator, the
temporal mean temperature is equal to TC .

B. Coupled oscillators

Figure 1(b) presents a schematic representation of the
coupled thermoacoustic oscillators. The oscillators are exact
copies of each other. When uncoupled, they are as presented
in Fig. 1(a). Coupling tubes, Tube A and Tube B, connect the
oscillators at their ends at x1 = L and x2 = L. Each tube has a
circular channel with uniform diameter d and with length LA

or LB . The effects of the tube curvature and the rapid change
of the cross-sectional area at the tubes’ connecting points
are not considered. Tube length LA,B is related to the delay
time by LA,B/c, where c represents the speed of sound of the
working gas. Tube radius d is related to the coupling strength.

We test two coupling methods: one is a single-tube cou-
pling where the oscillators are coupled using Tube A; the
other is a double-tube coupling using Tube A and Tube B si-
multaneously. For the single-tube coupling, stability analysis
is performed with changing d and LA. For the double-tube
coupling, the stability is studied by changing LA and LB with
a fixed value of d.
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FIG. 1. Model thermoacoustic oscillator (a) and coupled oscillators (b). The axial coordinates x1,2 are directed from cold to hot in the
oscillator, with x1,2 = 0 at the end, where subscripts 1 and 2, respectively, correspond to Oscillator 1 and Oscillator 2. The axial coordinates
xA and xB along the connecting tubes, respectively, start from Oscillator 1 and end at Oscillator 2 and start from Oscillator 2 and end at
Oscillator 1, where A and B, respectively, stand for Tube A and Tube B. Close up views of junctions C1 and C2 between the oscillators and
the connecting tubes are also shown in the dashed squares.
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III. CALCULATION METHOD

A. Basic equations

In this calculation, the hydrodynamic equations of continu-
ity, momentum, and energy are used to describe the longitudi-
nal acoustic gas oscillations. The state equation of an ideal gas
is used as well. Acoustic variables ϕ are expressed as a sum
of the temporal mean value ϕm and the small disturbance ϕ′
as ϕ = ϕm + ϕ′. The disturbances ϕ′ are assumed to oscillate
with angular frequency ω as ϕ′ = �eiωt . Using Rott’s acoustic
approximation [23,30], the hydrodynamic equations are sim-
plified to ordinary differential equations with respect to axial
coordinate x. For the complex amplitude P of pressure and the
complex amplitude U of volume velocity, they are given as

dP

dx
= −ZU, (1)

dU

dx
= −YP + GU. (2)

In Eqs. (1) and (2), Z, Y , and G are given as

Z = iω
ρm

A

1

1 − χν

, (3)

Y = iω
A[1 + (γ − 1)χα]

γPm

, (4)

G = χα − χν

(1 − χν )(1 − σ )

1

Tm

dTm

dx
, (5)

where ρm, Pm, and Tm, respectively, denote the temporal mean
density, pressure, and temperature. Additionally, γ and σ are
the specific-heat ratio and Prandtl number of the gas. For the
gas with thermal diffusivity α and kinematic viscosity ν, the
thermoacoustic function χj (j = α, ν) is given using the first-
order and zeroth-order Bessel functions J1 and J0 of the first
kind as

χj = 2J1[(i − 1)
√

ωτj ]

(i − 1)
√

ωτjJ0[(i − 1)
√

ωτj ]
(6)

for a circular cylinder, whereas it is given as

χj = tanh [(1 + i)
√

ωτj ]

(1 + i)
√

ωτj

(7)

for parallel plates. In both equations, τj (j = α, ν) is written
as

τj = r2/(2j ), (8)

where r denotes the radius in the case of the circular cylinder
and the half of the plate distance in the case of parallel plates.

