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Influence of time-delay feedback on extreme events in a forced Liénard system
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A periodically forced Liénard system is capable of generating frequent large-amplitude chaotic bursts for a
range of system and external forcing parameter values which are known as mixed mode oscillations. Particularly,
if these large chaotic bursts occur infrequently and randomly, then they are characterized as extreme events. We
present a numerical study of the effect of self-time-delay feedback on these extreme events in this system and
interestingly find that extreme events can be completely eliminated from the system dynamics, even for smaller
values of delay feedback strength. We show here that the number of extreme events is reduced, and the probability
of the occurrence of high-amplitude events is transformed from a long-tailed statistics to the localized structure,
as a function of the feedback strength corroborates our results. Further, we show that the autonomous Liénard
system loses its conservative nature when delay feedback is added and only a dissipative nature remains in the
entire phase space, which is the underlying mechanism behind the elimination of such large events. Further, we
have revealed a type of delay-induced damping behavior, named anomalous damping, in which the amplitude of
the oscillations suddenly vanishes when the total energy of the system becomes zero.
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I. INTRODUCTION

The occurrence of sudden, rare, and recurrent high- or
low-amplitude oscillations (events) are inevitable in natural
and human-made systems [1]. Usually, the time evolution
of the system observables oscillate or fluctuate between a
well-defined threshold level (derived from their long-time
average). In spite of that, at certain conditions, there exist a
large-amplitude oscillation along with small-amplitude oscil-
lations that differ significantly (2 to 4 times larger than usual)
from ordinary events, which are called mixed mode oscil-
lations (MMOs). Specifically, if these oscillations occurred
occasionally and randomly, then they are distinguished as
extreme events which appeared in diverse areas of science.
In particular, the generation of rogue waves in oceanography
and optical systems [2-7]; the occurrence of floods, droughts,
rainfall, earthquakes, and volcanic eruptions in geophysics
[8,9]; jamming in computer and transportation networks
[10-12]; development of epileptic seizures in the human brain
[13,14]; stock market crashes in economics [15]; harmful
algal blooms in marine life ecosystems [16,17]; and large-
scale power blackouts in electrical power supply networks
[18] are few of the examples.

In natural systems, due to the scarcity of observation
data available for the corresponding rare events, the detailed
study of such events and their mechanism of generation and
prediction is difficult. In order to overcome these problems,
extreme events with similar statistical properties have already
been studied and identified in theoretical models and in simple
laboratory-based experiments. For instance, it has been shown
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that extreme events exhibited in excitable and oscillatory
systems like the FitzHugh-Nagumo model, the Ginzburg-
Landau model, the nonlinear Schrédinger equation, pulse
coupled oscillatory systems, a Liénard-type system, semicon-
ductor and optically injected laser model systems, nonlinear
electronic circuits, etc., and different emerging mechanisms
have been discussed and reported in the literature [19-27].
In some of the systems mentioned above, the occurrence
of extreme events is an inherent property of the systems
regarding to the system parameters and in other cases it is
occurred due to the external perturbations. In general, it has
been examined that there are three main types of mechanisms
that trigger extreme events in certain classes of dynami-
cal systems [28]. In the first type, extreme events appear
as chaotic bursts in dynamical systems where the motion
is separated into distinct time scales (slow-fast dynamical
systems) [19-21,29,30]. Another mechanism which induces
extreme events is the occurrence of chaotic bursting through
homoclinic and heteroclinic orbits [31,32]. Finally, the noise-
induced transition is another important class of extreme event
mechanism occurred in dynamical systems where the equi-
librium points are stable in the absence of noise, and there
is a transition from one equilibrium to other in the presence
of noise [33—-35]. Besides, several other mechanisms, like a
sudden expansion of a chaotic attractor via internal or exter-
nal crisis, time-delay feedback induced extreme events, and
weak successive backscattering-induced extreme events, have
also been identified and reported in recent times [23,36-39].
Another important aspect of the extreme event is the control-
ling mechanism. Even though controlling such events is diffi-
cult in many natural systems, it is entirely possible and highly
desired but remains a challenge in artificial systems, such as
power grid networks, optical systems, traffic networks, the
human brain, etc. Especially, in lasers, high-intensity pulses
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capable of producing catastrophic optical damage have been
observed [7,40]. Very recently, the controlling mechanism of
the extreme events in dynamical systems has been attempted
and demonstrated in the literature [12,16,24,41-43]. However,
only a limited number of studies are available and systematic
research involving control of extreme events is still missing.

Recently, it was reported that a forced Li€nard-type sys-
tem is capable of producing large-amplitude events along
with the small oscillations under the influence of an ex-
ternal periodic force for a wide range of parameter values
[22,23]. In particular, in Ref. [23], the authors presented
the numerical and experimental results of the occurrence of
extreme events and demonstrated that such events occur via
two processes, internal crisis and intermittency. Also, the
mechanism for the emergence of extreme events has been
discussed. It has already been proved that time-delay feedback
can give rise to several interesting novel dynamical behaviors
[44-47].

Motivated by the above studies, in this paper, we study the
dynamics of the autonomous Liénard system with self-time-
delay feedback and with external periodic forcing. We give an-
alytical reasoning with supporting numerical evidence for the
emergence and mechanism of large-amplitude events in this
system. The autonomous Liénard system has an interesting
property where it acts as a conservative or dissipative system
depending on the choice of system parameters and initial
conditions. We will show that under the influence of external
periodic forcing the dissipative and conservative regions of
the system collide at certain times due to the movement of
equilibrium points and when the chaotic trajectory crosses
the saddle point during these times, repelled by the saddle
point, and make a large excursions in the phase space to
produce high-amplitude oscillations. Although the Liénard
system exhibit MMOs for wide parameter range, in this paper,
we mainly concentrate on the dynamics of extreme events in
the presence of time-delay feedback.

We have identified that when increasing the strength of
delay feedback, the number of extreme events are drastically
reduced and eliminated from the system even for minimal
values of feedback strength. We show that while increasing
the feedback strength, the size of the large events remains
the same but the number of extreme events are reduced.
In contrast, in other recent findings [37,38], the authors
demonstrated that the size and number of extreme events
had been increased when increasing the delay feedback in a
diode laser system with phase-conjugate feedback. Also, we
have verified that the conservative nature of the autonomous
Liénard system is disappeared when adding the time-delayed
feedback and only dissipative nature remains in the entire
phase space. Hence, the trajectories starting from these re-
gions damp slowly to reach the stable fixed point. Further, we
have revealed a type of damping behavior in which amplitude
of the oscillations suddenly vanishes (with respect to the time)
when the total energy of the system becomes zero. We call
this critical transition phenomenon as anomalous damping
bahavior which is similar like tipping points or regime shifts
where one dynamical state is suddenly changed into another
state in parametric space which occurred in many physical,
ecological, and biological systems and in climate dynamics
[48-50].

The remaining paper is organized as follows: In Sec. II, we
will give a brief introduction to the system we have chosen
for our study. We will explain the dynamics of an autonomous
Liénard system in Sec. III A and explore the effect of external
periodic forcing in Sec. III B. Influence of delay feedback
on extreme events is demonstrated in Sec. IV. Mechanism
of controlling extreme events is discussed in Sec. IV A and
the existence of anomalous damping behavior is described in
Sec. IV B. Finally, in Sec. V, we summarize our results with
conclusions.

