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Biological systems are often composed of various heterogeneous excitable units. It is a fascinating problem to
investigate how this heterogeneity affects collective behavior of biological systems. In this paper, to understand
the effect of the unit heterogeneity on the dynamical mechanism for the onset of collective oscillatory behavior,
we analyze coupled heterogeneous excitable units. We clarify how spontaneous oscillations emerge depending on
the degree of heterogeneity of the units. With an increase in the coupling strength, the system undergoes a saddle-
node on invariant circle bifurcation and a heteroclinic bifurcation. Based on bifurcation theory, we reveal that the
order of the two bifurcations plays key roles in the mechanism of the emergence of spontaneous oscillations. In
addition, we analytically show that when the system has a symmetric property, a 5th-order pitchfork bifurcation
occurs instead of the two bifurcations. We also find that spontaneous oscillations are more likely to occur when
the sizes of subpopulations of excitable units with different parameters are more balanced.
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I. INTRODUCTION

There are many physical, chemical, engineering, and bi-
ological systems that show excitability [1–14]. A dynamical
system possessing excitability, called an excitable system,
settles in a quiescent state when it is not stimulated. When
an excitable system is stimulated by a temporal input with a
sufficient strength, the state of the system is changed from
a quiescent to an excited state. This is followed by a return
to the quiescent state after a certain time period. In physics,
coupled excitable systems have been analyzed in many studies
[1–11]. In chemical systems, the Belousov-Zhabotinsky reac-
tion shows excitable behavior [12]. Traveling waves observed
in excitable systems have been extensively studied [13]. In
engineering systems, the van der Pol oscillator is a kind
of excitable system that originates from specific electronic
circuits [14]. In this way, excitability is one of the fundamental
properties in real-world systems.

Many biological systems such as neurons and cardiac cells
also possess excitability. In the case of neural systems, without
a current injection, the membrane potential of a neuron stays
at a resting state (called resting potential). When the neuron
receives a current injection, its membrane potential gradually
rises due to accumulation of the injected current. If the mem-
brane potential becomes greater than a threshold value, the
neuron generates a spike and the membrane potential returns
to the resting state after a refractory period. This excitable
behavior has been replicated in mathematical models such as
the FitzHugh-Nagumo model [15,16] and the theta neuron
model [17]. To understand the dynamic behavior of neu-
ronal systems, the collective behavior of excitable units with
identical properties has been studied [5,6,8–11,17]. A next
step is to investigate the collective behavior of heterogeneous

excitable units, because the brain consists of a wide variety
of neurons which are highly heterogeneous. As for cardiac
systems, Kryukov et al. [18] analyzed a model of a cardiac cell
culture consisting of heterogeneous cells in the heart. They
combined three types of cell models with different resting
potentials. Thus, in this paper, we study the effect of heteroge-
neous resting potentials (i.e., equilibrium states) of excitable
units on collective behavior. A fundamental understanding
of the collective behavior of heterogeneous excitable units
contributes to a deeper theoretical understanding of biological
systems.

The collective behavior of coupled dynamical systems,
such as synchronization of coupled oscillators, has been ex-
tensively studied [19–22]. Based on the coupled-oscillators
theory, the robustness of dynamical systems composed of
self-oscillatory (active) units and non-self-oscillatory (inac-
tive) units has also been intensively analyzed in recent years
[23–35]. If the proportion of active units is greater than a cer-
tain threshold value, global oscillations are observed. Similar
transitions occur in a coupled system of other types of units,
including excitable and oscillatory ones [1–4]. These results
raise a novel issue of whether and how global oscillations
emerge in coupled heterogeneous excitable units, without
oscillatory units. This question is the other motivation of this
study and our aim is to answer this question.

In this paper, we clarify how heterogeneity of excitable
units affects their collective behavior. An excitable system
can be characterized by the type and position of equilibrium
states as well as the threshold corresponding to the basin of
attraction of the equilibrium state. It should be reasonable
that heterogeneity of these characteristics influences collective
behavior of coupled excitable systems. However, as far as
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we know, collective behavior of heterogeneous excitable units
is not fully understood. In this study, we employ a simple
excitable model as a unit to understand the mechanism of
spontaneous oscillations in coupled heterogeneous excitable
units. We find that spontaneous oscillations emerge in coupled
excitable units under a certain condition of heterogeneity. We
analyze the dynamical mechanism of the onset of spontaneous
oscillations based on the bifurcation theory and the center
manifold theory. Our results reveal that both local and global
bifurcations play important roles in the emergence of sponta-
neous oscillations.

In the rest of this paper, Sec. II introduces the model of
excitable units. Section III shows the bifurcation mechanism
for the emergence of spontaneous oscillations in a group of
balanced subpopulations. Section IV discusses the sponta-
neous oscillations in a group of unbalanced subpopulations.
In Sec. V, we conclude our study and discuss related future
investigations.

II. MODEL: COUPLED EXCITABLE UNITS

We introduce a phase model that shows excitability, de-
scribed as follows [1]:

θ̇ (t ) = 1 − β sin[θ (t ) + a], (1)

where θ (t ) is the phase variable at time t , θ̇ (t ) is the time
derivative of θ (t ), β indicates the excitability of the model,
and a indicates the phase shift which is the factor of the
heterogeneity considered in this study. The parameter ranges
are given by β � 0 and a ∈ [0, 2π ). This model shows self-
oscillatory or excitable behavior depending on the value of
β as shown in Fig. 1. First, we assume that there is no phase
shift, i.e., a = 0. If β > 1, this model shows an excitable state;
i.e., there is a stable equilibrium point at θ = arcsin(1/β ) and
an unstable one at θ = π − arcsin(1/β ) [Fig. 1(a)]. At the
critical point β = 1, a saddle-node on invariant circle (SNIC)
bifurcation occurs [Fig. 1(b)] due to a collision between the
stable and unstable equilibrium points. If 0 � β < 1, this
model shows self-oscillatory behavior because there is no
equilibrium point [Fig. 1(c)]. The phase shift parameter a does
not affect the excitability, but changes the positions of the
equilibria [Fig. 1(d)].

We consider a coupled system consisting of N excitable
units, described as follows:

θ̇j = 1 − βj sin(θj + aj ) + K

N

N∑
k=1

sin(θk − θj ),

for j = 1, . . . , N, (2)

where the last term represents diffusive couplings and K is
the coupling strength. This type of coupling, often found in
related studies [1], is considered because the phase difference
in the steady states is directly influenced by the degree of the
unit heterogeneity which we are mainly focusing on in this
paper. For simplicity, we assume that all the units are excitable
and all the excitability parameters βj are the same as β(>1).