In a flow channel with a uniform cross section, the differ-
ential equations are solved analytically if coefficients Z, Y ,
and G are regarded as constants. When pressure P (x) and
volume velocity U (x) at a point x are given, the solution gives
P (x + l) and U (x + l) at a point x + l as[

P (x + l)

U (x + l)

]
= M

[
P (x)

U (x)

]
, (9)

where M is the transfer matrix expressed as

M = e
Gl
2

[
−G

b
sinh λ + cosh λ − 2Z

b
sinh λ

− 2Y
b

sinh λ G
b

sinh λ + cosh λ

]
, (10)

with b = √
G2 + 4YZ and λ = bl/2.

For the flow channel with nonzero dTm/dx, such as the
regenerator and the thermal buffer tube, we divide it into short
segments where temperature-dependent gas properties can be
assumed as constants. The transfer matrices of the regenerator
and the thermal buffer tube are constructed by assuming a
linear temperature distribution with end temperatures TC and
TH , and subsequently by calculating a product of the transfer
matrices of equally divided segments, where the gas thermal
properties are estimated from the spatial average of Tm. The
division number is 10. We confirmed that the results were
almost unchanged when it was increased to 100.

For flow channels with uniform temperature, the transfer
matrices are determined by specifying the flow channel type
and size and by setting G = 0 in Eq. (10). This case applies
to hot and cold heat exchangers, and to circular tubes with
diameter D.

The combined transfer matrix ME of the thermoacoustic
oscillator is created using a product of the transfer matrices
of the circular tube, cold heat exchanger, regenerator, hot heat
exchanger, thermal buffer tube, and the circular tube. Transfer
matrices MA and MB of the connecting tubes are created in
the same way as the uniform temperature flow channel by
ignoring tube curvature effects.

B. Derivation of the frequency equation

Transfer matrix ME links acoustic variables
(P1,2(0), U1,2(0)) at x1,2 = 0 with (P1,2(L), U1,2(L)) at
x1,2 = L on both ends of the oscillator:[

P1,2(L)

U1,2(L)

]
= ME

[
P1,2(0)

U1,2(0)

]
. (11)

Transfer matrix MA,B links acoustic variables (PA,B (0),
UA,B (0)) with (PA,B (LA,B ), UA,B (LA,B )) at the ends of the
connecting tube, as shown below,[

PA,B (LA,B )

UA,B (LA,B )

]
= MA,B

[
PA,B (0)

UA,B (0)

]
. (12)

At the closed ends of the uncoupled oscillators (x1,2 = 0, L),
the boundary conditions require U1,2 = 0. To have a nonzero
solution,

(ME )21 = 0 (13)

must hold. This equation serves as the frequency equation
of the uncoupled oscillator, where the two subscript numbers
denote the transfer-matrix component.

The connecting conditions between the oscillator and the
connecting tube are the continuity of pressure,

P1(L) = PA(0), P2(L) = PA(L), (14)

and the continuity of the volume velocity. The latter is ex-
pressed for the single-tube coupling as

U1(L) = UA(0), U2(L) = −UA(L) (15)
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and for the double-tube coupling as

U1,2(L) + UB,A(LB,A) = UA,B (0). (16)

As a condition to have a nonzero solution of P and U , we
obtain the frequency equation as

(MA)21(ME )2
11 + [(MA)11 + (MA)22](ME )11(ME )21

+ (MA)12(ME )2
21 = 0 (17)

for the coupled oscillators with a single connecting tube, and

H1H2 − H3H4 = 0,

H1 =
(

(ME )21

(ME )11
+ (MA)11

(MA)12
+ (MB )22

(MB )12

)
,

H2 =
(

(ME )21

(ME )11
+ (MB )11

(MB )12
+ (MA)22

(MA)12

)
, (18)

H3 =
(

(MA)21 − (MA)11(MA)22

(MA)12
− 1

(MB )12

)
,

H4 =
(

(MB )21 − (MB )11(MB )22

(MB )12
− 1

(MA)12

)

for the coupled oscillators with two connecting tubes.

C. Calculation procedure

When TH is given for the uncoupled oscillator, Eqs. (13),
(17), and (18) can be regarded as applicable equations with
respect to f = ω/(2π ). Solution f is generally a complex
quantity [26,28,31]. The real part fR represents the frequency
of the fluctuation. The imaginary part fI reflects the stability
of the equilibrium state with P = 0 and U = 0; a positive
imaginary part means that the equilibrium state is linearly
stable, whereas a negative one indicates that the equilibrium
state is unstable. When solution f becomes a real number, the
equilibrium state is neutrally stable.