II. SYSTEM DESCRIPTION

The system which we have chosen for our study is a
Liénard-type oscillator with external periodic forcing and
self-time-delayed feedback. The mathematical form of the
equation is represented by

xX=y, (1a)
y = —axy 4+ yx — Bx> + Fsin(Q) 4+ ex,.  (1b)

Here « is the nonlinear damping parameter, y is related to
the internal frequency of the system, § indicates the strength
of nonlinearity, and F and 2 are the amplitude and frequency
of the periodic external force, respectively; x; = x(t — 1) is
the delayed variable of x(¢) with time delay t and ¢ is the
strength of delay feedback. The autonomous Liénard-type
equation has received much attention from both the mathe-
matics and physics perspectives. For example, this equation
governs spherically symmetric expansion and collapse of a
relatively gravitating mass [51]. It occurs in the study of a
spherical gas cloud acting under the mutual interaction of its
molecules and subject to the laws of thermodynamics [52,53]
and it also used in the modeling of the fusion of pellets
[54]. The nonlinear type of damping has been found in many
chemically relevant kinetic equations [55]. This equation
can also be thought of as a one-dimensional counterpart of
the boson “gauge-theory” equations introduced by Yang and
Mills [56]. Furthermore, the forced Liénard system with time-
delayed feedback has been used to model the optoelectronic
oscillator dynamical systems [57,58]. Other than that, for the
past several years the invariance and integrability properties of
the equation have been studied in detail [59-63]. Further, we
also emphasize here that the autonomous Liénard system (1) is
an example of the reversible system under the transformation

S:(x,y,t)— (—x,y, —1). )

Reversible dynamical systems have been shown to play an
essential role in Hamiltonian and non-Hamiltonian dynam-
ics [64—68]. This equation admits a nonstandard conserva-
tive Hamiltonian nature and interesting dynamical properties
[69]. Specifically, for a particular parameter choice (8 = §),
the system admits isochronous oscillation property [62] and
exhibiting (parity-time (P7) symmetry and broken P7T-
symmetric nature [70]. The coupled version of the system
shows twofold P77 symmetry in nonlinearly damped dynam-
ical systems [71]. Further, the existence of different types of
chimera-like dynamical states has been observed in a network
of globally coupled Liénard system [72].

052211-2



INFLUENCE OF TIME-DELAY FEEDBACK ON EXTREME ...

PHYSICAL REVIEW E 98, 052211 (2018)

-2.5 0 2.5
X

FIG. 1. Phase portrait of the autonomous Liénard system
[Eq. (1)] with F =0 and 7 = 0. The filled circle, square, and
triangle represent the stable focus, saddle origin, and unstable focus
equilibrium points, respectively, for the parameter values o = 0.45,
y =0.5, and B =0.5. The black region indicates the basin of
attraction for the dissipative nature and the white region represents
the basin of attraction for the conservative nature. Distinct color lines
are plotted for different initial conditions corroborated the dissipative
and conservative natures of the system. See text for explanation.

In the following sections, we will study the dynamics of a
Liénard-type system with three different cases: (i) dynamics
of autonomous Liénard system, (ii) effect of external periodic
forcing, and (iii) influence of self-time-delay feedback.

III. RESULTS AND DISCUSSION
A. Dynamics of autonomous Liénard system

In this section, we have presented the results of the dy-
namical study of Eq. (1) without external forcing and time
delay. For our numerical simulations, we have fixed the values
of system parameters y = 0.5 and 8 = 0.5 throughout the
manuscript. For F = 0 and T = 0, with the above chosen pa-
rameter values and for o« > 0 the system has three equilibrium
points: a stable focus at (x, y) = (1, 0), a saddle point at (0,0),
and an unstable focus at (—1, 0), which are clearly depicted in
Fig. 1 as a filled circle, square, and triangle, respectively. Here
the stable focus point at (1,0) is linearly stable and nonlinearly
unstable. That is, the trajectories dissipate and approach to the
stable focus only if we choose the initial conditions within
some region in the phase space. Otherwise, the orbits exhibit
limit-cycle oscillations. Hence, based on the initial conditions
the system has either a dissipative or conservative nature. In
Fig. 1 the black region represents the basin of attraction of
the dissipative nature. The border which separates the black
and white regions is known as the homoclinic orbit. Initial
conditions started within this homoclinic orbit converge to
the stable focus at (1,0). For instance, the white and light
blue/gray trajectories in Fig. 1 started near the unstable and
saddle points, respectively, traveled in the phase space and
ended up at the stable focus. However, if we choose the
initial conditions in the white region (denotes the basin of
attraction for the conservative nature), the system has an
infinite number of coexisting neutrally stable periodic orbits
which oscillate with respect to the saddle origin. In Fig. 1,
we have illustrated three such orbits [red (black) lines] plotted
for three different initial conditions. Hence, the autonomous

Liénard system exhibits the coexistence of conservative and
dissipative behavior. We also note here that these orbits are
nonisochronous (here, the frequency of oscillation is propor-
tional to the amplitude) periodic orbits.

As we mentioned earlier, the autonomous Liénard system
is an example of a reversible dynamical system. The coexis-
tence of dissipative and conservative nature in the reversible
dynamical systems have already been reported in the literature
[64—68]. In particular, in Ref. [65], Politi et al. have demon-
strated the possibilities of the coexistence of both conservative
and dissipative behaviors in non-Hamiltonian systems. They
have also shown that the physical system they considered
displays symmetry-breaking bifurcations and the phase-space
structure changes from conservative to dissipative nature ei-
ther in continuous or discontinuous fashion above the critical
value of the system parameters.

The dynamical system which we have considered here
clearly demonstrate the coexistence of conservative and dis-
sipative nature. In the autonomous Liénard system, if y < 0,
then the system exhibits a conservative nature in the whole
phase space. Nevertheless, for y > 0and 88 > a2, the system
shows the coexisting conservative and dissipative nature, even
if the system admits Hamiltonian dynamics. The reason for
the dual nature of the autonomous Liénard system can be
explained by deriving the total energy of the system. The total
energy of Eq. (1) without forcing and time-delay feedback
terms can be written as

F=lly e (eal) s l(eary
] RN 5) "2 B

f‘—utan’] |:M+2ﬂ7(1:_2+%)i| )/2 -
X e - — @ e, 3)

where w = (%)\/Sﬂ — 2. If we substitute the initial con-
ditions of the system variables (x, y) in Eq. (3), then for
some initial conditions E has negative values and for other
initial conditions it has positive values. The system exhibits
dissipative dynamics if E <0, and when E > 0 it displays a
conservative nature. In particular, in the black region of Fig. 1,
the total energy of the system has negative values and so the
trajectories originated from this area have a dissipative nature
and converge towards the stable focus when time persists. On
the other hand, ir}itial conditions chosen in the white region
have a positive E value and hence the trajectories exhibit
conservative nature with neutrally stable periodic orbits as
depicted in Fig. 1.

In the next section, we will demonstrate the dynamical
behavior of the Liénard system in the presence of external
periodic force.

B. Dynamics of forced Liénard system

If we introduce a periodic external force with F' # 0 in
Eq. (1) without delay feedback (r = 0), then the symmetry
of the system is broken. Hence the fixed points become
asymmetric and they start moving along the x axis depending
on the forcing amplitude. Due to this movement of fixed
points, the dissipative and conservative regions of the system
oscillate in terms of the forcing amplitude in the time domain.
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As a result, the dissipative region is enhanced in the phase
space. During this oscillatory motion of the fixed points

when F = F, = 277’ / % ~ (.19245 (for the chosen parameter

values), the stability of the system is changed periodically. For
instance, if 0 < F < F. (F. < F < —F,), then the unstable
(stable) focus and saddle equilibrium points move towards
each other and for F = F, (F = —F,) the two fixed points
collide and disappeared via saddle-node bifurcation and only
a stable (unstable) fixed point is feasible. Therefore, a three-
fixed-point system is transformed into a single-fixed-point
system and vice versa with respect to the time. With regard
to the amplitude of the external periodic force, the system
changes its stability when

 2km + sin~! (%)

t = , 4
X ) (4a)
2k + ) —sin~! (L&
l2k=( ) (F), (4b)
Q
2k + 1) +sin~! (£
f3k=( ) (F), (4¢)
Q
2(k + D —sin™! (&
g = ( ) (F), (4d)
Q
where k =0,1,2,.... For tyy_; <t <ty and toy <1t < t3;

the system has three fixed points. On the other hand, the sys-
tem has a single fixed point during #; <t <ty and 13 <t <
t4;. This oscillation in fixed points is known as a stretching and
folding property which leads to chaotic behavior if we choose
the initial conditions in the dissipative region and for suitable
values of F and 2. The system shows chaotic behavior when
it satisfies the condition

Q
82 sech (n_) _ e
v2) F

which was analytically derived from Melnikov’s method [73]
by considering the nonlinear damping («) and forcing (F)
terms in Eq. (1) as perturbation.

