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Engineering separatrix volume as a control technique for dynamical transitions
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Dynamical transitions, such as a change from bound to unbound motion, often occur as post-adiabatic
crossings of a time-dependent separatrix. Whether or not any given orbit will include such a crossing transition
typically depends sensitively on initial conditions, but a simple estimate for the fraction of orbits which will
cross the separatrix, based on Liouville’s theorem, has appeared several times in the literature. Post-adiabatic
dynamical transitions have more recently been reconsidered as a control problem rather than an initial value
problem: What forms of time-dependent Hamiltonian can most efficiently induce desired transitions, or prevent
unwanted ones? We therefore apply the Liouvillian estimate for the transition fraction to show how engineering
separatrix volumes in phase space can be a control technique for dynamical transitions.
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I. INTRODUCTION

Hamiltonian systems may exhibit multiple dynamical
phases, with qualitatively different kinds of time evolution
occurring in different regions of phase space. Basic examples
are the different phases of bound and unbound motion for a
particle in a finite potential well, as well as the spinning and
oscillating phases of a physical pendulum. In such examples,
a time-independent Hamiltonian will never let the system
cross the separatrix between the two phases, but dynamical
transitions can occur when Hamiltonians are time depen-
dent. Since the concept of a dynamical transition implies
a timescale hierarchy that allows us to distinguish the two
distinct phases of motion from the transition between them,
dynamical transitions have long been studied as post-adiabatic
effects under slowly time-dependent Hamiltonians [1–19].
This concept has found applications in celestial mechanics
[2,3], plasma physics [4], accelerator physics [15–17], and in
controlling particle distributions [18,19].

A paradigmatic example is shown in Fig. 1. Three dynami-
cal regions in phase space are separated by two instantaneous
separatrices �±(t ) which depend slowly on time t because
the Hamiltonian H does. According to the adiabatic theorem
of classical mechanics [20], orbits sufficiently far from any
separatrix will remain within the same dynamical region, but
the adiabatic approximation breaks down near a separatrix. As
the separatrices slowly move and deform, therefore, orbits can
spill through them from one dynamical phase into another be-
cause the orbits will be nonadiabatic when a separatrix is near.

Even numerical results for such problems can be difficult
to obtain with high precision [13]. Systematic “neoadiabatic”
treatments have been developed to determine the changes in
adiabatic invariants over the nonadiabatic interval of a sepa-
ratrix crossing by combining three different kinds of approx-
imation whose zones of applicability overlap in phase space
[5–7,9]. Because separatrix crossing is often quite sensitive
to the precise evolution of the system, even the standard cor-
rections to the adiabatic approximation (i.e., terms of higher-
than-leading order in the small ratio of timescales) may be

important in determining separatrix crossing. We will there-
fore use the adjective “post-adiabatic” to refer to all effects
which arise beyond the leading-order adiabatic approxima-
tion, but which are necessary for determining which initial
states will ultimately evolve into which dynamical phases.

Simply to compute such post-adiabatic effects will not
be the point of our paper, however. The whole initial value
problem, of determining the final dynamical phase from given
initial conditions, has more recently been reexamined from
the perspective of control theory [18,19], where instead of
solving the initial value problem for a given time-dependent
Hamiltonian, one asks rather what kind of time-dependent
Hamiltonian may generate the time evolution which most
efficiently achieves a desired final state, for some given set
of initial conditions which represents the range of initial
states that can be created in practice, given limited precision.
Tuning the time dependence of Hamiltonian parameters in
order to attain a target state is a somewhat different concept
of control from the alternative concept, common for example
in mechanical engineering, of constructing a system which
automatically stabilizes itself against unwanted perturbations.
Control as tuning for final state is how control is commonly
conceived in chemistry, however, and it is control in this
chemical sense that will be the theme of our paper.

Fully detailed post-adiabatic calculations (such as [6], for
example) are likely to be too long and complex to be con-
venient guides for Hamiltonian engineering in systems with
many tunable parameters. From the point of view of control,
though, the most important issue in separatrix crossing is
simply the fraction of preparable initial states for which the
desired transition occurs. In this paper, we therefore point out
that this important question of transition probability can be
answered by using only one small and simple part of adia-
batic theory, namely, a formula based on Liouville’s theorem
[21] that was originally presented by Kruskal, Neishtadt, and
Henrard and has since been extended by others. This Kruskal-
Neishtadt-Henrard formula has been derived for integrable
Hamiltonian systems with only one degree of freedom, and
although its extension to more complex systems should be
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FIG. 1. Sketch of phase space regions exhibiting different dy-
namical phases, divided by two separatrices �± into three regions
shaded dark, gray, and white, with areas A+, A0, A−, respectively.
The dashed curves and lighter shading indicate that the separatrices
move and grow during a short interval δt within which the Hamil-
tonian is time dependent. According to the theory presented in the
text, the rates Ȧ± and Ȧ0 ≡ −(Ȧ+ + Ȧ−) at which the three phase
space areas change determine an adiabatic estimate for the fractions
of trajectories that will be drawn from A0 into either A+ (hypothet-
ically, a desired goal) or A− (the unwanted alternative) during the
interval δt .

feasible at least in some form, we will restrict our attention
here to its simple original context.

We will begin in Sec. II below by presenting this basic idea
for estimating transition probability from Liouville’s theorem,
but then also critiquing it with some apparent numerical
counterexamples. In Sec. III we will explain how the simple
formula can be improved and extended, and conclude that
simple Liouvillian estimates for probabilities of dynamical
transitions really can be robustly accurate. In Sec. IV we
will apply this picture to some transition crossing problems
that have been posed as control tasks; in particular, we will
provide an analytical theory that accurately explains some
recent numerical data presented in [19]. We will conclude in
Sec. V with a discussion comparing the “Liouville control”
principle of engineering separatrix volume growth to the ther-
modynamic requirement of entropy increase, as conditions for
spontaneous change.

II. TRANSITION PROBABILITIES FROM
LIOUVILLE’S THEOREM

A. Kruskal-Neishtadt-Henrard formula

The simplest example of quickly deducing probabilities for
crossing separatrices can be illustrated with Fig. 1. Suppose
that both separatrices �± steadily grow during the inter-
val from time t to t + δt , so that each �±(t + δt ) entirely
encloses the �±(t ), as suggested in Fig. 1. If A±(t ) and
A0(t ) denote the respective phase space areas of the three
regions into which the separatrices divide all of phase space,
then A+ and A− are growing while A0 is correspondingly
shrinking. Phase space orbits must therefore be crossing post-
adiabatically from A0 into A+ and A− during the interval δt .
Kruskal, Neishtadt, and Henrard have all appealed to Liou-
ville’s theorem to deduce that the fraction of these separatrix-
crossing orbits which enter A+ or A−, respectively, must be

P± = δA±
δA+ + δA−

≡ −δA±
δA0

, (1)

where δA± denote the changes in area of the respective
regions over δt .

In the limit δt → 0 so that δA± → Ȧ±δt we obtain an
essentially equivalent expression which can be interpreted as
the probability that an orbit will enter A+ or A−, given that it
moves into one or the other of them from A0 at time t :

P±(t ) = Ȧ±
Ȧ+ + Ȧ−

≡ − Ȧ±
Ȧ0

. (2)

If the explicit time dependence of the Hamiltonian is slow,
then the three areas and hence also P± vary only slowly with
t , and so (2) can be applied to any set of trajectories which all
choose between A+ and A− at around the same time t , without
having to determine exactly when or where any particular
orbit will meet a separatrix, as long as one can invoke a certain
weak kind of ergodicity to assume that the set of trajectories
is typical of all those that move from A0 into A± in the time
around t .

Equation (2) may at first seem a strange proposition for
deterministic mechanics. It speaks of probabilities. Yet, once
formulated, it hardly even seems to need proof. Liouville’s
theorem tells us that time evolution in phase space is an
incompressible flow, even when Hamiltonians are time de-
pendent. The total increase in separatrix area δA+ + δA− =
−δA0 therefore represents a certain conserved volume of
possible system orbits which have entered one or the other
separatrix during the time-dependent interval. The two area
increases δA+ and δA− are conserved measures of the number
of orbits which have entered each individual separatrix. If we
know that a given orbit is within the entering set of measure
−δA0, therefore, and if that is all that we know, then (2) is the
obvious guess for how likely it is the orbit ends up inside �+
or �− in particular.