Figure 2 presents complex frequency f = fR + ifI as
a function of temperature difference �T = TH − TC in the
uncoupled thermoacoustic oscillator. It was obtained numeri-
cally from Eq. (13) using the Newton method for the funda-
mental and second-mode oscillations. When �T is increased,
fR of the fundamental mode remains at around 200 Hz,
whereas that of the second mode is around 400 Hz. These
frequencies closely approximate L/(2c) and L/c. The imagi-
nary part fI of the fundamental mode decreases and becomes
negative with �T > 190 K, whereas fI of the second mode
remains positive even when �T = 250 K. This result means
that only the fundamental mode is generated in the uncoupled
oscillator in the region 190 < �T < 250 K. In the following,
�T is set to 240 K to investigate whether the oscillations are
suppressed by delay coupling.

For the coupled thermoacoustic oscillators, Eqs. (17) and
(18) can also be regarded as equations with respect to f

when TH , d, LA, and LB are given. The solutions f are
calculated by changing the coupling tube parameters. The
phase difference φ between Oscillator 1 and Oscillator 2 is
calculable by inserting solution f into MA in Eq. (12) and
then by ascertaining the phase relation between PA(LA) and
PA(0).
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FIG. 2. Real part fR (a) and imaginary part fI (b) of the uncou-
pled thermoacoustic oscillator. The solid curve corresponds to the
fundamental mode oscillations of the resonance tube, whereas the
broken curve represents second-mode oscillations.

IV. CALCULATION RESULTS

A. Single-tube coupling

Figure 3 portrays the tube length dependence of fR and fI

for the single-tube coupling obtained by finding the solution
f = fR + ifI of Eq. (17). The tube diameter is fixed at
30 mm. The three continuous curves I1, A, and I2 are pre-
sented to distinguish the oscillation modes. For modes I1

(solid curve) and I2 (broken curve), the phase difference φ

between the pressure P1(L) and P2(L) becomes 0 (in-phase
oscillations), whereas φ becomes 180◦ (antiphase oscillation)
for mode A (dotted curve). For the connecting tube, we have
confirmed a pressure maximum in the middle of the tube for
I1, two pressure maxima for I2, and a pressure minimum for
A. The equilibrium state of the coupled oscillators remains
stable if fI is positive for all of these oscillation modes.
Results show that coupling-induced amplitude death occurs in
regions with 0.35 � LA � 0.5 m, 1.16 � LA � 1.39 m, and
LA � 1.9 m. In other regions of LA, at least one oscillation
mode should be excited because the smallest values of fI be-
come negative. In other words, the stability of the equilibrium
state of the coupled oscillators can be judged by investigating
the smallest fI values among these oscillation modes.

Figure 4 presents a contour map of fI on the plane of
LA and d. Broken curves represent the contour line with
fI = 0. In the upper part of the broken curves, fI is positive.
Therefore, amplitude death occurs in these areas. The smallest
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FIG. 3. Real component fR (a) and imaginary component fI

(b) for 0.05 � LA � 2.0 m with d = 30 mm. Labels represent the
oscillation mode between Oscillator 1 and Oscillator 2: I1 (solid
curve) and I2 (broken curve) represent in-phase oscillations, whereas
A (dotted curve) shows antiphase oscillations.

value of d in the amplitude death regions is d = 25 mm at
LA = 1.26 m. When d = 40 mm, the amplitude death region
extends to 0.22 � LA � 0.62 m, to 1.1 � LA � 1.6 m, and to
LA � 1.7 m. The center values of LA are close to one-quarter

FIG. 4. Contour map of the imaginary part fI on LA vs d . The
meanings of labels I1,2 and A in Fig. 4 are the same as those in Fig. 3.

or three-quarters of the wavelength of 205 Hz fundamental
acoustic waves. Delay time τ is given by τ = LA/c. There-
fore, amplitude death occurs with τ = T/4 and 3T/4, where
T is an acoustic period of the fundamental mode. This result is
consistent with the theory and experiments for other systems
[11,18].