The dynamical nature of the forced Liénard system is
studied and illustrated as a one-parameter bifurcation diagram
in Fig. 2 as a function of the forcing frequency in the range of
Q € (0.62,0.78) with F = 0.2. This figure demonstrates the
two distinct dynamical routes to the birth of chaotic dynamics
when we increase or decrease the forcing frequency. If one
looks at Fig. 2 from right to left by decreasing the forcing
frequency, the periodic attractor bifurcates into a bounded
chaotic attractor via period doubling bifurcation. The bounded
chaotic orbit slowly expands in size with decreasing forcing
frequency and at 2 ~ 0.7316 it suddenly expanded into a
large size attractor. This large size attractor continues to
remain for further decreasing of forcing frequency, and at 2 ~
0.64225 the chaotic orbit suddenly bifurcates into a period-I
attractor via intermittency route.

From this bifurcation diagram, it is evident that when
varying the forcing frequency in the range of Qe
(0.64225, 0.7316) the system exhibit MMOs in which large-
and small-amplitude chaotic oscillations of different frequen-
cies coexist. In other words, for these 2 values the system
display small-amplitude bounded chaotic oscillations along

Qv

0, (&)

0.64

FIG. 2. One-parameter bifurcation diagram drawn using the
maxima of the dynamical variable y of Eq. (1) with F = 0.2 and
7 = 0 illustrating the occurrence of distinct dynamical behaviors
as a function of the external forcing frequency (2 € (0.62, 0.78)).
Other system parameters are fixed as given in Fig. 1. The black line
indicates the H,. The magnified regions of the figure are depicted in
the bottom panel. For more details, see text.

with frequent intermittent large-amplitude chaotic bursting.
Interestingly, for some range of €2, these large-amplitude
chaotic bursts occurred occasionally and randomly. These
states have been separately characterized and reported as
extreme events [23]. The temporal dynamics of the forced
system showing the bounded chaos, MMOs, and extreme
event dynamics for different values of forcing frequency (£2)
is explained in Appendix A. We wish to note here that
the extreme events are also a type of MMOs but the rare
occurrence of the large chaotic bursts distinguish it from
the MMOs. In order to classify the extreme events from
MMOs, we have numerically calculated Hy = ((P,) + 80)
with the temporal data of the y component (observation
time of the data: 2 x 10° time units after leaving sufficient
transient). Here (P,) is the time-averaged peak value of the
y component and o is the standard deviation. For MMOs
the average value of the large-amplitude peaks is very high
and so H, becomes larger than the peaks. On the other hand,
during the existence of extreme events the large peaks exhibit
occasionally. Hence, the average value of the peaks are higher
than H;. Therefore, amplitudes which are higher than H; can
be defined as extreme events. We have plotted H, in Fig. 2,
which is indicated as a black line along with the bifurcation
diagram. We can see in the marked rectangle regions of
(enlarged and depicted in the bottom panel of Fig. 2) that the
maxima of the y component are larger than H; corroborate
the occurrence of extreme events for these €2 ranges. In other
regions of €2, H, is larger than the peaks corroborate the
existence of MMOs. The mechanism for the emergence of
MMOs and extreme events can be explained as follows: The
autonomous Liénard system has dual nature of dissipative
and conservative dynamics depending on the choice of initial
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(2) b)

FIG. 3. [(a) and (b)] Phase portraits of the autonomous Liénard
system depicted for two different initial conditions chosen near and
away from the homoclinic orbit, respectively, shows the neutrally
stable periodic orbits. The gray area indicates the dissipative region
of the system and the chosen initial conditions are marked as filled
circles. [(c) and (d)] The chaotic and quasiperiodic dynamics of the
forced Liénard system evolved from the same initial conditions for
F = 0.2 and 2 = 0.7314 with the above chosen initial conditions.

conditions due to the coexistence of stable focus, saddle-node,
and unstable focus equilibrium points inside the homoclinic
orbit and an infinite number of nonisochronous periodic orbits
outside this region. When one includes an external periodic
force, the equilibrium points start moving back and forth
depending on the forcing amplitude, and hence above the
threshold value (F,) the three-fixed-point system transformed
into a single-fixed-point system and vice versa with respect
to time. As a result, the dissipative and conservative regions
oscillate in the time domain and therefore the dissipative
region is expanded in the phase space. To verify this, in
the autonomous Liénard system we have chosen an initial
condition near to the homoclinic orbit (in the conservative
region), and the resultant trajectory plotted in Fig. 3(a) shows
that the system exhibits a neutrally stable periodic attractor.
The chosen initial conditions are marked as black filled circles
and the dissipative region is plotted as gray points. On the
other hand, when we include the forcing with the magnitude
F = 0.2 and for a suitable value of €2, the periodic trajectory
shown in Fig. 3(a) is now become unstable and evolved as
chaotic orbit due to the expansion of the dissipative region
which is depicted in Fig. 3(c). When the conservative and
dissipative regions oscillate in terms of the external force, at
some point of times, these two regions collide with each other
near the saddle-node point. The chaotic trajectories crossing
this saddle point are strongly repelled and make large excur-
sions into the conservative region from its bounded motion,
causing large-amplitude oscillations, and return to the chaotic
orbit after a while. One such large excursion can be clearly
seen in Fig. 3(c). If these excursions are frequent, then they
are defined as MMOs. In contrast, rare and random excursions
are characterized as extreme events. We point out here that
the above-specified dynamical states arise only if we choose
the initial conditions inside or near to the dissipative region.
Nevertheless, when we choose the initial conditions further
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FIG. 4. [(a)~(d)] Temporal dynamics and [(e)—(h)] the corre-
sponding phase-space diagrams of the forced Liénard system with
F =0.2, 2 =0.7314, r = 0.1 and for different values of the delay
feedback strength (¢); [(a) and (e)] for ¢ = 0.0, [(b) and (f)] for
e = 0.0002, [(c) and (g)] for ¢ = 0.0045, and [(d) and (h)] plotted
for ¢ = 0.001.

from the dissipative region, the autonomous Liénard system
displays periodic motion as illustrated in Fig. 3(b) with the
attractor larger than the orbit presented in Fig. 3(a) and in the
presence of forcing the periodic orbit is now transformed into
a quasiperiodic attractor. Figure 3(d) displays the emerged
quasiperiodic attractor for F = 0.2.

IV. EFFECT OF TIME-DELAY FEEDBACK ON FORCED
LIENARD SYSTEM

The primary objective of this paper is to understand the
extreme event dynamics when including the self-time-delayed
feedback. To this purpose, we have fixed the value of time
delay T = 0.1 in Eq. (1) and vary the feedback strength (&)
to examine the effect of time delay on extreme events. Inter-
estingly, we have identified that the large-amplitude chaotic
bursts can be completely eliminated when increasing the
feedback strength even for minimal values of €. To verify
this, we have plotted the dynamical variable y of Eq. (1)
in Figs. 4(a)-4(d) and the corresponding phase portraits in
Figs. 4(e)—4(h) for different values of ¢. H; is marked by a
red (dark gray) horizontal line. In particular, in the absence of
time delay (¢ = 0), Fig. 4(a) exemplifies the occurrence of a
thick band of bounded chaos along with intermittent large-
amplitude chaotic bursts. Here these aperiodic intermittent
random bursts occurred occasionally and were considerably
larger than H,. Hence they can be distinguished as extreme
events. The phase portrait plotted in Fig. 4(b) also clearly
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FIG. 5. (a) Number of extreme events as a function of the delay
feedback strength (¢) and (b) the statistical distribution of the PDF
for various values of ¢.

indicates that the system exhibits a bounded chaotic orbit
which is confined in a small part of the phase space (rela-
tively) but rarely and aperiodically escapes from the orbit and
displays large excursions and returns to the bounded chaotic
orbit after some time. Figures 4(b) and 4(f), which are plotted
for ¢ = 0.0002, show that the number of extreme events is
reduced compared to the nondelayed case [Fig. 4(a)]. If we in-
crease the feedback strength further to ¢ = 0.0005, then only
a very few high-amplitude oscillations were observed, which
is evident from Figs. 4(c) and 4(g). Finally, for ¢ = 0.001, the
large-amplitude events are completely eliminated and only the
bounded chaotic attractor is feasible [see Figs. 4(d) and 4(h)].