Moreover, to discuss how the difference in the positions of
the equilibrium states affects the emergence of spontaneous
oscillations, we consider two groups with different values of
aj . The N units are divided into two groups, for which the

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

(b)(a)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

(c)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

(d)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

: Stable equilibrium : Unstable equilibrium: Saddle point

FIG. 1. (a)–(c) Phase portrait of (θ, θ̇ ) of the isolated phase
model in Eq. (1) with a = 0. Parameter β is set at (a)

√
2, (b) 1,

and (c) 0.5. (a) A stable equilibrium and an unstable one exist if
β > 1. (b) The two equilibria collide at β = 1 which shows a saddle
point. (c) There is no equilibrium if 0 � β < 1. (d) Phase portrait
of (θ, θ̇ ) of the isolated phase model in Eq. (1) with a = 2.4 and
β = √

2. This heterogeneous unit possesses a stable equilibrium and
an unstable one whose positions are different from those for a = 0
in (a). The horizontal line indicates θ̇ = 0.

sets of unit indices are denoted by S1 and S2, respectively. We
set aj = αm for j ∈ Sm (m = 1, 2). We express this mapping
from the unit index to the group index as σ (j ) = m (m =
1, 2). Under this assumption, Eq. (2) is rewritten as follows:

θ̇j = 1 − β sin(θj + ασ (j ) ) + K

N

N∑
k=1

sin(θk − θj ). (3)

Using the new variables, θ̂j := θj + α1 and α := −α1 + α2,
Eq. (3) is rewritten as follows:

˙̂θj =
{

f1(θ̂j ) + K
N

∑N
k=1 sin(θ̂k − θ̂j ), if j ∈ S1,

f2(θ̂j , α) + K
N

∑N
k=1 sin(θ̂k − θ̂j ), if j ∈ S2,

(4)

where f1(θ̂ ) := 1 − β sin(θ̂ ) and f2(θ̂ , α) := 1 − β sin(θ̂ +
α). From our numerical simulations, it is confirmed that the
phases of the units within the same group synchronize (not
shown). Thus, hereafter, we assume that θ̂j = φ1 for j ∈ S1

and θ̂j = φ2 for j ∈ S2. This approach is the same as that of
the previous study [36]. Then, Eq. (4) can be reduced to a
two-unit system as follows:

φ̇1 = 1 − β sin(φ1) + qK sin(φ2 − φ1), (5)

φ̇2 = 1 − β sin(φ2 + α) + (1 − q )K sin(φ1 − φ2), (6)

where q is the proportion of the units belonging to S2.
We define a balanced population as the case of q = 1/2
and an unbalanced population as the case of q �= 1/2. Note
that there are four parameters α ∈ [0, 2π ), β > 1, K � 0,
and q ∈ [0, 1] in the above model. Later, we analyze this
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two-unit model and validate the result by brute-force numeri-
cal simulations.

The frequency of φj (j = 1, 2), or the velocity of the
phase, is defined as follows:

�j := lim
T →∞

1

T

∫ t0+T

t=t0

φ̇j (t ) dt

= lim
T →∞

φj (t0 + T ) − φj (t0)

T
, (7)

where t0 is a time point corresponding to the end of the
transient period. When �j is positive, the phase of the corre-
sponding unit increases over time. On the contrary, when �j

is zero, the state of the unit does not rotate on the unit circle.
For the numerical simulation, we employed the fourth-order
Runge-Kutta method with time step �t (�t � 0.01).

We note that there is no need to analyze the entire pa-
rameter space because two symmetric properties exist in our
system. We summarize the details of the two symmetries
in Appendix A. From these symmetries, we can restrict the
parameter region of (α, q ) to be analyzed to {(α, q ) | α ∈
[π/2, 3π/2], q ∈ [1/2, 1]}. In this region, we found interest-
ing bifurcations which will be introduced in the later sections.
In addition, we can understand the dynamics for other regions
on the (α, q ) plane based on the two symmetric properties.
Thus, later, we will focus mainly on this parameter region.

Throughout this paper, we focus on the heterogeneity of
aj . However, we note that heterogeneity of βj is also of
significant interest. Because the parameter βj directly controls
the qualitative behavior of the model, the heterogeneity of βj

generates a mix of oscillatory and excitable units [1–4]. Thus,
the system containing dual heterogeneity of aj and βj may
show rich and interesting behavior, and should be discussed
in future.

Finally, we briefly mention the relationship between our
models and previous studies. A model of excitable phase
oscillator can be derived from the Kuramoto model using an
order parameter [37,38]. A phase model similar to our model
has been studied in relation to the Kuramoto model with
external forcing [38–42], active rotators [43,44], and models
of charge density wave [45–47]. See Appendix B for detailed
information on this relationship.

III. BALANCED POPULATIONS

In this section, we focus on how the heterogeneity parame-
ter α affects the emergence of spontaneous oscillations in the
balanced population case of q = 1/2, where the numbers of
units in the two groups are the same. With an increase in the
coupling strength K , two types of spontaneous oscillations
emerge. We reveal that the type is determined depending on
the order of occurrence of the SNIC and heteroclinic bifur-
cations in the case of α �= π . In Sec. III A, we introduce the
model for q = 1/2. We discuss the individual emergence for
α ∈ (α∗, π ) in Sec. III B and the simultaneous emergence for
α ∈ (π/2, α∗) in Sec. III C. We note that α∗ is the boundary
between these two cases and is introduced later. We reveal
that a pitchfork bifurcation is responsible for the emergence
of spontaneous oscillation for α = π in Sec. III D. Finally, in
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FIG. 2. (a) The parameter region for spontaneous oscillations.
The frequencies �1 (left) and �2 (right) are indicated by the color on
the parameter plane (α,K ). The planes are divided into four specific
regions: (i) �1 = �2 = 0, (ii) �1 = 0 and �2 > 0, (iii) �1 > 0
and �2 = 0, and (iv) �1 = �2 > 0. (b)–(e) Time evolutions of the
phase variables, φ1 and φ2, are shown for (α, K ) = (b) (2.4, 0.5),
(c) (2.4, 1), (d) (3.8, 1), and (e) (2.4, 1.6). These panels (b)–(e)
correspond to the cases (i)–(iv) in panel (a), respectively. The other
parameter values are set at β = √

2 and q = 1/2 for all the cases.

Sec. III E, we discuss the situations for the remaining range of
α based on the symmetric properties of the system.

A. Model

In the case of q = 1/2, the system is rewritten from
Eqs. (5) and (6) as follows:

φ̇1 = 1 − β sin(φ1) + K

2
sin(φ2 − φ1), (8)

φ̇2 = 1 − β sin(φ2 + α) + K

2
sin(φ1 − φ2). (9)

When they are isolated (K = 0), there is a stable equilibrium
point at (φ∗

1 , φ∗
2 ) = (arcsin(1/β ), arcsin(1/β ) − α), two sad-

dle points, and an unstable equilibrium point in the region
of (φ1, φ2) ∈ [0, 2π ) × [0, 2π ). With an increase in K from
0, spontaneous oscillations occur under a certain condition
of parameter α. We show the frequencies �1 and �2 on the
(α,K ) plane for β = √

2 in Fig. 2(a). The parameter region
can be divided into four parts: (i) �1 = �2 = 0; (ii) �1 = 0
and �2 > 0; (iii) �1 > 0 and �2 = 0; (iv) �1 = �2 > 0. We
show the time series of φ1 and φ2 for four values of K in
Figs. 2(b)–2(e), which correspond to (i)–(iv), respectively. We
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FIG. 3. Bifurcation diagram showing the mechanism of the
emergence of spontaneous oscillations. This figure is an enlargement
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2. The red curve indicates
the parameter set where the SNIC bifurcation occurs. The purple
curve indicates the parameter set where the heteroclinic bifurcation
occurs. We indicate α∗ by the dashed line.

note that Fig. 2 shows the results obtained from the numerical
simulation of Eqs. (8) and (9).