The formula can also be extended straightforwardly to
cases where one of the “destination” areas A± also shrinks
over time, as A0 does, instead of growing. If A+ is shrinking,
then all orbits that remain inside �+ adiabatically must be
ones that were already there, and so no additional room
is available for any new orbits to enter the shrinking A+
through the incompressible flow of Hamiltonian time evo-
lution. Hence, if δA+ < 0 we conclude that P+ = 0. If on
the other hand A− and A0 are both shrinking while A+
grows, then the same combination of adiabatic and Liouvillian
reasoning implies that orbits which migrate to a new region
must all migrate to A+, and so P+ = 1. In other words, if
formula (2) yields a result greater than one or less than zero,
it is to be interpreted as one or zero, respectively.

The formula (2) was published without proof by Dobbrot
and Greene [1], where it was attributed to Kruskal in a private
communication, referred to as “Kruskal’s theorem,” and used
to examine motion of charged particles in a class of magnetic
confinement devices (“stellarators”) intended for fusion power
generation. A derivation of this formula was given by Neish-
stadt [2], motivated by questions about orbital resonances
among the moons of Saturn. An independent derivation of (2)
was added by Henrard [3]. We will therefore refer to (2) as the
Kruskal-Neishtadt-Henrard formula (KNH).

This somewhat abstruse history of the KNH formula may
well make a reader think again about just how obviously
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valid the formula is. On second thought, in fact, the KNH
formula may become downright dubious. It attempts to draw
conclusions about how frequently an essentially nonadiabatic
phenomenon will occur, based on geometrical quantities that
are only defined adiabatically. Although Liouville’s theorem
is exact, time-dependent separatrices are really only instanta-
neous separatrices within the adiabatic approximation, and so
the KNH formula can only be as good as that approximation;
and yet it assigns probabilities to different cases in which the
adiabatic approximation breaks down.

The question of whether the KNH formula is valid is not
just an academic paradox. The formula offers a way to deter-
mine an important feature of nonadiabatic evolution (namely,
the probability of a separatrix-crossing transition) merely by
determining the instantaneous separatrices of the Hamiltonian
H (t ), without having to solve for the actual system time
evolution. Having an estimate of transition probability without
solving nonadiabatic evolution may be merely a convenience,
if one is trying to solve the initial value problem for a given
Hamiltonian, as for instance to predict the motion of satellites.
If, however, one instead faces the control task of getting the
system into A+ from A0, and if one’s means for achieving
this task are various ways of modifying H (t ), then a way
of estimating the chance of success from the instantaneous
Hamiltonians alone may be more than just convenient. It may
enable one to replace trial and error with deliberate design.

How generally valid is (2), even when time dependence is
slow? Careful examination shows that the formula stated in (2)
can in general fail badly. Some simple examples will illustrate
the problem, but then also suggest a solution.

B. Application of the KNH formula

The concrete application of the intuitive KNH formula,
as well as its limitations, can both be seen by re-examining
a specific example that has been considered by many au-
thors including both Neishtadt and Henrard, namely, the
Hamiltonian

H1 = [P − α(t )]2

2
− β2(t ) cos(φ), (3)

with φ and P canonically conjugate coordinates, and α and β

slowly changing parameters. This model has been studied in a
wide range of physical contexts, but as a simple concrete real-
ization one could consider φ and P to be the one-dimensional
position and momentum, respectively, of a charged particle in
an electric field which is a superposition of spatially sinusoidal
component and a spatially constant component, each compo-
nent being of time-dependent strength. This electric field is
represented in a gauge such that the sinusoidal component is
due to the electrostatic potential while the constant component
is due to the vector potential ∝α(t ).

This Hamiltonian (3) has two time-dependent instanta-
neous separatrices (φ, P ) → (φ, P±(φ, t )) dividing phase
space into three parts:

P±(φ, t ) = α(t ) ± 2β(t ) cos
φ

2
. (4)

The geometry is different from Fig. 1 because of the period-
icity of φ; see Fig. 2 (a simple sketch for comparison with
Figs. 1 above and 5 below) as well as the two upper panels of

FIG. 2. Contours of constant H1 in the phase space of φ (horizon-
tal axis) and P (vertical axis) for example cases of H1 with (α, β )
given by (− 1

2 , 1
2 ) for (a) and ( 1

2 , 1) for (b). The contours drawn in
thicker black line are the separatrices, which divide the full phase
space into three regions that correspond conceptually to the three
regions of Fig. 1. In the adiabatic limit, the system’s time evolution
is to flow along these energy contours, in the directions indicated
by the small arrowheads in each region; post-adiabatic corrections
make actual orbits drift to different energy contours and even move
between regions. The φ coordinate is periodic, such that motion
wraps from the right edge of each frame to the left edge. Here,
(a) and (b) could represent the same time-dependent Hamiltonian at
different times, showing how all three areas A1±,0 can change in time,
although their sum remains constant.

Fig. 3 (more detailed plots showing several energy contours,
which the system follows adiabatically in its time evolution).

We will take the finite region between the two separatrices
to be our target region +; the area A1+ is then easily computed
as

A1+(t ) =
∫ π

−π

dφ [P+(φ, t ) − P−(φ, t )] = 16β(t ). (5)

(a)

A+
A→

A0

α(t0) = 0

t0

-2 0 2

P

-5

0

5

α(t1) = 5

t1

-2 0 2

P

-5

0

5

A+
A→

A0

α̇(t0) = 1 3

φ
-2 0 2

p

-5

0

5

α̇(t1) = 1 20

φ
-2 0 2

p

-5

0

5

(b)

(d)(c)

FIG. 3. Separatrices and other energy contours for H1 [top panels
(a) and (b)] and for the canonically equivalent H2 [bottom panels (c)
and (d)] at two different times t0 and t1 (left and right panels). The
parameter β = 1 is here constant at all times, and α(t ) changes such
that α(t0) = 0 and α(t1) = 5, while the rates of change are α̇(t0) =
1
3 and α̇(t1) = 1

20 . Although the two Hamiltonians are canonically
equivalent, under H1 the region A1+ that is enclosed by the separatrix
moves but does not grow, while under H2 the corresponding A2+
grows without moving.
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We can define finite areas A10 and A1− above and below the
two separatrices by setting upper and lower boundaries in P

that are far enough away from the separatrices, throughout the
entire time evolution of interest, that orbits near them have
essentially constant P and so no orbits will ever exit above
A10 or below A1−. We can then also compute

A10(t ) = Ā10 −
∫ π

−π

dφ P+ = Ā10 − 2πα(t ) − 8β(t ),

A1−(t ) = Ā1− +
∫ π

−π

dφ P− = Ā1− + 2πα(t ) − 8β(t ), (6)

where Ā10 and Ā1− are arbitrary large constants determined
by exactly where we place our constant P boundaries to the
outer regions.

With Neishtadt and Henrard we take examples with α̇ >

0, and we consider orbits which begin in the A10 region
above the separatrices. These orbits will eventually encounter
the separatrix P+ at some time t (or any time near this t

since the separatrices move only slowly), and then either be
captured into A1+, or else emerge into A1−. According to
[2,3], and from applying our (2), the adiabatic approximation
for the fraction of such orbits that will end up inside A1+ will
therefore be

P1+(t ) =
⎧⎨
⎩

0, β̇ � 0
8β̇

4β̇+πα̇
, β̇ > 0, α̇ � 4β̇/π

1, 0 < α̇ < 4β̇/π.

(7)

C. Limitations of the KNH formula

The fact that Eq. (7) as stated is not generally accurate,
however, can be seen by numerically solving cases with time
independent β = 1. In all such cases Ȧ1+ = 0 because the
only time dependence of the separatrices is a rigid translation
in P by α(t ), as shown in the top panels of Fig. 3, and so
P1+ = 0 according to (7).

As Fig. 4 shows, however, a particular case in which
α̈(t ) < 0 turns out to have a capture fraction into region A1+
of about 15%, high enough that if this evolution represented
a chemical reaction with a valuable product [8] it might be
considered an acceptable yield. The KNH formula using the
separatrix areas for the Hamiltonian H1 has completely failed
to predict this significant outcome.

For another perspective on how (7) fails, we can consider
an alternative control task: instead of capturing the system into
A1+, we now wish to keep the system inside A1+ in order
to transport the system to a substantially higher value of P

[18,19]. The logic behind (2) and (7) implies for this case that
orbits which are initially in A1+ will all remain there, as long
as A1+(t ) never shrinks. As reported in [19], however (and
discussed here in Sec. IV below), a significant fraction of such
initial orbits fail to be transported significantly because they
escape from the separatrix.