Phase difference φ was calculated using the solution f

having the smallest fI value. On the left side of LA = 0.42 m,
mode I1 with φ = 0 is excited. In the region with 0.42 <

LA < 1.27 m, mode A with φ = 180◦ has the lowest value
of fI . On the right side of LA = 1.27 m, the phase difference
becomes φ = 0 again, but in this region, mode I2 is excited
instead of I1. Results show that the amplitude death occurs at
the boundary between the in-phase and antiphase oscillation
mode. This result is consistent with Reddy’s experiments with
electrical circuits [18].

B. Double-tube coupling

Linear stability of the coupled thermoacoustic oscillators
with two tubes is obtained by finding the solution f of
Eq. (18). Figure 5 shows the contour map of fI on the plane
of LA and LB when tube diameter d is 8 mm in Tube A and
Tube B. Although the tube diameter must be as high as 25 mm
in the case of single-tube coupling, death regions are created
with d = 8 mm for double-tube coupling. The difference of
the required tube diameter is discussed later. Contour lines
are extremely dense inside the death regions. The peak value
of fI on the center of the islands is 2.12 (1/s). Therefore, the

FIG. 5. Contour map of the imaginary part of f (=ω/2π ) on LA

vs LB for d = 8 mm. Labels I1, I ′
1, and I2 represent the in-phase

oscillation mode. I ′
1 means that the shorter connecting tube has a

pressure maximum, and that the longer one contains two pressure
maxima. I1 and I2, respectively, denote that two connecting tubes
contain one pressure maximum and two pressure maxima. Mode A

is the antiphase oscillation mode.
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oscillations will cease shortly after 1/(2πfI ) = 1/13 s when
the coupling is switched on.

The death islands are centered at positions with
(LA,B, LB,A) = (0.85 m, 0.05 m) and (LA,B, LB,A) =
(1.7 m, 0.85 m). Two lengths LA,B = 0.85 and 1.7 m, re-
spectively, correspond to τ = T/2 and τ = T of the 205 Hz
acoustic wave. Amplitude death occurred with LA = 0.42 and
1.27 m in the case of the single-tube coupling most easily, but
the combinations of (LA,LB ) = (0.42 m, 0.42 m), (1.27 m,
1.27 m), and (LA,B, LB,A) = (0.42 m, 1.27 m) fail to stop
the oscillations in the case of double-tube coupling. It is
noteworthy that the tube length realizing amplitude death dif-
fers between single-tube coupling and double-tube coupling.
The amplitude death brought about by the combinations of
specific tube lengths is a distinctive property of the double-
tube coupling in the thermoacoustic oscillators, as we demon-
strate later through comparison with the coupled van der Pol
oscillators.

The phase difference φ between the oscillators was cal-
culated for the case of double-tube coupling. Modes I1, I ′

1,
and I2 represent the in-phase oscillation mode, which appears
when the oscillators are coupled by two tubes with the length
that makes in-phase oscillation for single-tube coupling. In
modes I1 and I2, two connecting tubes, respectively, contain
one pressure maximum and two pressure maxima. In mode
I ′

1, the shorter connecting tube contains a pressure maximum.
The longer one contains two pressure maxima. Mode A is the
antiphase oscillation mode. The system becomes the antiphase
oscillation mode when the oscillators are coupled by two tubes
with the length that makes the antiphase oscillation mode for
single-tube coupling.