Therefore, when we increase the feedback strength, the
number of extreme events are drastically reduced and elim-
inated for sufficient values of ¢. Figure 5(a) is plotted be-
tween the number of events (peaks which are higher than
H;y) versus feedback strength. For ¢ < 0.00048, the nonzero
values of peak counts confirm the existence of extreme events
and for ¢ =~ 0.00048, the number of events become zero
corroborated that no extreme events occurred. In contrast, in
Refs. [37,38], the authors reported that time-delayed feed-
back in an optical diode laser system with phase-conjugate
feedback induce extreme events. In consequence, the number
of high-amplitude pulses has been increased when increasing
the feedback strength. Further, it has also been demonstrated
that the probability of the occurrence of high-amplitude peaks
transformed from Gaussian-shaped statistics to the long-tailed
statistics (significant likelihood of extreme events) with in-
creasing probability distribution when increasing the feedback
strength (see Fig. 3 in Ref. [37]). But in our study, we have
observed that the size (amplitude) of the extreme events re-
mains almost equal and only the number of events get reduced
when increasing the value of feedback strength. To verify this,
we have further estimated the probability density function
(PDF) of all the peaks for different values of feedback strength

FIG. 6. One-parameter bifurcation diagram is drawn between
the maxima of the dynamical variable y vs. feedback strength ¢ €
(0.0, 1.0 x 1073) of Eq. (1) with F = 0.2, 2 = 0.7314,and t = 0.1.
The black line depicts H,. Maxima appeared for ¢ < 0.00048 are
larger than H corroborate the existence of extreme events.

and plotted it in a semilog scale [Fig. 5(b)]. Different color
lines in the figure represent the PDFs for various ¢ values.
From this figure, we can recognize that only the number of
large-amplitude events decreased but the size of the extreme
events is almost equal.

The bifurcation diagram plotted between maxima of the
dynamical variable y versus feedback strength in the range
of ¢ €(0.0,0.001) is depicted in Fig. 6. The black line
represents H. In the absence and for ¢ < 0.00048, the max-
ima of large-amplitude oscillations varies between yn.x €
(—1.2, 3.6), and these amplitudes are higher than H;, validat-
ing the occurrence of extreme events. After the critical value
(¢ & 0.00048), the large-amplitude events suddenly disappear
and the system exhibits bounded chaotic oscillations. The
global picture of the extreme event dynamics is studied and
illustrated as a two-parameter diagram in Fig. 7 by varying the
time delay (7) and strength of the delay feedback (¢). Here the
light yellow (gray) region represents the region where there is
at least one peak larger than H; (region of extreme events)
and the red (dark gray) domain indicates nonextreme event
region.

Accordingly, extreme events can be eradicated from the
system dynamics when we add a self-delay feedback into
the forced Liénard system. We also emphasize here that the

0.8
0.6
P

0.4

0.2

0
0.0 0.5 1.0 1.5

FIG. 7. Two-parameter diagram in the (¢, 7) plane of the forced
Liénard system with delay feedback shows the occurrence of extreme
event dynamics. Here the light yellow (gray) represents the region
where extreme events occurred and the red (dark gray) domain is the
nonextreme event region.
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103%¢

FIG. 8. Bifurcation diagram for the reduced equation [Eq. (6)]
shows similar dynamical behavior as in Fig. 6. The black line depicts
H; as a function of ¢.

MMOs can also eliminated from the system for appropriate
values of time delay. More results are given in Appendix B.

A. Mechanism of controlling extreme events

We include the time delay in Eq. (1) with external force and
rearrange it by considering the first two terms of the Taylor
series expansion of the time-delay term x, = x(t) — tx(¢) as

xX=y, (6a)
y=—(ax+et)y+(y +e)x — ﬂx3 + Fsin(2t). (6b)

The bifurcation diagram for Eq. (6) is plotted in Fig. 8 as a
function of ¢ has a similar structure to that in Fig. 6, which was
plotted for Eq. (1). The delay term (¢7) in Eq. (6) contributes
to the damping along with the (ax) term, confirming that
time-delay feedback acts as a damping which destroys the
conservative nature of the Liénard system and transforms
the whole phase space as dissipative in nature. To confirm
this, we have calculated the total energy of Eq. (6) without
external forcing (F = 0) and considering the ety term as a
perturbation which is given by

2
E:1{y2+ﬂ|:x2+(J/+8)i|+é|:xz_’_(7/+8):| }

2 2 B 2 B
ay 24 rte)
%tan—l{%] ()/+8)2 wr
X e — | — e, 7
48

and the rate of change of energy (‘Z—f) of Eq. (7) can be written
as

dE
—_— = —e
dt

The inequality % < 0 indicates that the system exhibits
a decaying solution. When we add time-delay feedback to
the system, the conservative nature disappears and only the
dissipative nature remains in the entire phase space. As a
result, the trajectories starting from anywhere in the phase
space have an exponentially decaying solution and converge
towards the stable focus at (1,0). To illustrate this, in Fig. 9 we
have plotted the phase-space diagram of the two trajectories
starting from two different regions (inside and outside the
homoclinic orbit) for F =0, t = 0.1 and fixed the feedback
strength to ¢ = 0.08. The white trajectory in Fig. 9 is plotted
for the initial condition chosen inside the homoclinic orbit

. 2, (y+e)
« ! |:a)+2ﬂ|:x +3
w

]
] X (£TY). ®)

0
-0.04
dE/dt
1 -0.08
- -0.12
-2.5 0 25
X

FIG. 9. Phase portrait of the autonomous Liénard system with
delayed feedback with t = 0.1 and ¢ = 0.08. The rate of change of
energy ‘Z—f depicted as a gray-shaded region shows negative values,
denoting that the system has a decaying solution in the whole phase
space. The evolution of two trajectories that emerged from two
different initial conditions (started inside and outside the homoclinic
orbit) are illustrated in two different color lines. The chosen initial
conditions are marked as filled circles.

which is converged to the stable focus faster than the non-
delayed case. Nevertheless, initial conditions originated from
outside of the homoclinic orbit [represented as green (light
gray) trajectory] also slowly converged to reach the stable
focus. However, for the nondelayed case these trajectories are
neutrally stable periodic orbits, as shown in Fig. 1. We point
out here that the trajectories with stronger feedback converge
faster than the trajectories with weaker feedback strength. If
we add the external force with suitable values of frequency
(2) and amplitude (F'), then the chaotic trajectory is evolved
and confined in a small region of the phase space without
having any large excursions. From these observations, one
can understand that inclusion of time-delay feedback modified
the system as dissipative in the whole phase space and acted
as damping which destroyed the conservative nature of the
Liénard system. We have also plotted the rate of change of

energy (‘Z—f) in Fig. 9 as a gray-shaded area that depicts

that for the entire phase-space region %E obtain negative

dr
values, indicating the decaying solution. For y = 0, Lfi—f ~0

corroborate that the trajectories reached the stable fixed point.

B. Anomalous damping

In general, during the damping, the amplitude of the oscil-
lation decreases exponentially and becomes zero when ¢ —
oo. But it is interesting to note here that, in our study, we have
revealed a type of damping phenomenon in a time-delayed
autonomous Liénard system in which the amplitude of the
oscillations is suddenly vanished when the total energy of
the system becomes zero. We call this critical transition phe-
nomenon anomalous damping. Figure 10 exemplifyies such a
situation for two different initial conditions. In Fig. 10(a), we
have plotted the time series of the trajectory started with the
initial condition outside the homoclinic orbit which shows an
exponentially decaying solution. This trajectory is expected
to dampen as shown by the red (dark gray) dotted line. But
suddenly the oscillations lose amplitude at a critical point of
time (when the total energy £ = 0) and reach the stable fixed
point. The green (light gray) vertical line in Fig. 10(a) marks
when E = 0. We have also plotted the rate of change of energy
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FIG. 10. [(a) and (c)] Time traces of the time-delayed autonomous Liénard system with 7 = 0.1 and ¢ = 0.08 for two different initial
conditions showing anomalous damping behavior and [(b) and (d)] the corresponding amplitude and instantaneous frequency (f) of the

system as a function of time.

% (depicted as a black line), which shows negative values
during damping and becomes zero when the oscillations reach
the stable steady state [see inset of Fig. 10(a) for magnified
image].

