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Effective nonlinear model for electron transport in deformable helical molecules
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The helical conformation of electric dipoles in some chiral molecules, such as DNA and bacteriorhodopsin,
induces a spin-orbit coupling that results in a sizable spin selectivity of electrons. The local deformation of
the molecule about the moving electron may affect the spin dynamics due to the appearance of bright solitons
with well-defined spin projection onto the molecule axis. In this work, we introduce an effective model for
electron transport in a deformable helical molecular lattice that resembles the nonlinear Kronig-Penney model
in the adiabatic approximation. In addition, the continuum limit of our model is achieved when the dipole-dipole
distance is smaller than the spatial extent of the bright soliton, as discussed by E. Diaz et al. [N. J. Phys. 20,
043055 (2018)]. In this limit, our model reduces to an extended Davydov model. Finally, we also focus on
perturbations to the bright soliton that arise naturally in the context of real helical molecules. We conclude that
the continuum approximation provides excellent results in more complex scenarios.
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I. INTRODUCTION

Several experiments on electron transport in DNA [1,2]
and bacteriorhodopsin on nonmagnetic metallic substrates [3]
found unexpected high spin selectivity. Since spin-orbit cou-
pling (SOC) is relatively weak in organic molecules, it was
suggested that spin selectivity may be related to the helical
conformation of the molecule [2]. A number of theoretical
models have been put forward to elucidate the impact of the
helical geometry on charge transport experiments [4—12]. In
addition to geometry, other mechanisms play a major role,
such as dephasing [13,14], the leakage of electrons from the
molecule to the environment [15], the role of the bonding
of the molecule to the metallic leads [16,17], or the inter-
play between a helicity-induced SOC and a strong dipole
electric field, which is characteristic of these molecules [18].
The dipole electric field is created by the backbone of
the molecule. The backbone with a helical arrangement of
peptide dipoles wraps the cylindrical structure of the
molecule. Therefore, an electron moving along the axis of
the helical molecule interacts with the electric field created
by the dipoles. This field results in an effective SOC that
resembles the Rashba-type spin-orbit interaction [6].

Electron transport in molecules is always affected by the
motion of the constituent ions [19]. Stochastic fluctuations
of the ions of the molecule cause loss of coherence and
energy dissipation. In addition, the local deformation of the
molecule about the carrier gives rise to nonlinear effects
that ultimately can lead to self-trapping [20]. Nevertheless,
theoretical models have taken into account the effects of
molecular deformation and nonlinear interactions only very
recently [21-24].

In this work, we investigate electron transport subject
to the fluctuations of the backbone of the peptide dipoles
in helical molecules. We assume that each electric dipole
vibrates independently of the others along the molecule axis.
This is not a serious limitation and tangential displacements

24770-0045/2018/98(5)/052221(8)

052221-1

of the dipoles, reorientation or interdipole coupling could be
easily taken into account if needed. In the framework of the
adiabatic approximation, we will show that the Schrodinger
equation for the electron reduces to the well-known nonlinear
Kronig-Penney model (see Ref. [25] and references therein)
under reasonable assumptions.

II. ELECTRON SPIN HAMILTONIAN IN A RIGID
HELICAL MOLECULE

In this section we present an overview of the spin dynamics
in rigid helical molecules according to the one-dimensional
model introduced in Ref. [12]. A backbone of peptide dipoles
often wraps the molecule, where the dipoles are aligned paral-
lel to the molecule helix [26]. When the molecule is attached
to magnetic or nonmagnetic metallic leads, as in the experi-
ments mentioned above, it becomes charged. Charging effects
will surely have an impact on the electric field distribution in
the molecules and we will assume that it can still be described
as originating from a helical arrangement of point dipoles. The
electric dipole field reflects the helical arrangement of peptide
dipoles and induces an unconventional Rashba-like SOC onto
an electron moving along the helical axis.