In both these cases the KNH formula fails qualitatively.
What has gone wrong with it? Was it never really anything
more than a hand-waving argument which appeared universal
because it invoked Liouville’s theorem but which is unfortu-
nately ruined by invalid application of adiabatic approxima-
tions?

φ
-3 -2 -1 0 1 2 3

P

-2

0

2

4
(a) , t = 0

φ
-3 -2 -1 0 1 2 3

P

-2

0

2

4
(b) , t = 6

φ
-3 -2 -1 0 1 2 3

P

-2

0

2

4
(c) , t = 40

FIG. 4. Capture fraction. 20 000 initial conditions (a) evolved to
two later times (b) and (c), under the canonical equations gener-
ated equivalently by H1 of (3) and H2 of (8), with β(t ) = 1 and
α(t ) = (t/10)(1 − t/80). Solid black curves are the instantaneous
separatrices according to H1; dashed curves are the H2 separatrices;
the two sets of separatrices coincide at t = 40 (c). The approximately
15% of points that will be inside A1+ in (c) are shown at all times in
red; other points are in blue. Applying the KNH formula using the
areas enclosed by the solid H1 separatrices incorrectly predicts zero
capture fraction, while an improved formula based on H2 provides
an accurate estimate.

The KNH formula’s basis in Liouville’s theorem about in-
compressible phase space flow is truly strong since Liouville’s
theorem is exact even for time-dependent Hamiltonians [21].
The problem does indeed lie in the consideration of areas of
phase space regions that are only defined within the adiabatic
approximation. It is only in the adiabatic approximation that
the separatrix itself is a curve of zero measure; in reality,
there is a finite region around the separatrix within which
adiabaticity breaks down. As Fig. 4(b) shows, indeed, the
adiabatic breakdown around the separatrix means that orbits
do not really remain within disjoint regions A1± but flow
continuously through all three regions within a zone around
the separatrices. The area of this adiabatic breakdown zone
must also be considered within our Liouvillian logic because
this area too can change over time.
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This issue may seem like a fatal flaw in the KNH formula
as a prediction for post-adiabatic transition probabilities, but
in fact the flaw can be remedied systematically, leading to an
extended version of the KNH formula that really does work.

III. EXTENDING THE KNH FORMULA

A. Optimal canonical coordinates

Adiabatic approximations break down near a separatrix
because somewhere on the separatrix there is an unstable
fixed point, where trajectories diverge and converge with
infinite slowness, so that no finitely slow time dependence of
the Hamiltonian can be slow in comparison to the evolution
it generates [7]. It was therefore an important advance by
Cary, Escande, and Tennyson to prove that one can always
transform to canonical coordinates in which the unstable
fixed point’s location, and the quadratic Hamiltonian in its
neighborhood, are exactly time independent [6]. This set of
canonical coordinates thereby optimizes the accuracy of the
adiabatic approximation.

As is usual for transformations that achieve things exactly,
this optimal transformation can itself be hard to construct.
One can often find a transformation, however, that will at
least make the unstable fixed point change less, and this may
improve the capture fraction estimate enough to make it a
useful guide for control strategies. For our Hamiltonian (3),
for example, we can make the simple time-dependent canoni-
cal transformation (φ, P ) → (φ, p) with p = P − α(t ). The
new Hamiltonian (that is, the “Kamiltonian” adjusted by
adding the generator of the transformation [21]) is then

H2 = p2

2
+ α̇φ − β2 cos(φ). (8)

This new Hamiltonian H2 is canonically equivalent to H1

and hence generates the same exact evolution. If we are
considering our system to represent a charged particle in an
electric field, as described above, then the transformation from
H1 to H2 is simply a gauge transformation such that the
electric field is described in H2 without any vector potential,
using only the time-dependent scalar potential V(φ) = α̇φ −
β2 cos(φ). In this gauge it might appear natural to take φ ∈ R,
instead of restricting φ to a ring as we were able to do in
the original gauge. It is nevertheless possible to keep the
restriction of φ to φ ∈ [−π, π ] because H2(φ + 2πn, p, t ) =
H2(φ, p, t ) + 2πnα̇ for every integer n. Hence, shifting φ

by 2πn only changes the instantaneous Hamiltonian by a
constant, which has no effect on the equations of motion.
We can therefore describe all orbits exactly while considering
only the phase space for −π � φ < π . Every portion of
trajectory found in the region −π + 2πn � φ < π + 2πn

has a counterpart in the region −π � φ < π that is exactly
the same curve, just with a trivially shifted energy.

The adiabatic approximation of H2 is significantly different
from that of H1, however, as we can see from the instan-
taneous separatrix plots in the bottom panels of Fig. 3 and,
enlarged and simplified for comparison with Figs. 1 and 2,
in Fig. 5. One separatrix of H2 is a closed loop that begins
and ends at the fixed point [dark central loop in Figs. 5(a) and
5(b)]; it therefore plays the role of both separatrices together
under H1. We can identify the interior of this closed separatrix

FIG. 5. The adiabatic separatrices of the transformed Hamilto-
nian H2, plotted in the phase space of φ (horizontal axis) and p

(vertical axis), for the case α̇ = sin(π/8) and β = 1. The inner sep-
aratrix loop encloses the target region A2+, shaded dark. (a) Shows
two successive separatrices in the extended range of φ, with shading
between them that gradually changes from gray to white, while
(b) shows the same separatrices and shaded region projected into
the range −π � φ � π . Adiabatic evolution of the system outside
the A2+ region is to flow between the separatrices without crossing
them, as indicated by the arrows; post-adiabatic corrections can
shift some orbits into A2+ from outside it. In the projected picture
of (b), φ behaves as a periodic coordinate even though H2 is not
periodic in φ.

as the “+” region for H2, A2+ since under the canonical trans-
formation p = P − α it is mapped inside the A1+ region of
H1. As the lower two panels of Fig. 3 show, the H2 version of
the target region A2+ can indeed grow in time, even when β is
constant and so the H1 version A1+ remains constant as well.

The fact that A2+ can be growing even when A1+ is not
is an encouraging sign that the KNH formula can perhaps
be salvaged, and made to provide accurate estimates of cap-
ture or loss fractions after all, by changing to a canonical
representation in which the adiabatic approximation is more
accurate. This encouraging sign will turn out to be correct; for
example, the behavior of the H2 separatrices will be able to
explain both the nonzero capture and loss fractions that we
have just shown as significant violations of the KNH formula.
It is not quite enough just to transform from H1 to the more
adiabatic representation H2, however, because as soon as we
have transformed from H1 to H2 we find that we cannot even
define the capture fraction P+ as we did in Eq. (2).

Although the inner separatrix shown in Fig. 5 lets us easily
define the target region A2+, we face a basic problem in
trying to identify the two other regions A20 and A2− that
are logically necessary for the KNH argument. The other
separatrices of H2 are open. If the range of φ is allowed to be
infinite. then these separatrices run infinitely away to the upper
and lower left; if we project into the region φ ∈ [−π, π ] as
discussed above, then as shown in Fig. 5(b) they wrap around
and around through φ while running indefinitely to higher
and lower values of p. The H2 separatrices thus divide the
phase space with periodic φ into only two separate regions,
not three as we had with H1, namely, A2+ and the infinitely
wrapping corridor that flows around A2+. If we try to assign
the dark, light gray, and white shadings of Figs. 1 and 2 now
in Fig. 5, the wrapping corridor can only have shading that
changes gradually from gray to white. Its upper and lower
ends must correspond somehow to the A10 and A1− of the H1

representation, but there is no longer any obvious boundary to
divide the wrapping corridor of H2 into two such regions.
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FIG. 6. Contours and regions relevant to the extension of the
KNH formula. The thickly drawn curves include the entire inner
separatrix and part of the outer separatrix (the remainder of the
outer separatrix being shown in thinner dashed lines). Small arrows
indicate that these separatrices are both slowly deforming in time (in
this case, expanding). Points x and y, at the left and right edges of
the plot, are unstable fixed points. The points a and b are arbitrarily
chosen points on the two separatrices, while the curve � is an
arbitrary curve connecting a and b. The addition of the arbitrarily
constructed curve � completes the division of phase space into three
regions: A+ (dark), A0 (light gray), and A− (white).