Two types of bifurcation occur with an increase in K: het-
eroclinic bifurcation which is a global bifurcation and SNIC
bifurcation which is a local bifurcation. For α ∈ (π/2, π ),
with an increase in K from 0, the stable equilibrium point
vanishes through a SNIC bifurcation at a critical point K =
K∗(α). The system shows spontaneous oscillatory behavior
for K > K∗(α). Figure 3 is an enlargement of a part of
Fig. 2(a), showing the color-coded value of �1 and the curve
for K∗(α) on the (α,K ) plane for β = √

2. It is clear that
there are two types of scenarios after the SNIC bifurcation
occurs. For α < α∗ ∼ 1.808, both φ1 and φ2 start to increase
simultaneously at the SNIC bifurcation point. For α > α∗,
only φ2 starts to increase at the SNIC bifurcation and then
after the heteroclinic bifurcation, φ1 starts to increase as well.
We note that α∗ corresponds to the intersection of the SNIC
and heteroclinic bifurcation curves as shown in Fig. 3. In
the following subsections, we show the details of the two
bifurcation scenarios in Secs. III B and III C and a special case
in Sec. III D.

B. Individual emergence of spontaneous oscillations

For α ∈ (α∗, π ), only φ2 begins to increase just after the
SNIC bifurcation. The other unit of φ1 needs a larger value
of K to exhibit oscillations as shown in Figs. 2 and 3. This
sequential emergence of oscillations can be understood based
on the dynamical mechanism as shown in Fig. 4. We call
this type of emergence “individual emergence” of oscillations
in this paper. We note that a small region, where α is very
close to π , shows hysteresis phenomena. This phenomenon
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 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

: Stable equilibrium : Saddle
: Stable manifold : Unstable manifold

: Unstable equilibrium

Wh
S

Wv
SWv

S

Wv
SWv

S

FIG. 4. Phase portrait on the (φ1, φ2) plane for α = 2.4 and β =√
2. The coupling strength K is set at (a) 0.85, (b) 0.95, (c) 1.5, and

(d) 1.6. The SNIC bifurcation occurs between (a) and (b), where the
upper-left saddle point and the stable equilibrium point collide with
each other. The heteroclinic bifurcation occurs between (c) and (d).
Arrows shown on the manifolds indicate the direction of orbits on
the manifolds.

is observed in other related models [45–47] as discussed in
Appendix B.

Figure 4 shows the phase portrait on the (φ1, φ2) plane
for α = 2.4 before and after the two bifurcations. The red
curves indicate the stable manifolds that connect a saddle
point and the unstable equilibrium point. The blue curves
indicate the unstable manifolds that connect a saddle point
and the stable equilibrium point. When the stable equilibrium
point and stable manifolds exist, orbits converge to the stable
equilibrium point. Note that this figure contains only the
information that is related to the emergence of spontaneous
oscillations. Hereafter, we denote the stable manifold that ver-
tically stretches along the φ2 axis by W S

v and that horizontally
stretches along the φ1 axis by W S

h .
Figures 4(a) and 4(b) show the phase portraits on the

(φ1, φ2) plane before and after the SNIC bifurcation at K ∼
0.888, respectively. As shown in these two figures, the stable
point, the upper-left saddle point, and the horizontal stable
manifold W S

h vanishes via the SNIC bifurcation, while the
vertical stable manifold W S

v remains. Because orbits cannot
cross W S

v , they cannot rotate in the direction of φ1 but can in
the direction of φ2. This is the reason why �1 = 0 and �2 > 0
after the SNIC bifurcation.

Figures 4(c) and 4(d) show the phase portraits before and
after the heteroclinic bifurcation at K ∼ 1.54, respectively.
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The vertical stable and unstable manifolds become closer as
K gets closer to the heteroclinic bifurcation point, and they
collide with each other. After the heteroclinic bifurcation, the
stable manifold W S

v is changed to have an intersection with
the line φ1 = 0. This change makes it possible that the orbit
can reach the next right region without crossing the stable
manifold. We note that the system has 2π periodicity for both
φ1 and φ2. This is the reason why both units can oscillate after
the heteroclinic bifurcation.

We mention the numerical method used to obtain these
manifolds that connect to the saddle points. The stable mani-
folds correspond to the basin boundaries of the stable equilib-
rium points. Therefore, we compute the basin boundaries of
the stable equilibria. The unstable manifolds can be obtained
by simulating the model backward in time because they
correspond to the basin boundaries of the stable equilibria of
the time-inverse system.

C. Simultaneous emergence of spontaneous oscillations

Contrary to the previous scenario, for α ∈ [π/2, α∗), both
the units of φ1 and φ2 start to oscillate simultaneously at
K = K∗(α). We call this type of emergence “simultaneous
emergence” of oscillations in this paper. As shown in Fig. 3,
the difference between the two scenarios is the order of
occurrence of the SNIC and the heteroclinic bifurcations. In
this subsection, we show why the simultaneous emergence
of spontaneous oscillation is caused when the heteroclinic
bifurcation is followed by the SNIC one. Figure 5 shows the
phase portrait on the (φ1, φ2) plane before and after the two
bifurcations for α = 1.7.

Figures 5(a) and 5(b) show the phase portraits before and
after the heteroclinic bifurcation at K ∼ 1.777, respectively.
Similarly to the case in the previous subsection, the vertical
stable and unstable manifolds become closer to each other as
K gets closer to the heteroclinic bifurcation point and they
collide with each other. Then, this stable manifold is changed
to have an intersection with the line φ1 = 0. The stable
equilibrium point remains after this heteroclinic bifurcation
and therefore orbits starting from any initial conditions finally
converge to the stable equilibrium point. Thus, this hetero-
clinic bifurcation cannot trigger spontaneous oscillations.

A further increase in K results in the initiation of oscilla-
tion in both the units of φ1 and φ2 via the SNIC bifurcation.
Figures 5(c) and 5(d) show the phase portraits before and after
SNIC bifurcation at K ∼ 2.49, respectively. Both the stable
equilibrium point and the lower-left saddle point vanish via
this bifurcation, and then, no horizontal stable manifold which
blocks a phase slip of the orbits remains. Hence, the orbit can
rotate in both directions of φ1 and φ2. This is the reason why
both units simultaneously start to oscillate after this SNIC
bifurcation.

D. Pitchfork bifurcations for α = π

In this subsection, we focus on the bifurcation mechanism
for α = π . The system shows a 3rd-order pitchfork bifur-
cation and a 5th-order pitchfork bifurcation, depending on
the symmetric property of the system. We briefly sketch our
analysis based on the center manifold theory [48]. A detailed
derivation is shown in Appendix C.
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(c) K = 2.3 (d) K = 2.7
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FIG. 5. Phase portrait on the (φ1, φ2) plane for α = 1.7 and β =√
2. The coupling strength K is set at (a) 1.7, (b) 1.8, (c) 2.3, and

(d) 2.7. The heteroclinic bifurcation occurs between (a) and (b). The
SNIC bifurcation occurs between (c) and (d), where the lower-left
saddle point and the stable equilibrium point collide with each other.
Arrows shown on the manifolds indicate the direction of orbits on
the manifolds.