Therefore, we consider a very long helix of radius R
directed along the Z axis with axially oriented dipoles, as
depicted in Fig. 1(a). The point dipoles are located at posi-
tions r® = nAze, + Rp, and dipole moments are assumed
of the same magnitude d, = d'e,. Here we have used cylin-
drical coordinates so that p, = (cos ¢,, sing,, 0) with ¢, =
2nn/Ny + . The pitch of the helix is b = Ny Az, where Ny
is the number of dipoles per turn and Az is the spacing of the
z component of the position vector of the dipoles.

Each dipole contributes to the total electric field in the
molecule as follows:
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FIG. 1. (a) An electron in a given spin state is moving along the
axis Z of a helical arrangement of electric dipoles d,,. The electric
field created by the dipoles induces a magnetic field in the rest frame
of the electron and hence influences its spin dynamics. (b) Schematic
view of the various magnitudes involved in the model.

in the CGS system of units. We will restrict ourselves to
electrons moving along the Z axis (r = z'¢;) and neglect
the motion in the transverse direction for the moment. A
chiral electric potential causes a significant coupling between
electron linear momentum and its spin, even for the situation
in which the bare atomic SOC is small, as in most organic
molecules composed by light atoms [27]. In the electron
reference frame, special relativity establishes that it sees a
magnetic field given as B = p x E/(mc?). The magnetic
field lifts the spin degeneracy and ultimately yields spin selec-
tivity through the spin-dependent electron scattering through
the helical molecule attached to leads. Electron scattering
can be accounted for by considering the SOC Hamiltonian
arising from this mechanism. The corresponding Hamiltonian
is expressed as Hso = A0 - (p x E), symmetrized such that
the Hamiltonian is Hermitian. Here A = efi/(2mc)? and o is
a vector whose components are the Pauli matrices oy, o, and
o,. For p = p,e, with p, = —ild/dz the symmetrized SOC
Hamiltonian reduces to

A0 E@] [0 £
HSO‘z{”Z[s*(@ O]Jr[é‘*(z) o]”Z}’ (22)

where £(z) = —i Ex(z) — Ey(z). The transverse components
of the dipole electric field (1) when r = z'e, are given as

(z —nAz)cosg,
2 + (Z —n AZ)2]5/2’

E«(z) = —3Rd Z T

n=—0oQ

> (z —nAz)sing
E,(z) = —3Rd ~_.  (2b
3(2) n;w T G—napn @
Therefore, we get
. .
) (Z —n Az)e—IZH}’l/Nd
E(z) = —i3Rd . 2
@=-3Rd ) o a0

n=—0oo

In most helical molecules Az < b and, as a consequence, the
condition Ny > 1 typically holds. Under this assumption, the
continuum approximation is valid (see also Sec. V A) and we
can replace the sum over n in Eq. (2) by an integral. Defining
the dimensionless variable u = (z — nAz)/b and making the
formal substitution Y, — (b/Az) [du in the summation
appearing in Eq. (2c) yields
o0 (Z —n Az)e—iZn(z—nAz)/h
2 [R? + (z — n Az)?]/?

1 00 u ei27‘ru
~— [ 2d
b Az /,Oo YT R B2 2d)

n=—0o0

The integration is then straightforward and the result is

8r%d —i2mz/b —i2mz/b
E()=——= Ki2nR/b)e” "’ = Dye "7 (2e)
Azb?
where K is the modified Bessel function of the second kind.
The total Hamiltonian of the electron moving along the molec-
ular axis subject to the SOC is then H; = pf/Zm + Hso

whence
0 )
X ePmelb(i & 1) N E))
Z

Previous models in the literature have estimated a phe-
nomenological SOC to be of the order of hADy =4 —
12 meV nm [6]. The electrostatic potential due to the helical
arrangement of dipoles is constant along the molecule axis
and it can then be neglected. Spin dynamics in the rigid
lattice obeys the Schrédinger equation associated to the linear
Hamiltonian #; and it has been thoroughly discussed in
Ref. [12].
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III. ELECTRON INTERACTION WITH A SINGLE
VIBRATING DIPOLE