The logic of the KNH formula was based on having three
regions (a donor region A0 and two recipients A±) with the
system choosing between A+ and A− when it leaves A0. We
therefore cannot apply the KNH capture formula (2) as it
stands to cases like that in H2 where there are only two adi-
abatic regions. We can, however, apply the same Liouvillian
logic that led to the KNH formula to derive an extended KNH
formula that can be applied to Hamiltonians like our H2.

B. Capture fraction with an open separatrix

This way of extending the KNH formula was indicated by
Chernikov and Schmidt [11], in a paper on adiabatic chaos in
Josephson junction arrays. Our derivation of this extension of
KNH will be motivated by Sec. III C of Ref. [11], with some
generalization; in particular, Chernikov’s and Schmidt’s Fig. 8
may be compared directly to our Fig. 5 and others. In this
section we will present an abbreviated sketch of the derivation,
leaving the full details for the Appendix.

Our abbreviated derivation will be based on the phase
space sketch Fig. 6, which shows a region around the closed
inner separatrix of a generic Hamiltonian like that shown in
Fig. 5. The labeled contours and points in Fig. 6 are related to
adiabatic energy contours. The full derivation in the Appendix
also uses some slightly different points and contours, defined
in terms of exact trajectories, because the main work of the
full derivation will be to show how exact quantities can be
approximated accurately in terms of adiabatic ones. The ab-
breviation which we make here is to gloss over the distinction
between exact and adiabatic trajectories and mention only the
adiabatic ones.

The crucial step in constructing the extended KNH formula
is to introduce the curve � as an arbitrarily drawn curve which
connects an arbitrarily chosen point a on the closed separatrix
with another arbitrarily chosen point b on the open separatrix,
and thus provides an artificial division between the regions A0

and A−. The KNH logic about incompressible phase space
flow from A0 into both A+ and A− can now be applied as

it was before, when all boundaries between the regions were
adiabatic separatrices. Under time evolution now, however,
system points will flow through the nonseparatrix artificial
border �, even within the adiabatic approximation.

At any time t we can nonetheless still adiabatically com-
pute the total flux of phase space out of A0(t ). One term in
this flux is simply the area shrinkage rate −Ȧ0(t ) that we
considered before. To this we must now simply add the flux
�−(t ) of points evolving into A− across the curve �. For the
fraction of orbits which exit A0(t ) at time t , and are captured
into A+(t ), we therefore obtain

P+(t ) = Ȧ+(t )

�−(t ) − Ȧ0(t )
. (9)

The rates of change of the areas can be computed as before,
and since � is arbitrary we are free to choose it in the way that
will make the areas easiest to compute. The flux through � is
even easier to compute since it is an identity of Hamiltonian
time evolution (see the Appendix) that the instantaneous flux
through any curve in phase space is equal to the difference
between the instantaneous values of the Hamiltonian at the
curve’s end points. The end points a and b of the curve � lie
on separatrices, and since separatrices are contours of constant
energy, the values of the Hamiltonian at the end points a and
b of � are the same as the values of the Hamiltonian at the
adiabatic fixed points x and y, respectively. We can therefore
express our extended KNH formula (9) more explicitly as

P+(t ) = Ȧ+(t )

H(x, t ) − H(y, t ) − Ȧ0(t )
. (10)

One might well be concerned that this revised formula for
P+ now depends on the arbitrary curve � since the area A0(t )
depends on how the artificial part of the border of A0 is drawn.
Indeed, P+ does depend on the precise choice of �, but, as
we explain in the Appendix, not to leading order in the small
adiabatic slowness parameter. The KNH formula was never
more than leading-order adiabatic approximation anyway and
so the subleading dependence of the extended formula on
the arbitrary � does not matter. If the time dependence of
the Hamiltonian is slow enough for this whole approach to
capture fraction estimation to be valid, choosing a different �

will make only tiny changes in P+, comparable in size to the
higher order post-adiabatic corrections which are present in
any case.

In (10) we have thus found a natural adjustment of the
KNH formula to cases where there is adiabatic flow between
two of the three regions, as well as slow deformation of
separatrix borders. The formula is still simple enough to be
a useful guide for control strategy, inasmuch as it provides an
estimate for the probability of the dynamical transition which
can be obtained directly from the instantaneous Hamiltonian,
without having to solve for any time evolution. The basis of
the KNH formula in Liouville’s theorem is moreover intact;
the total amount of incompressible phase space which moves
out of A0 has simply been recognized to include the nonzero
flux through �. The merit of this extended formula is that it
can still be applied when canonical transformations that make
fixed points less time dependent, and thereby improve the
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2

C
ap

tu
re

Fr
ac

ti
on

0

0.2

0.4

0.6

0.8

1

FIG. 7. Accuracy of the extended KNH formula (10). The
crosses are values for the capture fractions obtained from numer-
ically evolved ensembles as explained in the text. The diagonal
black line represents equality between the adiabatically estimated
and numerically exact capture fractions.

accuracy of adiabatic theory, have somehow removed one of
the separatrix borders between two of the three KNH regions.

C. Example of application of the extended KNH formula

When the principle of Ref. [6] is applied to maximize
the accuracy of the adiabatic approximation by making fixed
points immobile (or even just nearly so), and when the ex-
tended KNH formula (10) is adopted as needed, the basic idea
of using Liouville’s theorem to deduce probabilities of dy-
namical transitions is thus confirmed as robustly general. As
one illustration, we show in Fig. 7 a plot of numerically exact
capture fractions for our H1/H2 model (the exact evolutions
being identical for the two canonical representations) versus
the adiabatic prediction of (10), for a set of many different
time dependencies of the parameters.

In particular, we take a “preinitial” ensemble at time t = 0
of 1000 different phase space points. In this ensemble, the
initial values of the angle φ are uniformly spread over [−π, π ]
and the energy (which determines p) is uniformly spread
over [99, 101]. To prepare the initial ensemble which will be
used to test the extended KNH formula, we then evolve these
preinitial points numerically under the Hamiltonian (8) with
the constant parameters α̇(t ) = 0.01 and β(t ) = 1, until the
first points of our preinitial ensemble arrive at the separatrix
under H1. (This occurs at t = ts

.= 1287.)
From this time ts onwards we compare 1500 different

cases of time-dependent Hamiltonians; for each of the 1500
cases we follow the evolution of our entire 1000-trajectory
ensemble for a duration of �t = 20 to the total time t

.= 1307.
It is within this interval ts < t < ts + �t that the “decision”
is made as to whether the system is captured or not. (The
shortness of �t = 20 compared to ts > 1200 is our reason for
separating our evolution into a preinitial stage t < ts , in which
the time dependence of the Hamiltonian has a single, simple
form, followed by the decision stage t > ts in which we
compare many different forms of time dependence. Ideally,
we might instead have evolved with all 1500 different forms
of time-dependent Hamiltonian through the entire time from

t = 0, but the evolutions would simply all have remained
quite adiabatic until the system approached the separatrix, and
so the effects of different time dependencies on separatrix
crossing would not have been shown any more clearly by
that much longer computation than they are by our two-stage
calculation.)

The different cases of time dependence of our parameters
are that α̇(t ) = 0.01 + εαt and β(t ) = 1 + εβt , with uni-
formly distributed εα ∈ [−0.5, 1] × 10−3 and εβ ∈ [−7, 7] ×
10−3. These ranges of εα,β were chosen because the edges of
the ranges were estimated to give capture fractions greater
than zero or less than one. For each of these 1500 cases of
parameter time dependence, we continued the Hamiltonian
evolutions of our 1000 trajectories and noted what fraction
of them were captured into region A2+ as defined under
the Hamiltonian H2. Every blue cross in Fig. 7 denotes this
capture fraction for one of the 1500 εα, εβ pairs, plotted versus
the capture fraction estimated for its case of parameter time
dependence according to the extended KNH formula (10),
evaluated at the time ts , using A2±,0 in the roles of A±,0.

Figure 7 confirms that the extended KNH formula works
excellently in most cases, and quite well in all cases, as long
as the capture fraction is not too high. The spread of numerical
points around the analytical line represents the inevitable
limitation of the adiabatic approximation, including the fact
that not all points in our trajectory ensemble actually meet the
separatrix at the same time ts .

At larger capture fractions, the post-adiabatic scatter in-
creases and the numerical trend also falls below the analytical
estimate systematically. The extended KNH formula still re-
mains good enough, however, that it can explain its own com-
parative weakness in this regime: the higher capture fractions
are reached because A2+ is changing more rapidly, but the
more rapid time dependence of the Hamiltonian means that
the adiabatic approximation, on which the capture fraction
estimate is based, becomes less accurate.