First, we obtain the dynamics on the center manifold.
For α = π , Eqs. (5) and (6) have an equilibrium point
at (φ∗

1 , φ∗
2 ) = (arcsin(1/β ), arcsin(1/β ) + π ). We denote the

displacement from the equilibrium point by (ψ1, ψ2) :=
(φ1 − φ∗

1 , φ2 − φ∗
2 ). By substituting these equations into

Eqs. (5) and (6), the linear part of the time expansion equation
of the displacement (ψ1, ψ2) is given in the following form:(

ψ̇1

ψ̇2

)
= A

(
ψ1

ψ2

)
, (10)

where

A =
(−

√
β2 − 1 + Kq −Kq

−K (1 − q ) −
√

β2 − 1 + K (1 − q )

)
. (11)

The two eigenvalues of A are given as λK := K −
√

β2 − 1
and λ0 := −

√
β2 − 1 < 0 and their corresponding eigenvec-

tors are eK = 2(q, q − 1)	 and e0 = (1, 1)	, respectively.
This indicates that the stability of the equilibrium point
changes at K =

√
β2 − 1. We transform the variables from

(ψ1, ψ2) into (u, v) as follows:(
ψ1

ψ2

)
= u e0 + v eK, (12)
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which gives the following relationship:

u = (1 − q )ψ1 + qψ2, (13)

v = ψ1 − ψ2

2
. (14)

We note that ψ1 and ψ2 are functions of u and v. Equation (12)
indicates that u and v correspond to the stable and center
manifolds at K =

√
β2 − 1, respectively. According to the

center manifold theory [48], on the center manifold, u can be
written as a function of v as follows:

u = m(v) :=
∑
k�2

akv
k. (15)

The time derivative of Eq. (13) and that of Eq. (15) must agree
with each other. From a comparison of the derivatives, we can
obtain the reduced system on the center manifold as follows:

v̇ = (K −
√

β2 − 1)v +
∑
k�2

Ckv
k. (16)

As above, we can describe the dynamical behavior in the
vicinity of the bifurcation point at K =

√
β2 − 1. Next, we

derive how this dynamics depends on β and q.

1. 3rd-order pitchfork bifurcation

The coefficient C2 is given by C2 = 2q − 1, and thus,
when q = 1/2, the coefficient C2 equals zero. Then, Eq. (16)
is rewritten as follows:

v̇ = (K −
√

β2 − 1)v + C3v
3 + O(v4), (17)

where C3 = 2−β2

2
√

β2−1
. When C3 �= 0 (β �= √

2), Eq. (17) can

be approximated as a 3rd-order polynomial equation as
follows:

v̇ = (K −
√

β2 − 1)v + C3v
3, (18)

because the magnitude of v is relatively small. Therefore,
the system shows a pitchfork bifurcation at K =

√
β2 − 1: a

supercritical pitchfork bifurcation for C3 < 0 (β >
√

2) and a
subcritical pitchfork bifurcation for C3 > 0 (β <

√
2). Using

the solution of Eq. (18), the v values at the equilibrium points
are given by v = 0 and

v = ±
√

−K −
√

β2 − 1

C3
. (19)

Note that the domain of K depends on the sign of C3 as
follows:

K �
√

β2 − 1, if C3 > 0,

K �
√

β2 − 1, if C3 < 0. (20)

The corresponding u values at the equilibrium points are ob-
tained by u = a2v

2. By using Eqs. (13) and (14), the original
trajectory (φ1, φ2) is obtained as follows:

φ1 = u + v + φ∗
1 ,

φ2 = u − v + φ∗
2 . (21)
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FIG. 6. Bifurcation diagram for a variation of K , where α = π .
Stable equilibrium points (red, ◦), saddle points (purple, ×), and
approximated solution of the bifurcation (green solid curve) are
shown. (a) A 3rd-order subcritical pitchfork bifurcation occurs at
K ∼ 0.6633. (b) A 3rd-order supercritical pitchfork bifurcation oc-
curs at K ∼ 1.2490. (c) A 5th-order subcritical pitchfork bifurcation
occurs at K = 1. The parameters (q, β ) are set at (a) (0.5, 1.2),
(b) (0.5, 1.6), (c) (0.5,

√
2).

We numerically confirmed that this approximation works well
near the bifurcation point K =

√
β2 − 1 as shown in Fig. 6(a)

for β = 1.2 (subcritical) and in Fig. 6(b) for β = 1.6 (su-
percritical). In Fig. 6(a), the spontaneous oscillations emerge
via the subcritical pitchfork bifurcation. On the contrary, in
Fig. 6(b), two stable equilibrium points are generated via the
supercritical pitchfork bifurcation, and then, they disappear
via the subsequent SNIC bifurcation.

2. 5th-order pitchfork bifurcation

In the special case where q = 1/2 and β = √
2, the co-

efficients C2, C3, and C4 are equal to zero. In this case, we
need to investigate higher order terms of v. Equation (16) is
rewritten as

v̇ = (K −
√

β2 − 1)v + C5v
5 + O(v6), (22)

where C5 = 1/2 > 0 at K =
√

β2 − 1 = 1. Therefore, the
system shows a 5th-order subcritical pitchfork bifurcation.
Equation (22) can be approximated as a 5th-order-polynomial
equation as follows:

v̇ = (K −
√

β2 − 1)v + C5v
5. (23)
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FIG. 7. The parameter region corresponding to spontaneous oscillation depends on q. The frequencies �1 (upper) and �2 (lower) are
indicated by the color on the parameter plane of (α,K ) for β = √

2. The value of q is varied from 0.6 (left) to 0.95 (right).

Using the solution of Eq. (23), the v values at the equilibrium
points are given by v = 0 and

v = ±

√√√√√
−K −

√
β2 − 1

C5
. (24)

The corresponding u values at the equilibrium points are
also obtained by u = a2v

2. By using Eqs. (13) and (14), the
original trajectory (φ1, φ2) is obtained from Eq. (21). We
numerically confirmed that this approximation works well
near the bifurcation point K = 1 as shown in Fig. 6(c). Spon-
taneous oscillations emerge after this 5th-order subcritical
pitchfork bifurcation.

E. Spontaneous oscillations in the other range of α

From the previous analysis for α ∈ [π/2, π ], we have
clarified how and when the spontaneous oscillations occur
depending on the heterogeneity parameter α. We can under-
stand the case with the other parameter range of α using the
two symmetric properties described in Appendix A. For α ∈
[0, π/2), the system does not exhibit any oscillations. This
can be understood from the symmetric property in Eq. (A7).
For α ∈ [π, 2π ], the dynamical behavior of the system can be
understood from the symmetric property in Eq. (A1).

In this section, we have discussed the emergence of spon-
taneous oscillations in the case of balanced populations. In
the next section, we will discuss spontaneous oscillations in
unbalanced populations.

IV. UNBALANCED POPULATIONS

Next, we discuss the emergence of spontaneous oscilla-
tions in the system of unbalanced populations, i.e., the cases of
q > 1/2 and q < 1/2. We again note that q is the proportion
of the units belonging to S2, and the frequencies of φ1 and φ2

are denoted by �1 and �2, respectively. In this section, we
only consider the case of q > 1/2; i.e., φ1 corresponds to the
minority units and φ2 corresponds to the majority units. Note

that the other case can be similarly understood based on the
symmetric property. See Appendix A for details.

A. Individual and simultaneous emergence
of spontaneous oscillations

The parameter q affects the dependencies of �1 and �2

on the parameters α and K as shown in the upper and lower
panels of Fig. 7, respectively. This result indicates that the
minority units are a key factor for maintaining oscillations.

As in the previous cases of the balanced populations, there
are two types of emergence of spontaneous oscillations: indi-
vidual emergence and simultaneous emergence. In the former
case, the parameter regions for the spontaneous oscillations
are different between the minority units (φ1) and the majority
units (φ2). The parameter region for spontaneous oscillations
tends to slightly increase with q for the minority units, while
it dramatically decreases with q for the majority units. In the
latter case, the parameter region for simultaneous oscillations
tends to decrease with an increase in q for both types of
units. The dynamical mechanism of these emergences can be
understood by SNIC and heteroclinic bifurcations as shown
in Figs. 8(a)–8(c): the SNIC and the heteroclinic bifurca-
tion curves are shown on the (α,K ) plane for q = 0.6 and
0.85. We can find that the boundaries between �1 = 0 and
�1 > 0 (also �2 = 0 and �2 > 0) correspond to the bifur-
cation curves. This is similar to the case of the balanced
populations as shown in Fig. 3.