As described above, the tube diameter necessary for ampli-
tude death was d = 8 mm diameter in double-tube coupling,
although it was d = 25 mm in single-tube coupling. Here we
discuss the d dependence of fI to see minimum d leading to
amplitude death. Contour maps such as that of Fig. 5 were
further created for d values less than 8 mm. The peaks of
fI were persistently centered near the points (LA,B, LB,A) =
(0.85, 1.7), but their height changed as shown in Fig. 6. The
largest value fImax increased to fImax = 4.61 (1/s) at d =
4.5 mm; then it started to decrease and cross zero between

2 3 4 5 6 7 8
-1

0

1

2

3

4

5

d (mm)

f I 
m

ax
 (1

/s
)

FIG. 6. Tube diameter dependence of fImax, which is the largest
value on the contour map for each d .

d = 3 and 2 mm. This result indicates that the double-tube
coupling can achieve amplitude death with d = 3 mm that
is as small as 7.5% of the oscillator diameter. This is a
great reduction of the tube diameter because d = 25 mm,
which is 62.5% of the oscillator diameter, was necessary in
the single-tube coupling. Therefore, the double-tube coupling
is a powerful means of achieving amplitude death in the
thermoacoustic system. We also observed that the size of the
death islands became small monotonically with decreasing d.
An accurate choice of the coupling tube lengths is necessary
to stop oscillations with small d. Future work is necessary to
find ways of further increasing the peak value of fImax.

C. Comparison with experiment

To verify the calculation results of double-tube coupling,
we tested it through experimentation. A stainless-steel circular
tube was used to construct the resonance tube of the oscil-
lator in Fig. 1(a). The regenerator was made with a ceramic
honeycomb catalyst support having square pores with sides
of 1.12 mm. The hot heat exchanger temperature TH was
controlled by feeding an electrical current to a heater wire
wound around it. The cold heat exchanger was kept at room
temperature TC by circulating water around the tube. When
the temperature difference �T = TH − TC reached a critical
value, it was confirmed that the gas column in the resonance
tube began to oscillate spontaneously with the fundamental
mode. After this observation, we prepared the other set of
components to build the second oscillator. The two oscillators
were connected by thick-walled flexible tubes mounted on the
closed end. The tube diameter was 8 mm. Pressure oscillations
were monitored using pressure transducers located at the
closed end of each oscillator. The temperature difference was
kept at �T = 280 K, which led to a pressure amplitude of
3.1 kPa and an oscillation frequency of f = 215 Hz in the
uncoupled thermoacoustic oscillator.

Figure 7 presents the contour map of pressure amplitude
P1 on the plane of LA and LB when the two oscillators were
coupled by the two tubes. The color shows the magnitude
of the pressure amplitude. The pressure amplitude P2 was
almost identical to P1. The amplitude became zero near at
the point of (LA,B, LB,A) = (0.8 m, 1.6 m), as presented in
Fig. 7. Near (LA,B, LB,A) = (0.8 m, 0.0 m), the pressure am-
plitude did not become completely zero, but it was suppressed
significantly below 0.2 kPa. Results show that the larger the
imaginary part of the frequency in the calculation becomes,
the smaller is the pressure amplitude in the experiment. We
observed in-phase and antiphase synchronization outside of
the amplitude death regions. The phase difference agreed with
the calculation results. Results demonstrate that the stability
analysis is useful for examining the amplitude death condi-
tions in a thermoacoustic system.

V. DISCUSSION

As described in this section, amplitude death of the coupled
thermoacoustic oscillators is compared with that of coupled
van der Pol oscillators to assess the effects of acoustic wave
propagation in the connecting tube upon amplitude death.
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FIG. 7. Contour map of the pressure amplitude of oscillator 1 on
LA vs LB for d = 8 mm.

The delay-coupled van der Pol oscillators are given as
follows:

ẍ1 + (
x2

1 − μ
)
ẋ1 + ω2x1

= k1[ẋ2(t − τ1) − ẋ1] + k2[ẋ2(t − τ2) − ẋ1], (19)

ẍ2 + (
x2

2 − μ
)
ẋ2 + ω2x2

= k1[ẋ1(t − τ1) − ẋ2] + k2[ẋ1(t − τ2) − ẋ2]. (20)