We assume that each electric dipole vibrates along the
molecule axis independently of the others. In addition, we
neglect the impact of the passing electron on the vibration
frequency. As seen in the schematic view of Fig. 1(b), an
electron moving along the Z axis is subject to the electric
potential created by a dipole located at r, =z,€, + Rp,.
The electric potential is given as ®,(z) = (d /47‘[60@,21)008 0,
where £, = |[£,| = |r — r,|, r = z’¢,, and 6 is the angle be-
tween d,, and £,. Now we write z, = zg +u,, 12 =nAz
being the Z coordinate of the electric dipole in equilibrium
(rigid molecule), and Taylor-expand the electric potential up
to first order in the displacement u,,. Therefore we can write
D,(z) >~ @g (2) + d>,ll(z). Here CDS (z) is the electric potential
that gives rise to the dipole electric field (1) after summing up
the contribution of all dipoles.

The first-order correction @}l(z) takes into account the
electron-dipole interaction, and it can be cast in the form

d —nA
<I>,‘1<z>=—unﬁF(—Z = Z), @)
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with F(x) = (1 —2x%)/(1 + x?)*/2. The first-order correc-
tion is noticeable only when the Z coordinate of the electron
is close to nAz. Consequently, we can approximate F(x)
by a Lorentzian since F(x) >~ 1 — (9/2)x2 ~ 1+ 9)c2/2)’1
for small x. In doing so, the potential energy arising from

the first-order correction V!(z) = —e®)(z) is approximately
given by
1 ~ r ~
V,(z) = gu, = gu,v(z — nAz),

ml(z —nAz)? +T7?]

&)
with § = +/2med/3R? and T = +/2R/3 is the Lorentzian
half-width.

IV. DERIVATION OF THE NONLINEAR MODEL

The derivation closely follows that of Bang et al. [28],
except that the present system describes the electron dynamics
in a continuous space and its spin plays a major role. In
addition, we will restrict ourselves to zero temperature and
neglect the interaction of the vibrating dipoles system with
a thermal reservoir. Thus, the system Hamiltonian is split as
H=H; + Hvib + Hint‘ .

The first contribution to H is the electron Hamiltonian in
the rigid molecule

H =) f V(@ MooV () dz, (6a)

where fp} (z) is the electron field operator and H,, denotes
the elements of H; given in Eq. (3). On the other hand,
vibrations of frequency wy are treated classically according
to the following Hamiltonian:

2
~ D; 1
H,yp = Z <2M +3 Mw§u§>, (6b)

where M is the mass of the dipoles and p, = Mu,. Finally,
the last term takes into account the electron-dipole interaction
from Eq. (5) that is diagonal in the spin index

Hip = f Vi)Y Bunv(z —nA)Pe(2)dz. (60)

The classical Hamiltonian is given by the trace over the
electron degrees of freedom H = Tr[p (t)H], where p(¢)
is the nonequilibrium density matrix. From the Hamilton
equation p, = —dH/du, we are left with the equation of
motion for the dipole displacements along the molecule axis

Miiy (1) + Mgu, () +3 ) / Poo (2,2, )V(z —nAz)dz

=0, (7a)
where the classical function is defined as [28]

Poor (2,7, 1) = Tr [B (O] (2) Vo (2)]. (7b)

We now consider the quantum mechanical Liouville equa-
tion for the density matrix

ih— =[H,7]l (8a)

Inserting the Hamiltonian H=H, L+ ﬁvib + ﬁim into
Eq. (8a) we obtain an equation for the classical function
oo (2,7, t). Assuming that it may be written as a
product [28]

paa’(zs Z/»t): X:(Zst)xa’(z/st)v (8b)

we get the fOllOWing equation fOI‘ the Carrier:
lﬂ o Z»l ;[O'U’ Z o’ Zvl
8 X ~ X

+3Y vz —nADK (2 (), (9a)

along with the equation for the dipole displacements (7a) that
can be cast in the form

Mii,(t) + Mw(%un(t)

+ §Z/x;‘(z, Dxo(z, Hv(z —nAz)dz=0. (9b)

Equations (9a) and (9b) constitute the starting point of our
analysis of the electron dynamics in the deformable helical
molecule. It should be stressed that noise and dissipation are
not considered in the classical equation of motion for the
dipole displacements. Therefore, our approach holds at low
temperature.