However, at a certain range of α and q, the bifurcation
mechanism is more complex than that of the balanced pop-
ulations (q = 1/2). Figures 8(a) and 8(b) indicate that the
bifurcation mechanism is the same as that in the previous
section except for α in the vicinity of π ; i.e., SNIC and
heteroclinic bifurcations occur with an increase in K . In the
vicinity of α = π , the bifurcation mechanism is different
because bifurcations occur four times for an increase in K:
one heteroclinic bifurcation and three SNIC bifurcations. The
phase planes for understanding these bifurcations are shown
in Fig. 9. Figures 9(a) and 9(b) show the phase portraits before
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FIG. 8. (a)–(c) Frequencies are plotted on (α,K ) plane: (a) �1

for q = 0.6; (b) �2 for q = 0.6; and (c) �1 for q = 0.85. The
bifurcation curves for the heteroclinic bifurcations are plotted as
purple ◦ and black × and those for the SNIC bifurcation are plotted
as red �. (d) For the case of α = 4, the (q, K ) plane is divided
into three regions: the green (marked as G), blue (marked as B), and
orange (marked as O) regions correspond to the cases where both �1

and �2 are positive, �1 is positive and �2 is zero, and �1 = �2 = 0,
respectively. In all the panels, the β is set at

√
2.

and after the heteroclinic bifurcation at K ∼ 0.8905. The
vertical stable manifold W S

v is changed to have an intersection
with φ1 = 0 as in Fig. 5(b). Figures 9(c) and 9(d) show the
phase portraits before and after the first SNIC bifurcation at
K ∼ 0.944. After this first SNIC bifurcation, there remains
the horizontal stable manifold W S

h which is different from the
case of Fig. 5(d). This is because the saddle point vanishes via
the SNIC bifurcation. A comparison between Figs. 5(c) and
5(d) reveals that the saddle point connecting to W S

h vanishes.
After this first SNIC bifurcation, the saddle point connecting
to W S

v vanishes. Thus, in this situation, spontaneous oscil-
lations individually emerge. Figures 9(e) and 9(f) show the
phase portraits before and after the second SNIC bifurcation
at K ∼ 1.059. The stable equilibrium point emerges via this
second SNIC bifurcation, and thus, the oscillation vanishes.
Figures 9(g) and 9(h) show the phase portraits before and after
the third SNIC bifurcation at K ∼ 1.106. Because the saddle
point connecting to W S

h vanishes via this SNIC bifurcation,
spontaneous oscillation simultaneously emerges.

Next, we discuss the effects of q for larger values of K . The
parameter regions corresponding to spontaneous oscillations
decrease with an increase in q as shown in Fig. 7. The
coupling terms in Eqs. (5) and (6) can be used to explain this
phenomenon. The coupling term of φ2 (majority units) is (1 −
q )K sin(φ1 − φ2) which becomes smaller for larger q and
that of φ1 (minority units) is qK sin(φ2 − φ1) which becomes
larger for larger q. Thus, for a larger value of q, φ2 receives
weak coupling effects and behaves similarly to its isolated
case, but φ1 receives strong coupling effects. Figure 8(d) in-
dicates three subregions on the (q,K ) plane for α = 4, which

(a) K = 0.85 (b) K = 0.9

(c) K = 0.93 (d) K = 0.98

(e) K = 1.05 (f) K = 1.06
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FIG. 9. Phase portrait on the (φ1, φ2) plane in the case of α =
3.15, q = 0.6, and β = √

2. The coupling strength K increases from
(a) to (h). The heteroclinic bifurcation occurs between (a) and (b).
The SNIC bifurcation occurs three times: between (c) and (d);
between (e) and (f); and between (g) and (h). Arrows shown on the
manifolds indicate the direction of the orbits on the manifolds.

are colored with green, blue, and orange. The green, blue, and
orange regions correspond to the cases where both �1 and �2

are positive, �1 is positive and �2 is zero, and �1 = �2 = 0,
respectively. For these three regions, we explain the dynamics
after a transient period as follows. In the green region with
larger values of K and a slightly unbalanced population
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FIG. 10. Bifurcation diagram for a variation of K , where α = π .
A transcritical bifurcation occurs at K = 1. Stable equilibrium points
(red, ◦), saddle points (purple, ×), and approximate solution of the
bifurcation (green solid curve) are shown. The parameters (q, β ) are
set at (0.7,

√
2).

(q ∈ [1/2, q∗] (q∗ ∼ 0.85)), all the units oscillate. In the
orange region with a highly unbalanced population (q > q∗),
all the units do not show oscillation. In the blue region with
small K , the majority units do not show the spontaneous
oscillations (i.e., phase slips) but show fluctuations because
they are affected weakly by the oscillations of the minority
units. This result reflects the previous discussion: the majority
units receive a little coupling effect and behave similarly to
its isolated case, i.e., they do not exhibit oscillation (phase
slip) for a highly unbalanced population; the minority units
experience significant coupling effects, i.e., they are entrained
into the majority units for large coupling strength. Thus, the
parameter regions corresponding to spontaneous oscillations
decrease with an increase in q.

B. Transcritical bifurcation for α = π

In the special case where α = π and q �= 1/2, a transcrit-
ical bifurcation occurs. As we have discussed in Sec. III D,
for α = π , Eqs. (5) and (6) have an equilibrium point
at (φ∗

1 , φ∗
2 ) = (arcsin(1/β ), arcsin(1/β ) + π ). Based on the

center manifold theory, we can reveal the bifurcation mech-
anism for this equilibrium point using Eq. (16).

The coefficient C2 = 2q − 1 is not zero for q �= 1/2. Thus,
Eq. (16) is rewritten as follows:

v̇ = (K −
√

β2 − 1)v + (2q − 1)v2 + O(v3). (25)

This equation corresponds to the normal form of a transcritical
bifurcation described as ẋ = μx ± x2, because the magnitude
of v is relatively small. Thus, the stability of the two equilib-
rium points (u, v) = (0, 0) and (a2v

2
∗, v∗), where

v∗ = −K −
√

β2 − 1

2q − 1
, (26)

changes at K =
√

β2 − 1. By using Eqs. (13) and (14), the
original trajectory of (φ1, φ2) is described as follows:

φ1 = u + 2qv + φ∗
1 ,

φ2 = u − 2(1 − q )v + φ∗
2 . (27)

We numerically confirmed that this approximation worked
well near the bifurcation point as shown in Fig. 10. We

note that the spontaneous oscillations do not emerge via this
transcritical bifurcation. The spontaneous oscillation emerges
via a SNIC bifurcation after the transcritical bifurcation as
shown in Fig. 10.

V. CONCLUSION AND DISCUSSION

We summarize the results of this paper and discuss future
extensions. In this paper, we have analyzed the dynamical
behavior of the system composed of coupled heterogeneous
excitable units. Biological systems are often composed of a
wide variety of heterogeneous excitable units. Therefore, the
fascinating aspect of this problem is to investigate how this
heterogeneity affects the collective behavior of the systems.
Based on the bifurcation theory and the center manifold the-
ory, we have elucidated how spontaneous oscillations emerge
depending on the heterogeneity parameter and demonstrated
three main results. First, we have clarified that the types of
emergence of spontaneous oscillations are mainly determined
by the order of occurrence of SNIC and heteroclinic bifur-
cations for an increase in the coupling strength. Second, we
have found that when the system has symmetric properties,
the mechanism of the oscillation emergence is analytically
revealed as a 5th-order pitchfork bifurcation. Third, we have
shown that the area of the parameter region corresponding to
spontaneous oscillations decreases as the populations of the
two groups become unbalanced.