Further, we have already seen that these oscillations are
nonisochronous outside the homoclinic orbit. Hence, during
the damping process, the instantaneous frequency (f) is de-
creased and when E = 0 the trajectory produces fast oscil-
lations (with increased frequency) to reach the stable point,
which is also evident from Fig. 10(b). In this figure, the purple
(dark gray) circles indicate the maxima of the y component
of the system and the orange (light gray) points indicate
the instantaneous frequency. Figures 10(c) and 10(d) depict
similar types of anomalous damping behavior for different
sets of initial conditions. We also emphasize here that one
cannot attain anomalous damping when the initial conditions
are chosen inside the homoclinic orbit.

V. CONCLUSION

To conclude, we have studied the dynamics of a Liénard-
type system with and without external force and with time-
delayed feedback. The autonomous Liénard system is capable
of generating two distinct dynamical behaviors (dissipative
and conservative) depending on the initial conditions. We have
derived the expression for the total energy of the autonomous
Liénard system which has null values in some region of phase
space where the system exhibit dissipative dynamics. Never-
theless, if we choose the initial conditions outside this region,
the system has an infinite number of coexisting neutrally
stable periodic orbits which oscillate with respect to the saddle
origin without losing their energy. This region is named as
a conservative region in which the total energy has positive
values. We have also identified that these periodic orbits
are nonisochronous orbits where the instantaneous frequency
increases if the amplitude of the oscillation increase.

We showed that under the influence of an external periodic
force, the equilibrium points of the system oscillate along the
x axis, which results from the transformation of a three-fixed-

point system into a system with a single fixed point and vice
versa. We found the exact timings when these transforma-
tions occurred. Because of the movement of the equilibrium
points, the dissipative region enhanced in the phase space
and collided with the conservative region at certain times
near the saddle point. The trajectories of the bounded chaotic
oscillations crossing the saddle point at these times will be
repelled by the same and make large excursions in the phase
space. When these large excursions happened frequently,
they are MMOs and if these excursions are rare, then they
are distinguished as extreme events. We have numerically
explained the occurrence of MMOs and extreme events in
a forced Liénard system using time series and bifurcation
diagrams. Further, we have investigated the effect of self-
time-delayed feedback on extreme events in this system and,
interestingly, found that extreme events can be completely
eliminated from the system dynamics even for smaller values
of feedback strength. We proved that the number of extreme
events is reduced with reference to the feedback strength by
plotting the number of events versus feedback strength. We
have also calculated the probability density function, which
shows that the probability of the occurrence of high-amplitude
peaks is transformed from a long-tailed statistics to the lo-
calized structure with respect to the feedback strength. The
mechanism for the elimination of extreme events is examined
with numerical evidence. We found that time-delay feedback
acted as damping and destroys the conservative nature of the
system. As a result, a dissipative nature alone is feasible in
the entire phase space. Hence, the trajectories starting from
the whole phase space only have a decaying solution, which
is the reason and fundamental mechanism for the suppression
of extreme events. Unlike the normal damping phenomenon,
the decaying process we have observed here is interesting
where the amplitude of the oscillations has suddenly vanished
when the total energy of the system becomes zero, which we
named anomalous damping. We also emphasize here that the
results discussed in this paper are robust against the system
and forcing parameter values. Since the Liénard system with
time-delayed feedback is mimicking the optoelectronic laser
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dynamical systems [57,58], the results demonstrated in this
paper may also provide better knowledge about the dynamics,
occurrence and the controlling aspects of the extreme events
in such systems.
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APPENDIX A: TEMPORAL DYNAMICS OF THE
FORCED LIENARD SYSTEM

The bifurcation diagram in Fig. 2 shows the occurrence
of different types of dynamical states in the forced Liénard

(a)

o [

10 11 2,13 14 15
4 10*1

(b)

4
4 10%¢

(d)

10 11 12 4 13 14 15
107 ¢

FIG. 11. [(a)—(d)] Temporal dynamics of the forced Liénard sys-
tem with F = 0.2 and different values of forcing frequency (£2). (a)
For 2 = 0.7317, (b) for Q = 0.7314, (c) for 2 = 0.7263, and (d) is
plotted for 2 = 0.6423.

system as a function of the forcing frequency. In partic-
ular, sudden changes in the amplitude of the system are
observed and its temporal dynamical behavior is depicted in
Figs. 11(a)-11(d) for different values of forcing frequency.
Small-amplitude bounded chaos is evident from Fig. 11(a)
for Q2 =0.7317, and if we decrease the frequency value to
©Q = 0.7314 the system exhibit MMOs with rare and ran-
dom occurrence of large-amplitude chaotic bursts as shown
in Fig. 11(b). Hence this phenomenon is characterized as
extreme events. The system exhibits MMOs with frequent
large-amplitude chaotic bursts when we decrease the forcing
frequency further. Figure 11(c) shows such frequent chaotic
bursts for £ = 0.7263. We have chosen another €2 value near
the intermittency region at 2 = 0.6423 where the system
exhibits extreme events, which is plotted in Fig. 11(d). There
is a significant difference between Figs. 11(b) and 11(d) where
in Fig. 11(b) the large chaotic bursts occurred randomly;
nevertheless, in Fig. 11(d) the large chaotic bursts occurred
almost at periodic intervals.

APPENDIX B: EFFECT OF TIME-DELAY
FEEDBACK ON MMOS

It is evident from Fig. 2 that the forced Liénard system ex-
hibits MMOs with large frequent chaotic bursts for the range
of forcing frequency Q2 € (0.64225, 0.7316). We choose 2 =
0.7263 and examine the effect of time-delay feedback on
MMOs with frequent large-amplitude chaotic bursts, and the
resultant outcomes are presented in Fig. 12. H; is plotted

b @ |
4

> N
0
2
3 6 % 12 15
4 107 ¢
(©
2
) ~
0
-2
3 6 94 12 15
4 107 ¢
(d 3 (h)
2 2
N > 1
0 ﬁ 0 -
-1
2 -2
3 6 94 12 15 2.5 0 25
107 ¢ X

FIG. 12. [(a)—~(d)] Temporal dynamics and [(e)—(h)] the corre-
sponding phase-space diagrams of the forced Liénard system with
F =0.2, 2 =0.7263, r = 0.1 and for different values of the delay
feedback strength (¢); [(a) and (e)] for ¢ = 0.0, [(b) and (f)] for
e =0.002, [(c) and (g)] for ¢ = 0.0023, and [(d) and (h)] plotted
for ¢ = 0.0025.
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as a horizontal line to illustrate the rarity of the events. The
occurrence of MMOs in the absence of delay feedback is
represented in Fig. 12(a) as a temporal diagram where one
can notice the frequent occurrence of large-amplitude chaotic
bursts along with the bounded chaos. The corresponding
phase portrait in Fig. 12(e) clearly shows the large excursions
in the phase space. Here H; is well above the maxima of the
peaks, confirming that these peaks are not rare events. If we
increase the strength of the delay feedback to e = 0.002, then
the number of events are drastically reduced and the recurrent
phenomenon turns into rare events as shown in Figs. 12(b) and
12(f). The peaks above H; confirm the occurrence of extreme

events. If we increase the feedback strength further, then the
number of large peaks furthermore decreases as described in
Figs. 12(c) and 12(g) for ¢ = 0.0023. Finally, for ¢ = 0.0025
the large chaotic bursts can be completely removed from
the system dynamics, and we obtain only small-amplitude
bounded chaotic oscillations as depicted in Figs. 12(d) and
12(h) as time evolution and phase portrait plots, respectively.

Thus, we confirm that time-delay feedback can also capa-
ble of eliminating the MMOs with frequent large-amplitude
chaotic bursts from the system for sufficient values of delay
feedback strength. The results presented here are independent
of the forcing frequency and amplitude.

[1] S. Albeverio, V. Jentsch, and H. Kantz, Extreme Events in
Nature and Society, The Frontiers Collection (Springer, Berlin,
2006).

[2] K. Dysthe, H. E. Krogstad, and P. Miiller, Annu. Rev. Fluid
Mech. 40, 287 (2008).

[3] M. A. Donelan and A.-K. Magnusson, Sci. Rep. 7, 44124
(2017).

[4] A.Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, Phys.
Rev. Lett. 103, 173901 (2009).

[5] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450,
1054 (2007).

[6] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller,
José R. Rios Leite, and J. R. Tredicce, Phys. Rev. Lett. 107,
053901 (2011).