V. ADIABATIC APPROXIMATION
AND EFFECTIVE MODEL

In order to elucidate the impact of the vibration of dipoles
on the electron spin dynamics, we shall introduce several
reasonable assumptions. First, we can effectively decouple
Egs. (9) by assuming that the inverse of the dipole fre-
quency w, ! is much larger than any characteristic time of
the electron dynamics (adiabatic approximation). This can be
accomplished by setting ii,(¢) =~ 0 in Eq. (9b) and inserting
the result into Eq. (9a). After doing this, we obtain

0
ihi o Xo(2,1) = ;Haa/(z)xn/(z, 1)
&

—Xxs 5
My

Z v(z —nAZ)xs(z, 1)

x fo;‘/(z’,t)xn/(z’,t)v(z’—nAz)dz’.

(10)

The adiabatic approximation turns the original many-body
problem into an effective one-body problem described by a
nonlinear equation. Despite this simplification, Eq. (10) is still
complicated due to the occurrence of the nonlocal interaction
term. In the weak electron-dipole coupling limit, i.e., when
g is small enough, the electron is weakly localized and the
spatial distance over which the probability density changes
noticeably is larger than the molecule radius. In such a case,
the Lorentzian v(z) appearing in Eq. (10) and given by Eq. (5)
is a sharply peaked function in comparison to the electron
probability density. We can then replace v(z) by a § function
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by formally taking the limit ' — O while keeping g finite.
Therefore, under these premises the nonlocal interaction term
becomes local and Eq. (10) reduces to

0
ih oo (2, 1) = ;Hw(zm(z, 1)

(’éQ

8(z—nAxs(z,t
Ma? En (z=nAz)xs(z, 1)
X E Xo(nAz, )xe(nAz, 1).  (11)

o

We now define the dimensionless space coordinate £ =
z/b and time T = (E,/h)t, where E, = hi*/2mb?, along with
the dimensionless SOC parameter y = ArDy/(2wbE}). From
Egs. (3) and (11) we are led to

82
xx(&,1)=0,

where g = Ny §Q/(4Ma)(2)bEh) and x(&,7) is a two-
component vector whose components are x;(&,t) and
x2(&, 7). Here the dot indicates differentiation with respect to
the dimensionless time t. For sake of brevity we have defined
the matrix operator

0 e (i g + ﬂ)} (12b)

M:2ﬂy|:ei2n€(i%_n) 0

4
+ M+ Vi X (&, ) ;a@ - n/Nd)}

(12a)

In conclusion, Eq. (12) describes the electron dynamics in
a periodic array of vibrating dipoles within the adiabatic
approximation.

A. Continuum approximation

For further estimations, notice that typical values are N; ~
10 dipoles per turn in DNA or N; ~ 5 in « helix in the
secondary structure of proteins. Thus, since Ny > 1, we can
proceed to the continuum limit and replace the summation in
Eq. (12a) by an integration,

i25(g—n/Nd)—>/wa(s—u)duzl. (13a)
Ny & e

Therefore, in the continuum limit Eq. (12a) reduces to

2

0 ~
ix@é o+ [3—52 + M +4g |x (&, f)lz}x(é, r)=0. (13b)

This equation supports a variety of stable solitons such as
bright solitons, breathers, and rogue waves, all of them
presenting well-defined spin projection onto the molecule
axis. A thorough study of the soliton solutions have been
presented and discussed in Refs. [21,22]. In the following
section we discuss how bright solitons, similarly to the well-

known Davydov’s soliton [29], are affected when Eq. (13b) is
modified by the presence of different perturbations.