The benefit of using a simple model is that the hetero-
geneity of excitable units is restricted only to the difference
in the equilibrium states. Due to the simplicity of our model,
we have clearly revealed the mechanism of spontaneous oscil-
lations. Based on this basic understanding, further studies on
the mechanism of heterogeneous excitable systems could be
performed. There are various directions for future extension
of this research, motivated by previous studies on dynamical
systems, e.g., repulsive coupling among excitable elements
[10], systems moving on a space [49], and systems whose
coupling function contains phase shift [37,50]. Although var-
ious types of heterogeneity are found in real systems, our
analysis of this basic model could be useful as a basis for
understanding more complex systems. Therefore, from the
perspective of dynamical systems, it is interesting to further
investigate excitable systems in the future.

Finally, we will discuss the future extension of our study
from the viewpoints of robustness and resilience. Our analysis
suggests that heterogeneity of equilibrium states causes spon-
taneous oscillations in a system composed of excitable units.
Because excitability plays an important role in biological
systems such as the brain and heart, it is important to dis-
cern how the dynamical behavior of these systems maintains
normal functions and recovers from possible damages. As
we have introduced in Sec. I, the origin of oscillations is
primarily attributable to active units in the networks composed
of active and inactive units. On the other hand, for networks of
heterogeneous excitable units, the origin of oscillations can be
ascribed to excitable units. This suggests that the heterogene-
ity contributes to maintaining the dynamical behavior of the
systems. In a system composed of excitable and passive units,
the spontaneous oscillation occurs for sufficiently strong cou-
pling strength [18]. Therefore, understanding of spontaneous
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oscillations could be helpful in the investigation of the ro-
bustness of dynamical systems in the future. Moreover, this
understanding could be also useful in the investigation of
the effective recovery of the dynamical behavior of systems
[36,51]. Thus, we believe that our work could be further
developed from the perspective of dynamical systems and
biological phenomena.
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APPENDIX A: TWO SYMMETRIC PROPERTIES

We can find two symmetric properties in our system.
Because of these symmetric properties, we can reduce the
parameter region of (α, q ) to be analyzed to {(α, q ) | α ∈
[π/2, 3π/2], q ∈ [1/2, 1]}. Figure 11 is a graphical depiction
of the parameter regions in the (α, q ) plane. If we analyze
the dynamical behavior of the parameter region {(α, q ) | α ∈
[π/2, π ], q ∈ [1/2, 1]} which is marked with A, we can
get those marked with A1, A2, and A12 based on the fol-
lowing two symmetric properties. For the parameter region
{(α, q ) | α ∈ [π, 3π/2], q ∈ [1/2, 1]} which is marked with
B, we can get the dynamical behavior of the parameter regions
B1, B2, and B12 as in the case of the region A.

The first symmetric property is found around α = π and
q = 1/2. Let us consider two trajectories generated from
Eqs. (5) and (6) for (α, q ) = (α1, q1) and (α̂1, q̂1), which have
the following relationship:

α̂1 = 2π − α1, q̂1 = 1 − q1. (A1)

To distinguish between these two trajectories, we denote the
phase variables for the case of (α̂1, q̂1) by (φ̂1, φ̂2). We also
denote the corresponding frequencies defined in Eq. (7) by

1

0
0 2/2 3 /2

q

1/2

A

(a)

A2

(b)

A1 A12

1

0
0 2/2 3 /2

q

1/2

B B2

B1B12

FIG. 11. Correspondence of the two symmetric properties in the
parameter regions on the (α, q ) plane analyzed in this paper. (a) The
red parameter region A (α ∈ [π/2, π ] and q ∈ [1/2, 1]) corresponds
to the regions A1 and A2 based on the first symmetric property in
Eq. (A1) and the second one in Eq. (A7), respectively. The light-blue
region A12 corresponds to A based on both symmetric properties.
(b) The red parameter region B (α ∈ [π, 3π/2] and q ∈ [1/2, 1])
corresponds to the regions B1, B2, and B12 in the same way as (a).

�̂1 and �̂2, respectively. Then, the time evolution equations
for (α̂1, q̂1) are given as follows:

˙̂φ1 = 1 − β sin(φ̂1) + q̂1K sin(φ̂2 − φ̂1), (A2)

˙̂φ2 = 1 − β sin(φ̂2 + α̂1) + (1 − q̂1)K sin(φ̂1 − φ̂2). (A3)

By substituting Eq. (A1) into these equations and exchanging
the phase variables by

φ̂1 = φ2 + α1 − 2π, φ̂2 = φ1 + α1 − 2π, (A4)

we obtain the following equations:

φ̇1 = 1 − β sin(φ1) + q1K sin(φ2 − φ1), (A5)

φ̇2 = 1 − β sin(φ2 + α1) + (1 − q1)K sin(φ1 − φ2). (A6)

These equations coincide with the original equations [Eqs. (5)
and (6)] for (α, q ) = (α1, q1). Thus, the trajectory for the case
of (α1, q1) can be understood by the trajectory for the case of
(α̂1, q̂1) based on Eqs. (A1) and (A4), and vice versa. More-
over, the frequencies are also obtained based on Eq. (A4) as
�̂1 = �2 and �̂2 = �1. Therefore, without loss of generality,
we can restrict the parameter region to be analyzed. In Sec. III,
we analyzed the emergence of the spontaneous oscillations
for {(α, q ) | α ∈ [π/2, π ], q = 1/2}. From this result, we can
obtain the trajectories for {(α, q ) | α ∈ [π, 3π/2], q = 1/2}
based on Eq. (A1).

The second symmetric property is found around α = π/2.
Let us again consider two trajectories generated from Eqs. (5)
and (6) for (α, q ) = (α2, q2) and (α̂2, q2), which have the
following relationship:

α̂2 = π − α2. (A7)

Then, the time evolution equations for (α̂2, q2) are given as
follows:

˙̂φ1 = 1 − β sin(φ̂1) + q2K sin(φ̂2 − φ̂1), (A8)

˙̂φ2 = 1 − β sin(φ̂2 + α̂2) + (1 − q2)K sin(φ̂1 − φ̂2). (A9)

By substituting Eq. (A7) into these equations and exchanging
the phase and time variables by

φ̂1 = −φ1 + π, φ̂2 = −φ2, τ = −t, (A10)

we obtain the following equations:

dφ1

dτ
= 1 − β sin(φ1) + q2K sin(φ2 − φ1), (A11)

dφ2

dτ
= 1 − β sin(φ2 + α2) + (1 − q2)K sin(φ1 − φ2).

(A12)

These equations agree with the original equations for (α, q ) =
(α2, q2) by getting it to go backward in time. Thus, the
trajectories for the case of (α2, q2) can be understood by those
for the case of (α̂2, q2), and vice versa. Therefore, without
loss of generality, we can restrict the parameter region to
be analyzed. We note that the stability of the equilibrium
points are different for the equations for (α2, q2) and for
(α̂2, q2). In Sec. III, the analyses for {(α, q ) | α ∈ [π/2, π ],
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q = 1/2} gave the trajectories for {(α, q ) | α ∈ [0, π/2], q =
1/2} based on Eq. (A7). Because the unstable equilibrium
point remains with an increase in K for α ∈ (π/2, π ), the
stable equilibrium point remains with an increase in K for
α ∈ (0, π/2). Thus, no spontaneous oscillations are observed
in the region of α ∈ [0, π/2).