In those expressions, μ, k1,2, and τ1,2, respectively, represent
coefficients of nonlinear damping, coupling strength, and
delay time; also, ω denotes the intrinsic angular frequency.
To reveal the linear stability around x1 = x2 = 0 and ẋ1 =
ẋ2 = 0, Eqs. (19) and (20) are linearized. By assuming that the
linear perturbation is given in the form of ei�t , the frequency
equation is obtained as

[ω2 − �2 + i(k1 + k2 − μ)�]2 + �2(k1e
−i�τ1 + k2e

−i�τ2 )2

= 0. (21)

Using the Newton method, Eq. (21) is solved numerically in
terms of � = �R + i�I . The imaginary part �I represents
the linear stability [32]. In delay-coupled van der Pol oscil-
lators, two oscillation modes are possible: in-phase synchro-
nization oscillation mode I and antiphase synchronization
oscillation mode A. Similarly to the explanation given in
Sec. III, the solutions with the smallest �I are chosen to judge
the occurrence of amplitude death and the oscillation mode.

For comparison with single-tube coupling in a thermoa-
coustic system, Eq. (21) was solved for k2 = 0. We set ω and
μ as ω = 1.0 and μ = 0.02. Figure 8(a) presents the contour
map of �I shown on the plane of k1 and τ1. Broken curves
represent the boundary on which �I = 0. On the upper side of

FIG. 8. Contour map of �I in delay-coupled van der Pol oscilla-
tors: part (a) shows single delay-time coupling. The values of �I are
shown on the plane of k1 vs τ1; also, part (b) shows double delay-time
coupling. The values of �I are shown on the plane of τ2 vs τ1.

the broken curves, �I becomes positive. Therefore, these V-
shaped regions are the amplitude death regions. The smallest
k1 able to cause amplitude death is k1 = 0.02, which is equal
to μ. Amplitude death regions appear when τ1 = T/4 and
3T/4 (T = 2π/ω), as in the coupled thermoacoustic system
depicted in Fig. 4.

For comparison with double-tube coupling in a thermoa-
coustic system, Eq. (21) was solved for k1 = k2 = k, ω = 1.0,
and μ = 0.02. For two time-delay coupling, the smallest k

needed to cause the amplitude death was found to be k =
0.01: half of μ. Recalling that the necessary tube diameter
was strongly reduced in the double-tube coupling, the two
time-delay coupling results only in a moderate enhancement
of stability of the equilibrium state. In other words, this
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result indicates that the coupling terms in Eqs. (19) and (20)
are insufficient to mimic the actual tube coupling of the
thermoacoustic system. To map out the death region, k is
chosen as k = 0.012 so that the amplitude death regions do
not become too small. Figure 8(b) presents the contour map
of �I shown on the plane of τ1 and τ2. The amplitude death
regions constitute diagonal lines in the van der Pol oscillators,
whereas islandlike amplitude death regions were found in the
thermoacoustic system, as presented in Fig. 5. In Fig. 8(b), the
contour lines inside the amplitude death regions are less dense
than in the region with fI < 0. In Fig. 5, the contour lines in
the regions with positive fI are extremely dense compared to
the other regions with negative fI .

Therefore, differences exist, especially for double-tube
coupling, in the amplitude death region and stability between
the thermoacoustic oscillators modeled by the hydrodynamic
equations and the van der Pol oscillators. Acoustic modeling
of the coupling is expected to be necessary for a more realis-
tic analysis of delay-induced amplitude death in combustion
systems.

VI. SUMMARY

Stability analysis of the delay-coupled thermoacoustic os-
cillators was conducted based on the hydrodynamic equations.
For single-tube coupling, amplitude death occurs when the
connecting tube length is one-quarter or three-quarters of
the wavelength of the oscillation frequency. For double-tube
coupling, amplitude death occurs when the combined con-
necting tubes are a half-wavelength and one wavelength of
the oscillation frequency. Comparison with the experimentally
obtained results demonstrates that stability analysis based on
the hydrodynamic equations can reproduce the location of
experimentally observed amplitude death regions in coupled
thermoacoustic oscillators, which differ from the death re-
gions of delay-coupled van der Pol oscillators.
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