B. Generalized nonlinear Kronig-Penney model

The nonlinear equation (12) can be further transformed. To
this end, let us define the following unitary matrix:

—n—(&)cos w}
py(€)sing |’

wi(§)sing

nE(§)cos g

where y = tan(2¢) and
p(E) = explin (v'1+y? £ DE].

We now write the solution to Eq. (12) in the following form:

Q)= [ (14a)

X )= T QE)W(E, T). (14b)

1
v2g
On making this substitution one finally gets

2
98?
xW(E,1)=0.

. 2
W, 1)+ ‘I’(E,f)+mXH:(S(E—n/l\’az)l‘l’(é,f)l2

(14c)

Notice that we can get rid of the operator M defined in
Eq. (12b) by means of the unitary transformation (14a).

We seek a particular class of solutions to Eq. (14c) of the
form

s cosf
YE )=e""YyE)O, o= | 5)
sin 0
where 6 and « are real parameters. For the sake of concrete-
ness we will focus our attention on solutions with ¥ (&) real
as well. Inserting this ansatz into Eq. (14c) we get

2
Y€)= KPYE) + N > 8¢ —n/Nay () =0. (16)

Here the prime indicates differentiation with respect to the ar-
gument. This is nothing but the well-known nonlinear Kronig-
Penney model, as discussed by Hennig and Tsironis [25].
It becomes apparent that our model described by Eq. (12a)
can be regarded as a vector nonlinear Kronig-Penney model,
where an electron in a given spin state interacts with a series
of periodically spaced § function potentials modulated by the
square of the amplitude of the wave function.

C. Generalized nonlinear Kronig-Penney model
in the continuum approximation

In the cases of interest N; >> 1 and substitution (13a) is a
reasonable approximation. In the continuum limit, the equa-
tion of motion of the nonlinear Kronig-Penney model given
by Eq. (16) reduces to the following nonlinear Schrédinger
equation (NLSE):

Y€)= KPP (E) + 297 (§) = 0. (17a)
The NLSE admits a bright soliton solution of the form
Yo(§) = « sech(k§). (17b)

We can then obtain a bright soliton solution to Eq. (13b) of
the continuum model with the aid of the transformations (14b)
and (15)

sech(k€)Q(&) ™V T @, (17¢)

K
X0, 1) = \/_2_8
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Normalization of the wave function x (&, t) implies that
K=g.

VI. EFFECTS OF PERTURBATIONS

Having presented the existence of bright solitons in de-
formable helical molecules under the particular physical con-
ditions considered in Sec. V C, we now turn to discuss the
impact of some potential perturbations that arise naturally in
the context of real systems. All perturbations we consider here
led to a nonlinear equation of the form

. 9?
ix+ ( 72 +M+4g|x|2>

= Vi©oo x +2¢ix" - [Va(§) Lo + Va€) o] - x) X, (18)
where the dependence of x on (&, ) has been omitted for
clarity and 1, is the 2 x 2 identity matrix. Here the functions

Vi (€) are arbitrary but small. We now perform the transforma-
tions prescribed by Eqgs. (14b) and (15) to obtain

Y€)= 1Y (E) + 297 (§)
= —VIE)WEWE) + [Va(E) — VsEWE)Y &),
(19a)
where W (&) is defined as
W (&) = cos(26) cos(2¢)
+ sin(26) sin(2p) cos (2/1 + y2€).  (19b)

Equation (19) will be solved assuming that the interac-
tion terms V;(£) do not have a strong impact on the soli-
ton dynamics. Thus, we split the wave function as ¥ (§) =
Yo(§) + ¥1(§), where ¥(§) = gsech(g) [see Eq. (17b)]
and ¥ (&) is a small correction. Furthermore, we can write
k = g(1 + w/2) with |w| < 1. Keeping only first-order terms
in Eq. (19a) we get