[7] S. Randoux and P. Suret, Opt. Lett. 37, 500 (2012).

[81 M. Ghil et al., Nonlin. Processes Geophys.
(2011).

[9] D. Sornette, Critical Phenomena in Natural Sciences: Chaos,
Fractals, Self-organization and Disorder: Concepts and Tools,
Springer Series in Synergetics (Springer, Berlin, 2003).

[10] L. Zhao, Y.-C. Lai, K. Park, and N. Ye, Phys. Rev. E 71, 026125
(2005).

[11] P. Echenique, J. G. Garderies, and Y. Moreno, Europhys. Lett.
71, 325 (2005).

[12] Y.-Z. Chen, Z.-G. Huang, H.-F. Zhang, D. Eisenberg, T. P.
Seager, and Y.-C. Lai, Sci. Rep. 5, 17277 (2015).

[13] K. Lehnertz, J. Biological Phys. 34, 253 (2008).

[14] K. Lehnertz, Epilepsy: Extreme events in the human brain, in
Extreme Events in Nature and Society, edited by S. Albeverio,
V. Jentsch, and H. Kantz (Springer, Berlin, 2006), pp. 123-143.

[15] B. L. Jacobs, Capital Ideas and Market Realities: Option Repli-
cation, Investor Behavior, and Stock Market Crashes (Blackwell,
Oxford, 1999).

[16] S. Bialonski, G. Ansmann, and H. Kantz, Phys. Rev. E 92,
042910 (2015).

[17] S. Bialonski, D. A. Caron, J. Schloen, U. Feudel, H. Kantz, and
S. D. Moorthi, J. Plankton Res. 38, 1077 (2016).

[18] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman,
Chaos 17, 026103 (2007).

[19] G. Ansmann, R. Karnatak, K. Lehnertz, and U. Feudel, Phys.
Rev. E 88, 052911 (2013).

[20] R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, Phys.
Rev. E 90, 022917 (2014).

18, 295

[21] A. Saha and U. Feudel, Phys. Rev. E 95, 062219 (2017); Chaos
28, 033610 (2018).

[22] S. L. Kingston and K. Thamilmaran, Int. J. Bifurca. Chaos 27,
1730025 (2017).

[23] S. L. Kingston, K. Thamilmaran, P. Pal, U. Feudel, and S. K.
Dana, Phys. Rev. E 96, 052204 (2017).

[24] P. P. Galuzio, R. L. Viana, and S. R. Lopes, Phys. Rev. E 89,
040901 (2014).

[25] A. Rothkegel and K. Lehnertz, New J. Phys. 16, 055006 (2014).

[26] M. G. Clerc, G. G. Cortés, and M. Wilson, Opt. Lett. 41, 2711
(2016).

[27] W. Chang, J. M. S. Crespo, P. Vouzas, and N. Akhmediev, Opt.
Lett. 40, 2949 (2015).

[28] M. Farazmand and T. P. Sapsis, arXiv:1803.06277v1.

[29] J. Rinzel, A formal classification of bursting mechanisms in ex-
citable systems, in Mathematical Topics in Population Biology,
Morphogenesis and Neurosciences (Springer, Berlin, 1987).

[30] E. M. Izhikevich, Int. J. Bifurcat. Chaos 10, 1171 (2000).

[31] J. Elezgaray and A. Arneodo, Phys. Rev. Lett. 68, 714 (1992).

[32] M. Farazmand and T. P. Sapsis, Phys. Rev. E 94, 032212 (2016).

[33] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev.
Lett. 73, 3395 (1994).

[34] A. B. Neiman and D. F. Russell, Phys. Rev. Lett. 88, 138103
(2002).

[35] A. N. Pisarchik, R. Jaimes -Redtegui, R. Sevilla-Escoboza, G.
Huerta-Cuellar, and M. Taki, Phys. Rev. Lett. 107, 274101
(2011).

[36] J. A. Reinoso, J. Zamora-Munt, and C. Masoller, Phys. Rev. E
87, 062913 (2013).

[37] A. K. Dal Bosco, D. Wolfersberger, and M. Sciamanna, Opt.
Lett. 38, 703 (2013).

[38] E. Mercier, A. Even, E. Mirisola, D. Wolfersberger, and M.
Sciamanna, Phys. Rev. E 91, 042914 (2015).

[39] V. H. Schultheiss, M. Wimmer, S. Malzer, and U. Peschel, Phys.
Rev. X 8,011017 (2018).

[40] C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev,
Phys. Rev. Lett. 108, 233901 (2012).

[41] H. L. D. de S. Cavalcante, M. Oria, D. Sornette, E. Ott, and
D. J. Gauthier, Phys. Rev. Lett. 111, 198701 (2013).

[42] Y.-Z. Chen, Z.-G. Huang, and Y.-C. Lai, Sci. Rep. 4, 6121
(2014).

[43] H. K. Joo, M. A. Mohamad, and T. P. Sapsis, Ocean Eng. 142,
145 (2017).

052211-10


https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1038/srep44124
https://doi.org/10.1038/srep44124
https://doi.org/10.1038/srep44124
https://doi.org/10.1038/srep44124
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nature06402
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1364/OL.37.000500
https://doi.org/10.1364/OL.37.000500
https://doi.org/10.1364/OL.37.000500
https://doi.org/10.1364/OL.37.000500
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.1103/PhysRevE.71.026125
https://doi.org/10.1103/PhysRevE.71.026125
https://doi.org/10.1103/PhysRevE.71.026125
https://doi.org/10.1103/PhysRevE.71.026125
https://doi.org/10.1209/epl/i2005-10080-8
https://doi.org/10.1209/epl/i2005-10080-8
https://doi.org/10.1209/epl/i2005-10080-8
https://doi.org/10.1209/epl/i2005-10080-8
https://doi.org/10.1038/srep17277
https://doi.org/10.1038/srep17277
https://doi.org/10.1038/srep17277
https://doi.org/10.1038/srep17277
https://doi.org/10.1007/s10867-008-9090-3
https://doi.org/10.1007/s10867-008-9090-3
https://doi.org/10.1007/s10867-008-9090-3
https://doi.org/10.1007/s10867-008-9090-3
https://doi.org/10.1103/PhysRevE.92.042910
https://doi.org/10.1103/PhysRevE.92.042910
https://doi.org/10.1103/PhysRevE.92.042910
https://doi.org/10.1103/PhysRevE.92.042910
https://doi.org/10.1093/plankt/fbv122
https://doi.org/10.1093/plankt/fbv122
https://doi.org/10.1093/plankt/fbv122
https://doi.org/10.1093/plankt/fbv122
https://doi.org/10.1063/1.2737822
https://doi.org/10.1063/1.2737822
https://doi.org/10.1063/1.2737822
https://doi.org/10.1063/1.2737822
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1103/PhysRevE.90.022917
https://doi.org/10.1103/PhysRevE.90.022917
https://doi.org/10.1103/PhysRevE.90.022917
https://doi.org/10.1103/PhysRevE.90.022917
https://doi.org/10.1103/PhysRevE.95.062219
https://doi.org/10.1103/PhysRevE.95.062219
https://doi.org/10.1103/PhysRevE.95.062219
https://doi.org/10.1103/PhysRevE.95.062219
https://doi.org/10.1063/1.5012134
https://doi.org/10.1063/1.5012134
https://doi.org/10.1063/1.5012134
https://doi.org/10.1063/1.5012134
https://doi.org/10.1142/S0218127417300257
https://doi.org/10.1142/S0218127417300257
https://doi.org/10.1142/S0218127417300257
https://doi.org/10.1142/S0218127417300257
https://doi.org/10.1103/PhysRevE.96.052204
https://doi.org/10.1103/PhysRevE.96.052204
https://doi.org/10.1103/PhysRevE.96.052204
https://doi.org/10.1103/PhysRevE.96.052204
https://doi.org/10.1103/PhysRevE.89.040901
https://doi.org/10.1103/PhysRevE.89.040901
https://doi.org/10.1103/PhysRevE.89.040901
https://doi.org/10.1103/PhysRevE.89.040901
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1364/OL.41.002711
https://doi.org/10.1364/OL.41.002711
https://doi.org/10.1364/OL.41.002711
https://doi.org/10.1364/OL.41.002711
https://doi.org/10.1364/OL.40.002949
https://doi.org/10.1364/OL.40.002949
https://doi.org/10.1364/OL.40.002949
https://doi.org/10.1364/OL.40.002949
http://arxiv.org/abs/arXiv:1803.06277v1
https://doi.org/10.1142/S0218127400000840
https://doi.org/10.1142/S0218127400000840
https://doi.org/10.1142/S0218127400000840
https://doi.org/10.1142/S0218127400000840
https://doi.org/10.1103/PhysRevLett.68.714
https://doi.org/10.1103/PhysRevLett.68.714
https://doi.org/10.1103/PhysRevLett.68.714
https://doi.org/10.1103/PhysRevLett.68.714
https://doi.org/10.1103/PhysRevE.94.032212
https://doi.org/10.1103/PhysRevE.94.032212
https://doi.org/10.1103/PhysRevE.94.032212
https://doi.org/10.1103/PhysRevE.94.032212
https://doi.org/10.1103/PhysRevLett.73.3395
https://doi.org/10.1103/PhysRevLett.73.3395
https://doi.org/10.1103/PhysRevLett.73.3395
https://doi.org/10.1103/PhysRevLett.73.3395
https://doi.org/10.1103/PhysRevLett.88.138103
https://doi.org/10.1103/PhysRevLett.88.138103
https://doi.org/10.1103/PhysRevLett.88.138103
https://doi.org/10.1103/PhysRevLett.88.138103
https://doi.org/10.1103/PhysRevLett.107.274101
https://doi.org/10.1103/PhysRevLett.107.274101
https://doi.org/10.1103/PhysRevLett.107.274101
https://doi.org/10.1103/PhysRevLett.107.274101
https://doi.org/10.1103/PhysRevE.87.062913
https://doi.org/10.1103/PhysRevE.87.062913
https://doi.org/10.1103/PhysRevE.87.062913
https://doi.org/10.1103/PhysRevE.87.062913
https://doi.org/10.1364/OL.38.000703
https://doi.org/10.1364/OL.38.000703
https://doi.org/10.1364/OL.38.000703
https://doi.org/10.1364/OL.38.000703
https://doi.org/10.1103/PhysRevE.91.042914
https://doi.org/10.1103/PhysRevE.91.042914
https://doi.org/10.1103/PhysRevE.91.042914
https://doi.org/10.1103/PhysRevE.91.042914
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevLett.108.233901
https://doi.org/10.1103/PhysRevLett.108.233901
https://doi.org/10.1103/PhysRevLett.108.233901
https://doi.org/10.1103/PhysRevLett.108.233901
https://doi.org/10.1103/PhysRevLett.111.198701
https://doi.org/10.1103/PhysRevLett.111.198701
https://doi.org/10.1103/PhysRevLett.111.198701
https://doi.org/10.1103/PhysRevLett.111.198701
https://doi.org/10.1038/srep06121
https://doi.org/10.1038/srep06121
https://doi.org/10.1038/srep06121
https://doi.org/10.1038/srep06121
https://doi.org/10.1016/j.oceaneng.2017.06.066
https://doi.org/10.1016/j.oceaneng.2017.06.066
https://doi.org/10.1016/j.oceaneng.2017.06.066
https://doi.org/10.1016/j.oceaneng.2017.06.066