In fact, the discrepancy shown in Fig. 7 between the
extended KNH formula and the numerical capture fraction
appears systematic enough that one can anticipate being able
to improve the estimate with some systematic post-adiabatic
corrections, especially since for larger capture fractions the
post-adiabatic scatter decreases as well. It is not clear to
us, however, whether such a further improved KNH formula
would really be worth using: the most accurate estimate of all
can always in principle be found by numerically evolving a
large ensemble of trajectories, exactly as we did to prepare
Fig. 7, and the value of analytical estimates like the extended
KNH formula lies only in the fact that they are much easier
than that to compute. Unless it remained quite simple, a more
accurate analytical estimate might be self-defeating.

In any case, we leave this possibility of further improve-
ment to the KNH formula for future work, and conclude this
section of our paper with the confirmation that even though it
retains a simple form in (10), it does work very well, as long
as the time dependence of the Hamiltonian is slow enough
for adiabatic methods of any kind to apply. Once the more
significant failures of adiabaticity due to a moving unstable
fixed point are removed, by transforming to a canonical
representation in which the unstable fixed point moves only
slightly, the derivation of the extended KNH formula (10) that
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we give in our Appendix becomes valid, and the potential con-
tradictions involved in predicted nonadiabatic evolution based
on adiabatically defined areas are avoided. Simple reasoning
about incompressible phase space flow and separatrix growth
really can provide accurate estimates for how likely it is that
a given orbit will undergo a separatrix-crossing dynamical
transition, without having to actually solve the nonadiabatic
time evolution.

IV. CONTROL APPLICATIONS OF
LIOUVILLE’S THEOREM

Having shown that the Liouvillian picture of dynamical
transitions can be accurate when correctly applied, we will
now present some examples to show how it can be the basis
for control techniques.

A. A transportation task

Following [18,19] we first consider a new control task:
instead of capturing the system into A+, our goal now will be
to keep the system inside A+ in order to transport the system
in phase space. If the whole A+ region steadily moves though
phase space, then orbits retained within it adiabatically are
carried along like so much water in a bucket. In particular,
[19] considers our same model system with H1 from (3), with
β held constant, but with α rising linearly with time in order to
make A1+ likewise rise steadily in the φ, P phase space plane
and (hopefully) carry system orbits along with it from low P

to high P .

1. Empirical law for transport losses

As already noted in Sec. II above, however, Ref. [19] by
Bazzani et al. reports that this procedure is not perfectly
efficient. If an initial ensemble of orbits fills the entire A1+
region defined by H1, numerical evolution had some orbits
escape almost immediately: instead of being carried, they spill
out of the bucket. Reference [19] evolved this initial set of
orbits for a large range of parameter time dependencies, and
for each such case of time dependence, computed the fraction
ν of initial points that were thus “spilled” instead of being
transported. The authors of Ref. [19] were then able to fit the
numerically obtained transport fraction ν with a numerically
empirical formula which in our notation reads as

ν = 1.132

(
α̇

β2

)0.754

. (11)

The numerical data on which this empirical law was based are
reproduced from Ref. [19] in Fig. 8, together with a dashed
curve which is actually not the empirical formula (11) from
[19], but rather the exact curve which we will derive here
below.

2. Exact transport loss

In Ref. [19] it is explicitly noted that the Hamiltonian H1

can be transformed into H2; that this defines a new separatrix
inside the separatrix defined by H1; and that one can expect
all orbits initially within this H2 separatrix to be retained
and transported while those outside the H2 separatrix will

FIG. 8. Colored dots: From [19] by Bazzani et al., the “spillage”
fraction ν as defined in the text versus the quantity represented by us
as α̇/β2 and by Bazzani et al. as ε/ω2

e . Note that the horizontal axis
is plotted logarithmically. Differently colored points refer to different
values of β and α̇. The diagonal pattern of dots is not quite a straight
line, but its lower left half is fit very closely by the numerical law (11)
that was reported in [19]. Dashed black contour: Calculated value
1 − A2+/A1+. This result is in fact exact for ν because H2 is time
independent, and so all the colored points should lie exactly along
this slightly bending dashed line. The scatter of the points from [19]
around this curve must represent sampling or other numerical errors.

immediately be “spilled.” And indeed, this is precisely what
happens (see Fig. 9).

Through an apparent oversight on this one narrow point
within a lengthy paper that substantially advanced the
whole control perspective on adiabatic dynamical transitions,
Ref. [19] explicitly recognizes the importance of the H2

separatrix, and yet only “suggests” qualitative explanations
of which the empirical scaling law (11) “could be a conse-
quence.” In fact, the entire initial volume of the H2 separatrix
must remain within the H2 separatrix forever, and thus be
successfully transported in P = p − α(t ) because with β

constant and α linear in t, H2 is time independent. The H2

separatrix is in this special case not merely an adiabatic
separatrix, but an exact one. All points that are initially outside
the H2 separatrix are correspondingly “spilled.”

The H2 separatrix can be determined analytically and its
area can be computed numerically. Since the initial ensemble
of [19] is a uniform filling of the H1 separatrix, whose area
we computed analytically in Eq. (5), we can easily obtain
the exact ν as A2+ divided by A1+. The results are shown in
Figs. 8 and 10 to reproduce the extensive numerical simula-
tions of Bazzani et al. very well. The fact that the area results
are exact in this case is a special feature of the exactly time
independent H2, but the general principle from Ref. [6] of
using coordinates in which fixed points stay fixed tells us that
we can expect good accuracy from the area-based estimates
whenever H2 depends slowly on time.

3. A bigger bucket

The initial ensemble filling A1+ uniformly was achieved in
[19] as the product of a preinitial stage of adiabatic capture
from a simpler ensemble, by raising β slowly from 0. In
contrast to the earlier literature’s focus on solving initial value
problems, the two-stage process of capture and transport was
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FIG. 9. Survival fraction. Curves are separatrices as in Fig. 4:
solid are the separatrices of H1, dashed the inner separatrix of H2.
In (a) 20 000 initial points are uniformly distributed at t = 0 inside
the H1 separatrix for α = 0.5, β = π/8. In (b) about 14% of the
initial points have spilled out of the separatrix region A1+ after
evolution with β = π/8, α = 0.5 + t/100 until α = 3. Those points
that will remain inside A1+ in (b) are shown in red in both (a)
and (b), while the spilled points are blue. We see in (a) that the
successfully transported points are precisely those that are inside the
H2 separatrix, in region A2+.

explicitly conceived in [19] as a control protocol, and the
fact that orbits were invariably lost in the second stage of
transport was interpreted as suggesting that such two-stage
strategies might be suboptimal in general because the high
capture efficiency of the first stage could be outweighed by
the mediocre transport efficiency of the second.

A Liouvillian perspective based on the incompressibility
of phase space, however, suggests a simple remedy for the
second-stage loss problem. Do not try to move a bucket that

FIG. 10. Solid blue line: the fraction ν = A2+/A1+ versus α̇/β2.
Red dashed line: empirical law ν = 1 − 1.132γ 0.754 published
in [19].
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FIG. 11. (a) Before the transportation process is started, the area
inside the separatrix is increased such that A2+ slightly exceeds the
measure of the initial ensemble of orbits. (b) Afterwards, the trans-
portation process is started by smoothly accelerating to the target
speed α̇ = 10−2. Almost all points are successfully transported.

is full to the brim; if the task is to transport a given measure
of phase space, use a bigger bucket that will not be so full. We
can implement this idea for the same initial ensemble shown
in Fig. 9(a) by not transporting yet right away at t = 0, but
instead slowly raising β further until A2+ will be large enough
to contain the entire ensemble, and only then beginning the
transport stage of the two-stage protocol. In Fig. 11 we show
the results of a procedure in which β is thus raised prior to
transport from π/8

.= 0.39 to 1/
√

5
.= 0.45. At this higher

value of β, the area A2+
.= 6.4 is slightly greater than the

measure of the initial ensemble, which is 2π .
When we do begin transport, it is another simple-

minded improvement to avoid suddenly jerking the bucket,
but rather accelerate it gradually. The procedure shown in
Fig. 11 thus also lets α grow quadratically as α(t < 100) =
0.5(1 + 10−4t2) until t = 100 and only thereafter grow lin-
early as α(t > 100) = 1 + 10−2(t − 100). By thus gently
moving a larger bucket, Fig. 11 shows that we can achieve
over 99% transport efficiency. Our point is not that the rea-
soning behind this scheme is nontrivial, but precisely that it
is simple enough to be applied quite robustly even in more
complex systems.