Based on these two symmetric properties, we should
only focus on the region of {(α, q ) | α ∈ [π/2, 3π/2], q ∈
[1/2, 1]}. The other cases of (α, q ) can be understood accord-
ing to the two symmetric properties as shown in Fig. 11.

APPENDIX B: RELATIONSHIP TO OTHER STUDIES

Here, we show the relationship between our model in
Eq. (2) and some models in related studies such as the
Kuramoto model with external forcing [38–42], active ro-
tators [43,44], and models of charge density wave (CDW)
[45–47].

The Kuramoto model with external forcing is given by

θ̇j = ωj + K

N

N∑
l=1

sin(θl − θj ) + Mj sin(�t + αj − θj ),

for j = 1, . . . , N, (B1)

where Mj is the amplitude of the external forcing for the j th
unit. By defining φj := �t − θj , this equation can be written
as follows:

� − φ̇j = ωj + K

N

N∑
l=1

sin(φj − φl ) + Mj sin(φj + αj ).

(B2)

Then, we can derive

φ̇j = (� − ωj ) − Mj sin(φj + αj ) + K

N

N∑
l=1

sin(φl − φj ).

(B3)

This equation is similar to our model in Eq. (2). Thus, our
study in this paper could provide insights into the Kuramoto
model with heterogeneous external forcing.

An active rotator is a famous excitable model [43,44] that
is often defined as follows:

ψ̇i = ω − b sin ψi + Gi (ψ1, . . . , ψN ) + ξi (t ),

for i = 1, . . . , N, (B4)

where ψi represents the state variable of unit i, Gi (·) gives
coupling functions among units {ψi}, and ξi (t ) is the Gaussian
white random noise. Variants of this active rotator model
have been investigated in many studies such as the effect of
common noise on coupled active rotators [52]. The difference
between active rotators and our model mainly lies in the
following two points: the heterogeneity in the phase shift
parameter α and the lack of noise effect in our model. Thus,
our study that focuses on the effect of the heterogeneity of α

could provide a new direction to the studies on active rotators.
The CDW model is defined as follows [45–47]:

θ̇i = E − b sin(θi − αi ) + K

N

N∑
j=1

sin(θj − θi ),

for i = 1, . . . , N. (B5)
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FIG. 12. (a) Dependencies of �1 and �2 on K for q = 1/2
and α = π . Green and yellow curves correspond to the cases of
increasing and decreasing K , respectively. (b) The parameter region
on the (α, K ) plane is divided into four subregions around α = π .
Dynamics for regions (i), (ii), and (iv) correspond to those indicated
in Fig. 2(a). A hysteresis region is found in the center-right part
which is close to α = π .

This model is almost the same as our model, but the distri-
bution of αi is different. Because Eq. (B5) was proposed as
a CDW model, αi was randomly determined from [−π, π ].
In the previous studies, a hysteretic transition between non-
oscillation and collective oscillation states was found in a
part of the (E,K ) parameter plane [45–47]. In our setting,
similarly, we found such hysteresis in a very small region
on the (α,K ) parameter plane for q = 1/2. As shown in
Fig. 12(a), there is a parameter region for coexistence of
a stable equilibrium point and an oscillating state which
corresponds to �1 = �2 = 0 and �1 = �2 > 0, respectively.
We show such a region on the (α,K ) plane in Fig. 12(b).
The hysteresis occurs in (αh, π ], where αh ∼ 3.13632. The
spontaneous oscillation individually emerges in α < αh as
discussed in Sec. III. The similarity between the CDW model
and our model is confirmed from this observation of hysteresis
phenomena.

APPENDIX C: ANALYSES BASED ON CENTER
MANIFOLD THEORY

Here, we complement our analyses discussed in Sec. III D.
The analyses were based on the center manifold theory.
See [48] for a detailed introduction to this theory. We
have analyzed the stability changes of the stable equilib-
rium point. For α = π , as we have discussed in Sec. III D,
Eqs. (5) and (6) have an equilibrium point (φ∗

1 , φ∗
2 ) =

(arcsin(1/β ), arcsin(1/β ) + π ). We denote the displacement
from the equilibrium point by (ψ1, ψ2), i.e., φ1 = ψ1 +
φ∗

1 and φ2 = ψ2 + φ∗
2 . By substituting these equations into

Eqs. (5) and (6), the time expansion equations of the displace-
ment variables (ψ1, ψ2) are given as follows:

ψ̇1 = 1 − β sin(ψ1 + φ∗
1 )

+ qK sin(ψ2 + φ∗
2 − ψ1 − φ∗

1 ), (C1)

ψ̇2 = 1 − β sin(ψ2 + φ∗
2 + π )

+ K (1 − q ) sin(ψ1 + φ∗
1 − ψ2 − φ∗

2 ). (C2)
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By taking Taylor expansion of Eq. (C1), we obtain its polyno-
mial expression as follows:

ψ̇1 = 1 − β
[

sin(φ∗
1 ) + cos(φ∗

1 )ψ1 + H
(2)
1 (ψ1)

]
+ qK

[
sin(φ∗

2 − φ∗
1 ) + cos(φ∗

2 − φ∗
1 )(ψ2 − ψ1)

+ H
(2)
3 (ψ1, ψ2)

]
= (qK −

√
β2 − 1)ψ1 − qKψ2

− βH
(2)
1 (ψ1) + qKH

(2)
3 (ψ1, ψ2), (C3)

where H
(2)
1 is the nonlinear polynomial terms of sin(ψ1 + φ∗

1 )
as follows:

H
(2)
1 (ψ1) = lim

M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

1

(ψ1)k

k!
, (C4)

and H
(2)
3 is that of sin(ψ2 + φ∗

2 − ψ1 − φ∗
1 ) as follows:

H
(2)
3 (ψ1, ψ2) = lim

M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

2 −φ∗
1

(ψ2 − ψ1)k

k!
.

(C5)

We also take Taylor expansion of Eq. (C2) and obtain its
polynomial expression as follows:

ψ̇2 = 1 + β
[

sin(φ∗
2 ) + cos(φ∗

2 )ψ2 + H
(2)
2 (ψ2)

]
− K (1 − q )

[
sin(φ∗

2 − φ∗
1 ) + cos(φ∗

2 − φ∗
1 )(ψ2 − ψ1)

+ H
(2)
3 (ψ1, ψ2)

]
= − K (1 − q )ψ1 + (K (1 − q ) −

√
β2 − 1)ψ2

+ βH
(2)
2 (ψ2) − K (1 − q )H (2)

3 (ψ1, ψ2), (C6)

where H
(2)
2 is the nonlinear polynomial terms of sin(ψ2 + φ∗

2 )
as follows:

H
(2)
2 (ψ2) = lim

M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

2

1

k!
(ψ2)k. (C7)

From Eqs. (C3) and (C6), we can rewrite Eqs. (C1) and (C2)
as follows:(

ψ̇1

ψ̇2

)
= A

(
ψ1

ψ2

)
+

(
−βH

(2)
1 (ψ1) + KqH

(2)
3 (ψ1, ψ2)

βH
(2)
2 (ψ2) − K (1 − q )H (2)

3 (ψ1, ψ2)

)
,

(C8)

where

A =
(−

√
β2 − 1 + Kq −Kq

−K (1 − q ) −
√

β2 − 1 + K (1 − q )

)
. (C9)

The two eigenvalues of A are λK := K −
√

β2 − 1 and
λ0 := −

√
β2 − 1 < 0 and their corresponding eigenvectors

are eK = 2(q, q − 1)	 and e0 = (1, 1)	, respectively. We
transform the variables (ψ1, ψ2) into (u, v) as follows:(

ψ1

ψ2

)
= u e0 + v eK, (C10)

which gives (
u

v

)
= (e0 eK )−1

(
ψ1

ψ2

)
. (C11)

Then, we obtain the following relationships:

u = (1 − q )ψ1 + qψ2, (C12)

v = ψ1 − ψ2

2
. (C13)

Note that ψ1 and ψ2 are functions of u and v. Then, we get
the time derivative of u as follows:

u̇ = (1 − q )ψ̇1 + qψ̇2 = Gu + hu(u, v), (C14)

where

G := −
√

β2 − 1,

hu(u, v) := −β(1 − q )H (2)
1 (ψ1(u, v)) + βqH

(2)
2 (ψ2(u, v)).