INFLUENCE OF TIME-DELAY FEEDBACK ON EXTREME ...

PHYSICAL REVIEW E 98, 052211 (2018)

[44] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, Phys. Rev.
Lett. 80, 5109 (1998).

[45] U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. E 57, 2150
(1998).

[46] M. M. Shrii, D. V. Senthilkumar, and J. Kurths, Phys. Rev. E
85, 057203 (2012).

[47] D. V. Senthilkumar, R. Suresh, J. H. Sheeba, M. Lakshmanan,
and J. Kurths, Phys. Rev. E 84, 066206 (2011).

[48] E. S. Medeiros, I. L. Caldas, M. S. Baptista, and U. Feudel, Nat.
Sci. Rep. 7, 42351 (2017).

[49] U. Feudel, A. N. Pisarchik, and K. Showalter, Chaos 28, 033501
(2018).

[50] P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, Philos. Trans.
R. Soc. A 370, 1166 (2012).

[51] G. C. McVittie, Mon. Not. R. Astron. Soc. 93, 325 (1933);
Y. P. Shah and P. C. Vaidya, Ann. Inst. H. Poincaré 6, 219
(1967).

[52] P. G. L. Leach, J. Math. Phys. 26, 2510 (1985).

[53] S. Chandrasekar, An Introduction to the Study of Stellar Struc-
ture (North-Holland, Amsterdam, 2006); J. M. Dixon and J. A.
Tuszynski, Phys. Rev. A 41, 4166 (1990).

[54] V. J. Erwin, W. F. Ames, and E. Adams, in Wave Phenomena:
Modern Theory and Applications, edited by C. Rogers and J. B.
Moodie (North-Holland, Amsterdam, 2006).

[55] S. Ghosh and D. S. Ray, Eur. Phys. J. B 87, 65 (2014).

[56] C.N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

[57] B. Romeira, J. Figueiredo, C. N. Ironside, and J. Javaloyes,
Dynamics of Liénard optoelectronic oscillators, in Selected
Topics in Nonlinear Dynamics and Theoretical Electrical En-
gineering, edited by K. Kyamakya, W. A. Halang, W. Mathis,
J. C. Chedjou, and Z. Li (Springer-Verlag, Berlin, 2013),
pp. 117-136.

[58] T. J. Slight, B. Romeira, L. Wang, J. Figueiredo, E. Wasige,
and C. N. Ironside, IEEE J. Quant. Electron. 44, 1158
(2008).

[59] F. M. Mahomed and P. G. L. Leach, Quaest. Math. 8, 241
(1985); 12, 121 (1989).

[60] L. G. S. Duarte, S. E. S. Duarte, and I. C. Moreira, J. Phys. A:
Math. Gen. 20, L701 (1987); S. E. Bouquet, M. R. Feix, and
P. G. L. Leach, J. Math. Phys. 32, 1480 (1991); W. Sarlet, F.
M. Mahomed, and P. G. L. Leach, J. Phys. A: Math. Gen. 20,
277 (1987); R. L. Lemmer and P. G. L. Leach, ibid. 26, 5017
(1993); P. G. L. Leach, S. Cotsakis, and G. P. Flessas, J. Math.
Anal. Appl. 251, 587 (2000).

[61] V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan,
Proc. R. Soc. A 461, 2451 (2005); Choas Solitons Fractals 26,
1399 (2005).

[62] V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan,
Phys. Rev. E 72, 066203 (2005).

[63] V. K. Chandrasekar, S. N. Pandey, M. Senthilvelan, and M.
Lakshmanan, J. Math. Phys. 47, 023508 (2006).

[64] R. L. Devaney, Trans. Am. Math. Soc. 218, 89 (1976).

[65] A. Politi, G. L. Oppo, and R. Badii, Phys. Rev. A 33, 4055
(1986).

[66] J. A. G. Roberts and G. R. W. Quispel, Phys. Rep. 216, 63
(1992); J. S. W. Lamb, J. Phys. A 25,925 (1992);J. S. W. Lamb
and J. A. G. Roberts, Physica D 112, 1 (1998); H. W. Broer, 1.
Hoveijn, and M. van Noort, ibid. 112, 50 (1998); H. Hanbmann,
ibid. 112, 81 (1998); B. Liu, Trans. Am. Math. Soc. 351, 515
(1999).

[67] A.R. Champneys, Physica D 112, 158 (1998).

[68] G. R. W. Quispel and J. A. G. Roberts, Phys. Lett. A 135, 337
(1989).

[69] V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan,
J. Phys. A: Math Gen. 40, 4717 (2007).

[70] V. C. Ruby, M. Senthilvelan, and M. Lakshmanan, J. Phys. A:
Math. Theor. 45, 382002 (2012).

[71] S. Karthiga, V. K. Chandrasekar, M. Senthilvelan, and M.
Lakshmanan, Phys. Rev. A 93, 012102 (2016).

[72] A. Mishra, C. Hens, M. Bose, P. K. Roy, and S. K. Dana, Phys.
Rev. E 92, 062920 (2015).