B. Capture through Liouville control

1. Designing Hamiltonians for control

The model H1 of (3) is a much-studied paradigm system in
adiabatic theory. It has two time-dependent control parameters
α(t ) and β(t ); here, we consider both to be arbitrary functions
of time that we are free to choose. As in Ref. [19] one
may compare alternative protocols for their time dependence
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FIG. 12. The (φ, P ) phase space distribution of 10 000 orbits at the very early initial time (a), and the very late final time after evolution
under HA (b) and HB (c), for the coupling constant c = 10−2 in both cases. At the initial and final times α(t ) is so large (whether positive or
negative) that orbits under both Hamiltonians are essentially lines of constant P .

to see which most efficiently achieves a given goal. With
developments in nanotechnology and in highly controllable
experimental systems such as quantum gases, however, it has
become possible to consider not only system parameters to be
chosen at will, but even the functional form of Hamiltonian
terms. With increased understanding of molecular machinery
in biological systems, furthermore, we may one day be able
to understand how different kinds of molecular mechanism
produce chemical behavior that effectively controls these
complex machines. It is therefore worthwhile to compare
alternative control protocols that differ not only in the time
dependence of parameters, but in the functional form of
coupling terms through which control is applied.

As a simple example of this, we will compare the following
two Hamiltonians:

HA = P 2

2
− α(t )P − c

√
P cos φ,

HB = P 2

2
− α(t )P − c

√
P (1 − P ) cos φ, (12)

where c is a constant (which can be made the same for HA as
for HB without loss of generality by rescaling P, α, and t in
HA). For both Hamiltonians we require P � 0 and for HB we
must also have P � 1.

In effect, both these models HA,B are much like H1, except
with β(t ) now made into a dynamical variable rather than
an external parameter. In reality, all time-dependent param-
eters in any model are dynamical variables, if we extend
our dynamical description to include whatever apparatus is
imposing their time dependence, and so comparing alternative
control protocols actually is comparing different forms of
Hamiltonian, in any case. We are now simply doing this
explicitly.

The whole phenomenology of our H1 model is repeated
in both these new models, including the time-dependent sep-
aratrices. We will consider cases where c is quite small, so
that it is easy to see that the separatrices for both HA,B will
lie within a small range of P around P = α(t ), as long as

α > 0 (and α < 1 for HB). We can therefore expect that HA

will be much like a case of H1 with β2(t ) ∝ √
α(t ), while HB

should resemble a case of H1 with β2(t ) ∝ √
α(t )[1 − α(t )].

With that in mind, all our Liouvillian KNH results and our
understanding of H1 separatrices should allow us to anticipate
the performance of both HA,B at least qualitatively, without
solving any actual equations of motion. The reader may wish
to pause and predict before reading ahead: What will happen
in each case if we try to use a decreasing α(t ) to transport
orbits downward in P ? [In this case, it will not even be
necessary to transform to any new Hamiltonians analogous to
H2; the naive KNH formula (2) without the extension (10) will
suffice to predict the drastically different behaviors in these
two cases.]

2. Two alternatives compared

With only α(t ) now left as a time-dependent parameter,
we can still ask how efficiently we can capture and transport
system orbits with the separatrices that HA and HB in general
both have. As a concrete example, consider an initial ensemble
of orbits in which φ is distributed uniformly around the full
circle [0, 2π ) while P is distributed with a narrow Gaussian
weight around the mean P̄ = 0.9. We assume that the task is
to capture and transport these initial orbits to lower P ∼ 0.1,
and that to do this one can use either HA or HB with any
α(t ) one may wish. The results of two seemingly reasonable
protocols, one for each Hamiltonian, are shown in Fig. 12.

Both protocols provide a separatrix that slowly moves
down from P = 1 to 0. This means that for both Hamiltonians
there exist orbits which remain inside the separatrix as it
moves and therefore fulfill our control goal. Naively, indeed,
one might expect both protocols to be workable because they
both clearly do tend to move orbits down from high P to low
when α(t ) is decreasing. Nevertheless, only the protocol with
HB succeeds in transporting orbits to the target region, which
it achieves for about 36% of the initial orbits. Using HA, not
only do we fail to capture any of the initial orbits into the
separatrix, and therefore fail to bring any orbits down to low
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FIG. 13. The same evolutions shown in Fig. 12 under the Hamiltonians HA (left coloumn) and HB (right coloumn), together with the
instantaneous separatrices (solid black curves) and the orbits that will transform into the separatrix (dashed black curve). Four successive
intermediate times are shown (top to bottom), to reveal how the two control schemes respectively fail and succeed.

P . In fact, we make matters worse with HA, in the sense that
we displace all our initial orbits to even higher values of P .

3. Liouvillian explanation

The reason for the failure of HA and the success of HB is
clear from the Liouvillian perspective of the KNH formula,
even without doing any difficult calculations at all. If P is
decreasing in the vicinity of P = 1, then the P -dependent
prefactors of the cos φ terms in HA and HB are, respectively,
shrinking and growing. The �+ separatrix is therefore ex-
panding as it moves down under HB , but shrinking under
HA. Both these statements are easily deduced by inspecting
HA and HB , but they may be confirmed by looking at the
separatrices in Fig. 13, which shows the same evolutions
whose very early and very late states were shown in Fig. 12,
but for a series of four intermediate times which show how
capture and transport either occur or fail to occur.

There are many orbits of HA which will be transported
down in P as desired, but they are all orbits which are

already inside the separatrix, and transporting down, when the
separatrix meets our initial ensemble. Because phase space
is incompressible, there is no room for new orbits to enter
the HA separatrix from outside; the KNH capture probability
vanishes. We can even use Liouville’s theorem to anticipate
the otherwise surprising fact that the evolution under HA

systematically displaces all the initial orbits upward in P . The
shrinking separatrix is bringing new phase space down from
high P to low, and shedding orbits as it shrinks. Since phase
space flows incompressibly, orbits that were initially present
at lower P before the separatrix descended through them must
all move upwards to make room for the newcomers.

Under HB , in contrast, the �+ separatrix automatically
grows as it moves down from P ∼ 1. The KNH capture
probability is significant (about 36% in the example shown
in Fig. 12) because the incompressibility of Liouvillian flow
means that orbits must be drawn into the separatrix. It inhales
them like a lung drawing air.

In the previous Sec. III we showed how the simple
KNH formula of Sec. II could be improved into a robustly
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accurate rule for estimating probabilities of dynamical transi-
tions adiabatically. The two examples that we have discussed
in this section should show how useful the Liouvillian per-
spective on dynamical control can be, even just qualitatively.
The intuitive picture of incompressible phase space flowing
into or out of growing or shrinking regions is both simple and
accurate enough to be a useful guide in designing control pro-
tocols, in engineering Hamiltonian systems to achieve control
tasks, or in reverse-engineering natural Hamiltonian systems
that achieve some control goals, in order to understand how
they work.

V. DISCUSSION: LIOUVILLE CONTROL

A. Blind control of fast systems

For the general task of Hamiltonian control, with options to
engineer the functional form of coupling terms as well as tune
and vary parameters, Liouville control is a uniquely powerful
tool. The incompressibility of phase space is built into the
very definition of phase space: it is more universal than any
particular force law no matter how fundamental, and more
general even than energy conservation itself. The concept of
Liouville control is to exploit this inherent feature of physical
time evolution to ensure that an acceptable fraction of initial
conditions must evolve into the target region of phase space,
no matter what happens.

Liouville’s theorem applies to all Hamiltonian systems, but
our analysis throughout this paper has considered Hamiltoni-
ans to which adiabatic theory (including neo- or post-adiabatic
theory) may be applied because they generate dynamics which
is fast compared to the timescale over which the Hamilto-
nian itself is changing. Applying a Liouvillian perspective
to controlling adiabatic systems is not an arbitrary focus,
however, because if Liouville control has a killer application,
it is likely to be in the control of fast systems. The adiabatic
approximations which apply in such cases allow computation
of relevant phase space volumes just by studying instanta-
neous Hamiltonians, without actually solving the equations
of motion. Under these adiabatic conditions. Liouville control
can be powerful indeed. As we saw in our previous section,
the design constraints that are implied by the Liouvillian need
for increasing separatrix area may be absolutely required for
effective control, and yet their necessity may not be apparent
at all until without the Liouvillian perspective.