Yl (x)+[6 sech®x — 11y (x) = U(x), (20a)
where x = g€ and
U(x) = gwsechx — é Vi(x/g)W(x/g)sechx
+g[Va(x/g) — Va(x/g)W (x/g)] sech’ x.  (20Db)

This inhomogeneous equation can be straightforwardly solved
by means of Green’s function techniques [30]. To proceed,
we consider two independent solutions of the homogeneous
equation [U (x) = 0]

¢1(x) = sinh x sech? x
¢2(x) = cosh x + 3(x sinh x — cosh x) sech? x (21a)

Even solutions of Eq. (20) with boundary conditions v (0) =
0 and lim,_, , ¥1(x) = O are given as

In(x) = / G, WUy, x>0,  (2Ib)
0

where it is understood that 1 (x) = ¥;(—x) for x < 0. The
Green’s function is written in terms of the independent

solutions (21a) as follows:

Gix y)=1{¢1(x>¢z<y>, 0
T2, 0

Once the perturbation potential U (x) is known, the solution of
the nonlinear equation (18) can be obtained up to first-order
corrections. In the rest of the paper we will discuss several
perturbations that arise naturally in the context of deformable
helical molecules.

<x <oo, 51
< (21¢)

<y
<x<y < oo

A. Validity of the continuum approximation

In previous sections we have demonstrated that the electron
dynamics coupled to vibrating dipoles can be accurately de-
scribed by a generalized nonlinear Kronig-Penney model, pro-
vided that the adiabatic approximation holds. The continuum
limit of this model has been exactly solved and we have found
a bright soliton solution given in Eq. (17c¢). In this section we
discuss the validity of the replacement (13a) by noticing that
the generalized nonlinear Kronig-Penney model (12a) can be
written in the general form (18) with V;(§) = V3(§) = 0 and
Va(E) =2 — (2/Na) Y, 8(€ — n/N,), leading to

U(x) = gwsechx

+ 2g|:1 - Nid Xn:a(x - ng/Nd)i| sech® x. (22a)

From Eq. (21b) we find the first-order correction as ¥ (x) =
(g/2)[wA(x) — B(x)], where

A(x) = (x sinh x — cosh x) sech’ x, (22b)

) sech’ <Vi) (22¢)

The unknown parameter w is determined from the normal-
ization of the wave function x (&, t) obtained with the aid
of Egs. (14b) and (15) for ¥ (§) = ¥o(€) + ¥1(€). Doing so,
one finds two solutions for w. In our numerics, we will take
the one corresponding to the lower value of the energy of the
soliton.

In Fig. 2 the effect of the discretization on the electron
wave function is depicted. Left panels show the first-order
correction, ¥ (£), to the total wave function, ¥ (&), due to the
discretization of the lattice. For completeness we also show
in the right panels the comparison between the electron wave
function for the continuum [ (&)] and the discrete [y (§) =
Yo(&) + ¥ (§)] models. In all cases, the lattice discretization
hardly affects the electron wave function. For instance, for
the upper right panel with N; = 10, the magnitude of the
perturbation remains below the 10%. Indeed, by increasing
the number of dipoles per turn, we recover the solution of
the continuum approximation. Our results provide further sup-
port to previous studies devoted to spin-transport in organic
molecules such as DNA or o helices, where the continuum
approximation was considered [6,12,22].