[73] M. Han and P. Yu, Fundamental theory of the Melnikov function
method, in Normal Forms, Melnikov Functions and Bifurcations
of Limit Cycles (Springer, London, 2012).

052211-11


https://doi.org/10.1103/PhysRevLett.80.5109
https://doi.org/10.1103/PhysRevLett.80.5109
https://doi.org/10.1103/PhysRevLett.80.5109
https://doi.org/10.1103/PhysRevLett.80.5109
https://doi.org/10.1103/PhysRevE.57.2150
https://doi.org/10.1103/PhysRevE.57.2150
https://doi.org/10.1103/PhysRevE.57.2150
https://doi.org/10.1103/PhysRevE.57.2150
https://doi.org/10.1103/PhysRevE.85.057203
https://doi.org/10.1103/PhysRevE.85.057203
https://doi.org/10.1103/PhysRevE.85.057203
https://doi.org/10.1103/PhysRevE.85.057203
https://doi.org/10.1103/PhysRevE.84.066206
https://doi.org/10.1103/PhysRevE.84.066206
https://doi.org/10.1103/PhysRevE.84.066206
https://doi.org/10.1103/PhysRevE.84.066206
https://doi.org/10.1038/srep42351
https://doi.org/10.1038/srep42351
https://doi.org/10.1038/srep42351
https://doi.org/10.1038/srep42351
https://doi.org/10.1063/1.5027718
https://doi.org/10.1063/1.5027718
https://doi.org/10.1063/1.5027718
https://doi.org/10.1063/1.5027718
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1063/1.526766
https://doi.org/10.1063/1.526766
https://doi.org/10.1063/1.526766
https://doi.org/10.1063/1.526766
https://doi.org/10.1103/PhysRevA.41.4166
https://doi.org/10.1103/PhysRevA.41.4166
https://doi.org/10.1103/PhysRevA.41.4166
https://doi.org/10.1103/PhysRevA.41.4166
https://doi.org/10.1140/epjb/e2014-41070-1
https://doi.org/10.1140/epjb/e2014-41070-1
https://doi.org/10.1140/epjb/e2014-41070-1
https://doi.org/10.1140/epjb/e2014-41070-1
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1109/JQE.2008.2000924
https://doi.org/10.1109/JQE.2008.2000924
https://doi.org/10.1109/JQE.2008.2000924
https://doi.org/10.1109/JQE.2008.2000924
https://doi.org/10.1080/16073606.1985.9631915
https://doi.org/10.1080/16073606.1985.9631915
https://doi.org/10.1080/16073606.1985.9631915
https://doi.org/10.1080/16073606.1985.9631915
https://doi.org/10.1080/16073606.1989.9632170
https://doi.org/10.1080/16073606.1989.9632170
https://doi.org/10.1080/16073606.1989.9632170
https://doi.org/10.1088/0305-4470/20/11/005
https://doi.org/10.1088/0305-4470/20/11/005
https://doi.org/10.1088/0305-4470/20/11/005
https://doi.org/10.1088/0305-4470/20/11/005
https://doi.org/10.1063/1.529306
https://doi.org/10.1063/1.529306
https://doi.org/10.1063/1.529306
https://doi.org/10.1063/1.529306
https://doi.org/10.1088/0305-4470/20/2/014
https://doi.org/10.1088/0305-4470/20/2/014
https://doi.org/10.1088/0305-4470/20/2/014
https://doi.org/10.1088/0305-4470/20/2/014
https://doi.org/10.1088/0305-4470/26/19/030
https://doi.org/10.1088/0305-4470/26/19/030
https://doi.org/10.1088/0305-4470/26/19/030
https://doi.org/10.1088/0305-4470/26/19/030
https://doi.org/10.1006/jmaa.2000.7033
https://doi.org/10.1006/jmaa.2000.7033
https://doi.org/10.1006/jmaa.2000.7033
https://doi.org/10.1006/jmaa.2000.7033
https://doi.org/10.1098/rspa.2005.1465
https://doi.org/10.1098/rspa.2005.1465
https://doi.org/10.1098/rspa.2005.1465
https://doi.org/10.1098/rspa.2005.1465
https://doi.org/10.1016/j.chaos.2005.03.024
https://doi.org/10.1016/j.chaos.2005.03.024
https://doi.org/10.1016/j.chaos.2005.03.024
https://doi.org/10.1016/j.chaos.2005.03.024
https://doi.org/10.1103/PhysRevE.72.066203
https://doi.org/10.1103/PhysRevE.72.066203
https://doi.org/10.1103/PhysRevE.72.066203
https://doi.org/10.1103/PhysRevE.72.066203
https://doi.org/10.1063/1.2171520
https://doi.org/10.1063/1.2171520
https://doi.org/10.1063/1.2171520
https://doi.org/10.1063/1.2171520
https://doi.org/10.1090/S0002-9947-1976-0402815-3
https://doi.org/10.1090/S0002-9947-1976-0402815-3
https://doi.org/10.1090/S0002-9947-1976-0402815-3
https://doi.org/10.1090/S0002-9947-1976-0402815-3
https://doi.org/10.1103/PhysRevA.33.4055
https://doi.org/10.1103/PhysRevA.33.4055
https://doi.org/10.1103/PhysRevA.33.4055
https://doi.org/10.1103/PhysRevA.33.4055
https://doi.org/10.1016/0370-1573(92)90163-T
https://doi.org/10.1016/0370-1573(92)90163-T
https://doi.org/10.1016/0370-1573(92)90163-T
https://doi.org/10.1016/0370-1573(92)90163-T
https://doi.org/10.1088/0305-4470/25/4/028
https://doi.org/10.1088/0305-4470/25/4/028
https://doi.org/10.1088/0305-4470/25/4/028
https://doi.org/10.1088/0305-4470/25/4/028
https://doi.org/10.1016/S0167-2789(97)00199-1
https://doi.org/10.1016/S0167-2789(97)00199-1
https://doi.org/10.1016/S0167-2789(97)00199-1
https://doi.org/10.1016/S0167-2789(97)00199-1
https://doi.org/10.1016/S0167-2789(97)00201-7
https://doi.org/10.1016/S0167-2789(97)00201-7
https://doi.org/10.1016/S0167-2789(97)00201-7
https://doi.org/10.1016/S0167-2789(97)00201-7
https://doi.org/10.1016/S0167-2789(97)00203-0
https://doi.org/10.1016/S0167-2789(97)00203-0
https://doi.org/10.1016/S0167-2789(97)00203-0
https://doi.org/10.1016/S0167-2789(97)00203-0
https://doi.org/10.1090/S0002-9947-99-01965-0
https://doi.org/10.1090/S0002-9947-99-01965-0
https://doi.org/10.1090/S0002-9947-99-01965-0
https://doi.org/10.1090/S0002-9947-99-01965-0
https://doi.org/10.1016/S0167-2789(97)00209-1
https://doi.org/10.1016/S0167-2789(97)00209-1
https://doi.org/10.1016/S0167-2789(97)00209-1
https://doi.org/10.1016/S0167-2789(97)00209-1
https://doi.org/10.1016/0375-9601(89)90004-2
https://doi.org/10.1016/0375-9601(89)90004-2
https://doi.org/10.1016/0375-9601(89)90004-2
https://doi.org/10.1016/0375-9601(89)90004-2
https://doi.org/10.1088/1751-8113/40/18/003
https://doi.org/10.1088/1751-8113/40/18/003
https://doi.org/10.1088/1751-8113/40/18/003
https://doi.org/10.1088/1751-8113/40/18/003
https://doi.org/10.1088/1751-8113/45/38/382002
https://doi.org/10.1088/1751-8113/45/38/382002
https://doi.org/10.1088/1751-8113/45/38/382002
https://doi.org/10.1088/1751-8113/45/38/382002
https://doi.org/10.1103/PhysRevA.93.012102
https://doi.org/10.1103/PhysRevA.93.012102
https://doi.org/10.1103/PhysRevA.93.012102
https://doi.org/10.1103/PhysRevA.93.012102
https://doi.org/10.1103/PhysRevE.92.062920
https://doi.org/10.1103/PhysRevE.92.062920
https://doi.org/10.1103/PhysRevE.92.062920
https://doi.org/10.1103/PhysRevE.92.062920