If Liouville control works best for controlling fast systems,
moreover, then fast systems may also require techniques like
Liouville control. We only even speak of a control task, after
all, if control as a task is nontrivial because the system in
question does not naturally do as we wish. One of the basic
reasons why systems naturally elude our control is that they
evolve too quickly for us to perceive and adjust. From this
point of view, it is a great advantage of Liouville control that
it is a form of what could be called blind control. It does not
depend on any monitoring of the state of the system in order to
recognize deviations and correct them. In fact, it does not even
try at all to adjust any individual trajectory. Liouville control
is willing to let any individual trajectory elude control because
growing phase space volume ensures that there will be other
trajectories that do behave as desired.

B. Spontaneous change in Hamiltonian evolution

It may even be appropriate to say that Liouville control
arranges to have desired dynamical transitions occur sponta-
neously. “Spontaneous” is not a term that is normally used
in deterministic dynamics, yet dynamical transitions of fast
systems by crossing expanding separatrices would qualify as
spontaneous in at least two colloquial senses.

First of all, these post-adiabatic transitions are impossible
to predict without knowing the system’s state very precisely.
The KNH formula rather easily provides a prediction of
probabilities, but the dynamical phase into which any given
trajectory will finally settle often depends sensitively on
dynamical variables that evolve very rapidly. Numerically
solving equations of motion like those in this paper, and trying
to guess the final phase from initial conditions selected at
random, feels very much like trying to tell whether a birthday
candle will light at any given touch of the match, or whether a
lawnmower motor will start on any given pull of the cord. In
practical terms, these transitions are spontaneous in the sense
of being unpredictable.

They are also spontaneous, however, in the second collo-
quial sense that they happen without being forced to happen
by precisely controlling all involved causal factors. The tran-
sitions are unpredictable without precise knowledge of micro-
scopic fast variables, but even without control of microscopic
fast variables, the transitions occur, at least with probability
sufficient that if the process does fail, it pays to simply keep
trying. One can simply try again to light the candle; it might
take a few pulls on the cord but the motor will start.

C. Microscopic precursors of thermodynamics?

In this paper we have related the spontaneous occurrence
(in the senses just explained) of dynamical phase transitions
to the increase of certain phase space volumes. A similar-
sounding principle is of course already well known: the sec-
ond law of thermodynamics states that spontaneous processes
must involve entropy increase, and statistical mechanics in-
terprets increase of entropy as the increase of a certain phase
space volume.

The two principles are not identical on closer examination.
The phase space volume which determines entropy in statis-
tical mechanics is a volume which is ergodically explored
by a system in equilibrium. In our systems, in contrast, the
requirement of separatrix growth for Liouville control arises
precisely because an orbit which crosses a separatrix cannot
explore the whole enclosed phase space volume because the
interior of this region is already incompressibly occupied
by other orbits. And of course it is not surprising that our
principle should not be identical with the standard second law
because statistical mechanics assumes ergodic equilibration
due to dynamical chaos, whereas our systems are all dynami-
cally integrable, having only a single degree of freedom.

Extended speculation about connections between Liouville
control and thermodynamics would go beyond the scope of
this paper. We close simply by noting that the qualitative
resemblance between spontaneous transitions into growing
separatrices, and spontaneous changes that increase total en-
tropy, provides some further support for the hypothesis raised
in previous work [22], that some features of thermodynamics

052216-12



ENGINEERING SEPARATRIX VOLUME AS A CONTROL … PHYSICAL REVIEW E 98, 052216 (2018)

might not emerge from mechanics in the limit of large system
size, but rather represent the persistence into the regime
of large systems of dynamical constraints that are already
present, at least in some form, in the post-adiabatic mechanics
of small systems.

APPENDIX

1. Deriving the extended KNH formula

a. Arbitrary “start line” curve as an artificial border

We assume a slowly time-dependent Hamiltonian H (r, t )
whose separatrices resemble those of H2 (8) but which is
otherwise general; we further assume that we are in a canon-
ical representation such that the unstable fixed points x and
y do not move over time. Our derivation will refer first of
all to Fig. 14, which shows the same region of phase space
that we showed in our main text’s Fig. 6, but now with
attention on certain curves and points defined by the system’s
exact time evolution, rather than the adiabatic separatrices
shown in Fig. 6. Since these new points and curves will
be approximated by the adiabatic points and curves, they
are labeled with the same symbols as their corresponding
adiabatic counterparts in Fig. 6, but now with circumflex
accents.

We start from the fact that the exact orbits follow the
instantaneous energy contours approximately, although not
exactly. We can therefore consider any arbitrary curve �̂

which cuts across a range of orbits that all flow through the
neighborhood of an instantaneous separatrix at some arbitrary
time t (see Fig. 14). This curve �̂ will let us pose a well-
defined capture probability question even though we only
have two phase space regions bordered by a separatrix: we
will ask what fraction of the orbits which pass through �̂

at time t will eventually end up captured inside the inner
separatrix (the inner dashed loop in Fig. 14). This fraction will

FIG. 14. Curves and points relevant to the extension of the KNH
formula. In a region including the instantaneous separatrix (dashed
gray contour), an arbitrary curve �̂ cuts across system orbits at
some time t . The exact orbit α̂ is the unique one which reaches �̂

at time t , having begun at the unstable fixed point x at some earlier
time; the point â is the point at which α̂ hits �̂. The exact orbits
β̂ and γ̂ are the unique two which begin on �̂ at time t , and will
eventually approach the unstable fixed points y and x, respectively.
Their starting points on �̂ are b̂ and ĉ, respectively. All orbits which
pass through �̂ between â and ĉ will be captured into the closed
separatrix, while those which cross between ĉ and b̂ will flow around
the closed separatrix into the lower half of phase space.

turn out to be related in an understandable way to the KNH
formula, if �̂ is considered as an additional artificial border
that splits the infinitely wrapping phase space corridor into an
A0 and an A−, as shown in Fig. 6 of our main text.

On any such curve �̂ we can uniquely identify three
important points, denoted â, b̂, and ĉ in Fig. 14. Point â is
the end point on �̂ at time t of the trajectory α̂ which reaches
�̂ at time t having started earlier at the unstable fixed point
x, which is itself time independent by the construction of [6].
This trajectory is unique, and the earlier time at which it began
as x will be denoted ta < t . Points b̂ and ĉ are initial points at
time t of the unique trajectories β̂ and γ̂ that will later end at
the unstable fixed points y and x, respectively, reaching them
at times tb, tc > t . If our system is really like H2, then x and
y may be identified as the same point, but we will still need
to allow H (x, t ) �= H (y, t ) because Hamiltonians like H2 are
multiply valued. (Every wrapping of φ → φ − 2π bringing a
shift H2 → H2 − 2πα̇.)

As will be clear from Fig. 14, if ĉ lies above â on �̂, as
it does in the figure, then all points on �̂ between â and ĉ
will eventually be trapped inside the closed separatrix, while
those between ĉ and b̂ will flow around the closed separatrix
into the lower half of phase space. (If ĉ lies below â, then
no orbits will be captured; the capture probability is exactly
zero and we do not need to consider this case any further.)
The range of points along �̂ between â and b̂ represent all
those which will “decide” whether to enter A+ or A− around
the time t : points further inside the inner separatrix than â
have already been trapped in the separatrix for long enough
to orbit around inside it, while points beyond b̂ will wrap
around in the periodic φ coordinate to approach the separatrix
again at some time significantly later than t . To estimate the
probabilities of orbits through �̂ being captured at time t ,
therefore, we can restrict our attention to the portion of �̂

between â and b̂. For the orbits outside this range, the decision
on capture has either already been made or will not yet be
made for some time to come.

b. Exact capture fraction

In every Hamiltonian system the flux �â,ĉ(t ) at time t

through a curve in phase space that connects point â with b̂
equals H(ĉ, t ) − H(â, t ). The fraction of phase space passing
through �̂ between â and the intermediate point ĉ in the
interval dt around t , and the total flux between â and the other
end point b̂, is therefore the exact capture probability we seek
for the curve �̂ at time t :

P+(t ) = �â,ĉ

�â,b̂
= H (ĉ, t ) − H (â, t )

H (b̂, t ) − H (â, t )
. (A1)

While compact, this expression is not a useful substitute for
the KNH formula because determining the points â, , b̂, and ĉ
exactly requires solving the equations of motion and the merit
of the KNH formula was to make a prediction without having
to do that.