B(x) =sechx + — ZG(

B. Out-of-axis motion

In the derivation of the model in Sec. IV we assumed
that the charge carrier moves along the molecule axis. We
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FIG. 2. Left panels show the first-order correction, ¥, (£), to the
electron wave function due to the lattice discretization when the
number of dipoles per turn is (a) Ny = 10, (b) N, = 20and (c) N, =
30. Right panels show the total wave function for the continuum
model, ¥(&), and for the discrete model, ¥ (§) = Vo (§) + Y1 (§),
for (d) Ny = 10, (e) N; = 20 and (f) N, = 30. In all cases g = 1.

now investigate the correctness of this approximation by
letting electrons move along a helical path of radius R’ and
pitch b, where R’ is of the order of the molecule radius R.
The classical equation of the trajectory is given as x(t) =
R cos(2mz/b), y(t) = R’ sin(2mz/b), and z(¢) = vt. Here v
is the classical velocity, being related to the electron energy
E by the expression v = /2E /m. The perpendicular (out-of-
axis) linear momentum then is p, = p, e, + p,e,, with

R/
Px = —2nv2mE<7> CcoS (27{ %)

R/
py = 27r«/2mE<?> sin (2n %) (23a)
The SOC Hamiltonian can be expressed as Hsoc = —[4p&00 -

B, where pup is the Bohr magneton, go is the g factor,
and Begr = —p X E/4mc2. Let ABer = —p | X E/4mc2 be
the contribution of the perpendicular linear momentum to
the effective magnetic field. The component of AB.y in
the XY plane will not affect much the already-studied SOC
[see Eq. (2a)]. Therefore, we restrict ourselves to study the
component of A B along the molecule axis

2 R
2mE|( —
4mc? < b )
X |:sin (271 %)Ey(z) + cos <27r g)Ex(Z)i|.

(23b)

(ABetr), =

The interaction energy due to this component of the effective
magnetic field resembles a Zeeman-type term of the form
Hz = —j1goo;(ABes), . Since the components of the dipole
electric field appearing in (23b) have already been calculated
[see Eq. (1)], we finally find that

H; = KEysin(4n&)o,, (23¢)

0.01- (@) 1.0 (d)

| | — vE)
0.00 _J\N 05 — &
~0.01
0.004 0.0
1 () 1.0 (e)
2 0,000 S
5‘_“ J S 0.5
~0.004
0.0
1 @© 1.0 @)
0.05 i
0.00 0.5
~0.05 . | ‘ 00 |
-10 0 10 -10 0 10
g g

FIG. 3. Left panels show the first-order correction, v, (§), to the
electron wave function due to the out-of-axis linear momentum for
(a)0 =0, (b) 8 = m/6 and (c) & = 7 /4. Right panels show the total
wave function for the continuum model, (&), and that for an out-
of-axis propagation, ¥ (§) = ¥o(§) + ¥ (), with K = 0.1 and (d)
0 =0,)0 =n/6and ()0 = /4. Inall cases g = 1 and y = 0.1.

where

D R’
K = w«/sz(—). (23d)

mc2E), b

The interaction energy H; is to be added to the Hamilto-
nian (3), leading to an equation of the form (18) with V() =
K sin(4w&) and V,(&) = V3(&) = 0. Therefore

K . X X
Ukx) = |:ga) — — sin <4n —) W<—>i| sechx. (23e)
8 8 8

The first-order correction is again written as ¥ (x) =
(g/2)[wA(x) — B(x)], where A(x) is given by (22b) and

2K [
B(x) = —2/ G(x, y)sin <47‘[ X)W<X> sech y dy.
g Jo g) \g

(23f)

Figure 3 shows the effect of the perturbation vr;(§) (see
left panels) when the out-of-axis momentum component in
the electron motion is taken into account. Similarly to Fig. 2,
in Fig. 3 we compare the electron wave function for the
unperturbed vy (&) and the perturbed models ¥ (§) = Yo (&) +
Y¥1(£). In this case our results depend on the angle 6 by way of
the function W(y/g) given in Eq. (19b). This angle fixes the
helicity of the electron wave function. Indeed, the effect of
the perturbation is periodic with 6 and, therefore, Fig. 3 only
presents results for 8 = 0, /6, and 7 /4 for simplicity. Once
again the effect of the perturbation is almost negligible far
from the wave function peak and even in the most pronounced
case (0 = m/4) it remains below 10%.