c. A Hamiltonian identity for flux through a curve

For any Hamiltonian system with Hamiltonian H and
any open curve S parametrized r(s) = (q(s), p(s)) in phase
space, the phase space measure of system points evolving
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through the curve within any short time dt is dt times the flux
through S of the phase space flow field

ṙ ≡
(

∂H

∂p
,−∂H

∂q

)∣∣∣∣
q,p

(A2)

which represents the system’s time evolution. Directly from
Hamilton’s equations we find that this flux is identically equal
to the difference between the values of the Hamiltonian H at
the end points x and y of the curve S:

�S (t ) =
∫ y

x
ds

(
∂tq, ∂tp

)(
∂sp,−∂sq

)

=
∫ y

x
ds

(
∂H

∂p

∂p

∂s
+ ∂H

∂q

∂q

∂s

)

≡
∫ y

x
ds

dH

ds
≡ H (y, t ) − H (x, t ) . (A3)

d. Exact capture fraction in terms of integrals along orbits

The time evolution of the Hamiltonian itself along an
exact orbit obeys dH/dt = ∂H/∂t . Trivially, therefore, we
can write

H (â, t ) = H (x, ta ) +
∫ t

ta

dt ′ ∂t ′H (rα̂ (t ′), t ′)

≡ H (x, t ) +
∫ t

ta

dt ′ ∂t ′[H (rα̂ (t ′), t ′) − H (x, t ′)]

(A4)

as well as similar expressions for H (b̂, t ) and H (ĉ, t ), in-
volving integrals along the curves β̂ and γ̂ . We thus obtain
an equivalent expression for the capture probability that is
less compact than (A1) but will turn out to be more easily
computable:

P+(t ) =
− ∫

γ̂
dt ′ ∂t ′[H (r(t ′), t ′) − H (x, t ′)] − ∫

α̂
dt ′ ∂t ′[H (r(t ′), t ′) − H (x, t ′)]

H (x′, t ) − H (x, t ) − ∫
β̂
dt ′ ∂t ′[H (r(t ′), t ′) − H (x′, t ′)] − ∫

α̂
dt ′ ∂t ′[H (r(t ′), t ′) − H (x, t ′)]

. (A5)

e. Adiabatic approximation as integrals along energy contours

This expression (A5) for the capture probability has assumed nothing about adiabaticity, but we can now begin approximating
it systematically using the fact that the explicit time dependence of H (r, t ) is slow. The integrals over t ′ are of the partial
derivative of H with respect to t ′, and are hence automatically small in the adiabatic limit. By discarding only higher-order
post-adiabatic corrections, we can approximate ∂t ′H (r, t ′) → ∂tH (r, t ) in these integrands since the exact integrands ∂t ′H (r, t ′)
will change only slightly over the curves α̂, β̂, and γ̂ . We can also exploit the fact that in the adiabatic limit the exact time
evolution trajectories are close to the adiabatic orbits under the instantaneous Hamiltonian H (r, t ), by replacing the exact curves
α̂, β̂, γ̂ with their adiabatic approximations α, β, γ that are each portions of a separatrix contour. See Fig. 15.

Thus, approximated to first order in the small adiabaticity parameter, we have

P+(t )
.=

− ∫
γ
ds ∂t [H (r(s), t ) − H (x, t )] − ∫

α
ds ∂t [H (r(s), t ) − H (x, t )]

H (x′, t ) − H (x, t ) − ∫
β
ds ∂t [H (r(s), t ) − H (x′, t )] − ∫

α
ds ∂t [H (r(s), t ) − H (x, t )]

, (A6)

where the separatrix contours α, β and γ are parametrized
such that

∂sq = ∂pH,

∂sp = −∂qH (A7)

so that their s integrals correctly approximate the t ′ integrals
along the exact evolution curves α̂, β̂, and γ̂ .

f. Identities for separatrices

We then note that the instantaneous closed and open sep-
aratrices are defined as the contours H (r, t ) = H (x, t ) and
H (r, t ) = H (y, t ), respectively, so the energy of any point on
the open separatrix at time t is H (y, t ), and H (x, t ) is the
energy of any points on the inner separatrix. If we therefore
consider the evolution flux through the curve �, which is the
portion of our arbitrary curve �̂ between the instantaneous
separatrices at t , we can apply the Hamiltonian identity (A3)
from above to see that

H (y, t ) − H (x, t ) ≡ H (γ, t ) − H (α, t ) ≡ ��(t ). (A8)

From the general definition of a separatrix � at time t as a
contour r(s, t ) such that

H (r(s, t ), t ) − E(t ) = 0, (A9)

FIG. 15. The adiabatic regions, curves, and points from Fig. 6 in
the main text, with the exact trajectories α̂, β̂, and γ̂ from Fig. 14
above, shown with dashed lines for comparison. The adiabatic point
a lies on the inner separatrix close to both the exact points â and ĉ
(it is in general between them), while the adiabatic point b is on the
outer separatrix and close to the exact point b̂.
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we can also differentiate with respect to t to obtain

0 = ∂H

∂q

∂q

∂t
+ ∂H

∂p

∂p

∂t
+ ∂t [H − E]

= −∂p

∂s

∂q

∂t
+ ∂q

∂s

∂p

∂t
+ ∂t [H − E] (A10)

as the equation which determines the change in time of the
separatrix contour r(s, t ). We have used here the canonical
parametrization condition (A7) for the separatrix r(s, t ). This
implies immediately that the rate of growth of the area a
enclosed by a separatrix � is

Ȧ(t ) ≡
∫

�

ds n̂(s) · ∂tr(s, t )

≡
∫

�

ds

(
∂p

∂s

∂q

∂t
− ∂q

∂s

∂p

∂t

)

=
∫

�

ds ∂t [H (r(s, t ), t ) − E(t )]. (A11)

g. Extended KNH formula

Returning to our particular H with its arbitrary curve �̂

and closed and open separatrices, therefore, we can compare
(A6) with (A11) to conclude that up to first order in the small
adiabatic parameter we have

P+(t ) = Ȧ+(t )

�−(t ) − Ȧ0(t )
(A12)

if we define A0 and A− to be the upper and lower halves
of the infinitely winding corridor, as divided by �. The flux
�− ≡ �� is the instantaneous flux at time t of ṙ through �,
as described in the abbreviated derivation that we gave in our
main text.

2. Independence of � to leading order

As we noted in our main text, P+ as given by (A12)
appears to depend on exactly where the arbitrary curve �̂ has
been drawn, but in fact this apparent dependence is illusory.
The term in (A12) that depends on � is not �− because it
follows from (A3) above that �−(t ) ≡ H (y, t ) − H (x, t ) is
the same for all � which run between the two separatrices.
Neither does the Ȧ+ numerator depend on � since it is defined
by the closed separatrix. The only dependence on � in P+

FIG. 16. Example sketch to show the unimportance of the precise
location of � in the limit where the two separatrices run close enough
to each other that the flux �− between them is on the order of the
adiabatic small parameter. The only difference created by choosing
the arbitrary border curve to be �′ between a′ and b′, instead of �

between a and b, is whether the Ȧ0 term in (A12) includes an area
change integral along β between b and b′, or whether this portion of
the total integral is replaced with an integral along α between a and
a′. The integrand is of first order in the adiabatic small parameter
anyway; and since the two alternative contours only differ by a
displacement of this order as well, the two possible contributions to
Ȧ0 differ only at second order in the adiabatic small parameter.

according to (A12) is in Ȧ0 since the choice of where to draw
� determines how much of the border of A0 is the contour
γ , running along the outer separatrix, and how much of it is
the contour α running along the inner separatrix. But, the −Ȧ0

term in the denominator of (A12) is always of first order in the
adiabatic small parameter, while in general the flux �− is of
zeroth order. So, in general the � dependence of P+ in (A12)
is only a higher-order post-adiabatic correction, which must
always be added to this leading-order formula, anyway.

We might therefore say that we should drop the −Ȧ0 term
from the P+ denominator, and retain only �−; but the special
case can still arise, as indeed it does in our H2 as derived from
H1, where �− is also of first order in the adiabatic slowness
parameter. In this special case we need to include −Ȧ0 in
order to maintain a leading-order result. In this special case,
however, the two contours γ and α are necessarily very close
to each other since their energies differ only on the order of
the small adiabatic parameter. See Fig. 16. The differences in
Ȧ0 due to different placements of � will therefore be only of
second order in the adiabatic small parameter. The extended
KNH formula (A12) can therefore be used as written, for
any convenient choice of curve �, to give a leading-order
adiabatic estimate of the capture probability for any size
of �−.
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