C. Spin-dependent electron-dipole interaction

According to Eq. (6¢), the interaction of the electron with
vibrating dipoles is diagonal in the spin index. Nevertheless,
when the spin-orbit coupling is large as compared to the
phonon energy, Covaci and Berciu studied the effects of the
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FIG. 4. Left panels show the first-order correction, ¥, (£), to the
electron wave function due to the spin-dependent electron-lattice
interaction g+ = (1 £ ¢€)g for (a) 6 =0, (b) 06 =7/6 and (c) 0 =
7 /4. Right panels show the total wave function for the unperturbed
(e =0) and perturbed (¢ = 0.1) electron wave functions for (d)
0=0,(e)0 =n/6and (f)0 = /4. Inallcases g = 1 and y = 0.1.

Rashba spin-orbit coupling on polaron formation and have
found that the polaron retains only one of the spin-polarized
bands in its coherent spectrum [31]. This complicated scenario
can be mimicked by an effective spin-dependent electron-
dipole interaction in our model. To do so, we replace the
spin-independent nonlinear term in Eq. (13b) as follows:

&+ 0
0 g-

T 1 1

gX'X—>XT|: i|'X=gX'X+€gXUzX’

(24a)

where g+ = (1 &+ €)g. Assuming that the asymmetry parame-
ter is small (Je| < 1), we can apply the perturbation approach
by noticing that now the NLS can be cast in the form (18) with
Vi(¢) = Va(§) = 0 and V3(&) = 2e, yielding

U(x) = gwsech x — 2ex W (x /) sinh® x. (24b)
The first-order correction is given as ¥ (x) = (g/2)[wA(x) —
B(x)], where A(x) as in (22b) and now

B(x) =4e¢ /-oo G(x, y)W(ﬁ) sech® y dy. (24¢)
0

In Fig. 4 we focus on the analysis of the effect of the
spin-dependent electron-lattice interaction, such as g. = (1 &

€)g, in the molecule. Left panels show the the perturbation
Y1 (&) while right panels present a comparison between the
unperturbed (¢ = 0) and perturbed (¢ = 0.1) electron wave
functions. As in the previous section, our results depend
periodically on the angle 6 so we present results for 6 =
0, /6, and /4. Once again the effect of the perturbation is
stronger at the wave-function peak in general and for 6 = /4
in particular. It is worth noticing that results for 6 = 7 /4 are
rather similar to those found in the previous section. However,
for the rest of considered values of the parameter 6, the
perturbation is more relevant in the case of spin-dependent
electron-lattice interaction. Still, this remains below 10% as
before.

VII. CONCLUSIONS

In conclusion, we have studied the interaction of moving
electrons with the vibrating dipoles of helical molecules.
The electron is treated quantum mechanically and the lattice
vibration is taken classically at zero temperature. The dipole
electric field induces a Rashba-like SOC for electrons moving
along the helical axis while the electron-lattice interaction
leads to a generalized Kronig-Penney model [see Eq. (12a)]
within the framework of the adiabatic approximation. Since
the number of dipoles per turn is usually much larger than
unity in most cases of interest (Ny; > 1), the continuum
limit of the generalized Kronig-Penney model is a reasonable
approximation and we are then led to an extended Davydov
model, as discussed in Ref. [22].

The perturbation approach, introduced by Mallory and
Van Gorder in Ref. [30], confirms that the discrete nature
of the array of dipoles has a negligible impact on the bright
solitons of the extended Davydov model. In addition, some
other relevant perturbations, such as the out-of-axis motion
of electrons and an effective spin-dependent electron-lattice
interaction, do not alter much the bright soliton solutions of
the extended Davydov model. Therefore, we can conclude
that the effective nonlinear model given in Eq. (13b) provides
a reasonable description of electron transport in deformable
helical molecules.
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