(C15)

Also, we get the time derivative of v as follows:

v̇ = ψ̇1 − ψ̇2

2
= BKv + hv (u, v), (C16)

where

BK := K −
√

β2 − 1,

hv (u, v) := −β

2
H

(2)
1 (ψ1(u, v)) − β

2
H

(2)
2 (ψ2(u, v))

+ K

2
H

(2)
3 (ψ1(u, v), ψ2(u, v)).

Equation (C16) gives the dynamics on the center manifold.
According to the center manifold theory [48], u can be written
as a function of v as follows:

u = m(v) :=
∑
k�2

akv
k. (C17)

Thus, we can derive the dynamics on the center manifold as a
function of only v by acquiring the coefficients ak .

Next, we obtain these coefficients based on the center
manifold theory [48]. From Eqs. (C16) and (C17), the time
derivative of u is obtained as

u̇ = dm(v)

dv
v̇ = dm(v)

dv
[BKv + hv (u, v)]. (C18)

This must be the same as Eq. (C14), and therefore, an identical
equation is obtained as follows:

[BKv + hv (m(v), v)]
dm(v)

dv
= [Gm(v) + hu(m(v), v)].

(C19)

By comparing the coefficients of each order of v of this
equation, we can obtain the coefficients ak . To do this,
we rewrite the terms of H

(2)
1 (ψ1(u, v)),H (2)

2 (ψ2(u, v)), and
H

(2)
3 (ψ1(u, v), ψ2(u, v)) as direct functions of u and v. From

Eqs. (C12) and (C13), ψ1 and ψ2 can be rewritten as follows:

ψ1 = u + 2qv,

ψ2 = u − 2(1 − q )v. (C20)
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By substituting these relationships into Eqs. (C4), (C5), and
(C7), we obtain

H
(2)
1 (ψ1(u, v))

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

1

1

k!
ψk

1

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

1

1

k!
(u + 2qv)k

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

1

1

k!

(
N∑

l=2

alv
l + 2qv

)k

,

(C21)

H
(2)
2 (ψ2(u, v))

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

2

1

k!
ψk

2

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

2

1

k!
[u − 2(1 − q )v]k

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

2

1

k!

[
N∑

l=2

alv
l − 2(1 − q )v

]k

,

(C22)

and

H
(2)
3 (ψ1(u, v), ψ2(u, v))

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=φ∗

2 −φ∗
1

1

k!
(ψ2 − ψ1)k

= lim
M→∞

M∑
k=2

dk sin(x)

dxk

∣∣∣∣
x=π

1

k!
(−2v)k. (C23)

Hereafter, we denote these terms by H
(2)
1 (u, v), H

(2)
2 (u, v),

and H
(2)
3 (u, v), respectively. By substituting the aforemen-

tioned conditions of our problem under consideration, we
rewrite Eq. (C19) as follows:[

(K −
√

β2 − 1)v − β

2
H

(2)
1 (u, v) − β

2
H

(2)
2 (u, v)

+ K

2
H

(2)
3 (u, v)

] ∑
k�2

kakv
k−1 −

[
−

√
β2 − 1

∑
k�2

akv
k

− β(1 − q )H (2)
1 (u, v) + βqH

(2)
2 (u, v)

]
= 0. (C24)

We have analyzed the orders of v2, v3, v4, and v5 in this study.
For these cases, the former parts of Eq. (C21) are obtained as
follows:

d2 sin(x)

dx2

∣∣∣∣
x=φ∗

1

1

2!
= − sin(φ∗

1 )

2
= − 1

2β
,

d3 sin(x)

dx3

∣∣∣∣
x=φ∗

1

1

3!
= −cos(φ∗

1 )

6
= −

√
β2 − 1

6β
,

d4 sin(x)

dx4

∣∣∣∣
x=φ∗

1

1

4!
= sin(φ∗

1 )

24
= 1

24β
,

d5 sin(x)

dx5

∣∣∣∣
x=φ∗

1

1

5!
= cos(φ∗

1 )

120
=

√
β2 − 1

120β
.

Because sin(φ∗
2 ) = sin(φ∗

1 + π ) = − sin(φ∗
1 ) and cos(φ∗

2 ) =
cos(φ∗

1 + π ) = − cos(φ∗
1 ), we get the former parts of

Eq. (C22) by changing the signs of the corresponding parts
of Eq. (C21). In the case of Eq. (C23), we obtain

d2 sin(x)

dx2

∣∣∣∣
x=π

1

2!
(−2v)2 = − sin(π )

2
4v2 = 0,

d3 sin(x)

dx3

∣∣∣∣
x=π

1

3!
(−2v)3 = −cos(π )

6
(−8v3) = −8

6
v3,

d4 sin(x)

dx4

∣∣∣∣
x=π

1

4!
(−2v)4 = sin(π )

24
(16v4) = 0,

d5 sin(x)

dx5

∣∣∣∣
x=π

1

5!
(−2v)5 = cos(π )

120
(−32v5) = 32

120
v5.

By substituting these coefficients into Eq. (C24), we obtain the
coefficients ak . As for v2, the corresponding part of Eq. (C24)
is given by

[(K −
√

β2 − 1)v]2a2v −
[
−

√
β2 − 1a2v

2

− β(1 − q )

(
−4q2v2

2β

)
+ βq

4(1 − q )2v2

2β

]
= 0.

(C25)

The coefficient of v2 is given by

2(K−
√

β2 − 1)a2+
√

β2−1a2−2(1 − q )q2−2q(1 − q )2.

(C26)

This coefficient must be zero, and thus, the first coefficient a2

is obtained as follows:

a2 = 2q(1 − q )

2K −
√

β2 − 1
. (C27)

Other coefficients of a3 and a4 are obtained in a similar way
as follows:

a3 = 0, (C28)

a4 = − −28K2 + 8K
√

β2 − 1 + 3β2 + 6

24(2K −
√

β2 − 1)2(4K − 3
√

β2 − 1)
. (C29)

We note that q = 1/2 is assumed for this derivation. There-
fore, from Eq. (C16), we can derive the dynamics on the center
manifold as follows:

v̇ = BKv + hv

(∑
k�2

akv
k, v

)
. (C30)

Finally, we check how the bifurcation types depend on the
parameters. Because the second term of Eq. (C30) is a poly-
nomial expression of v, we express the equation as follows:

v̇ = BKv +
∑
k�2

Ckv
k. (C31)
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We can determine Ck by substituting the obtained coefficients
ak into Eq. (C30). The first coefficient C2 is given by

C2 = 2q − 1. (C32)

If q �= 1/2, this indicates that the dynamics on the center
manifold can be approximated as follows:

v̇ = (K −
√

β2 − 1)v + (2q − 1)v2, (C33)

because the magnitude of v is relatively small. This equation
corresponds to the normal form of a transcritical bifurcation,
ẋ = μx ± x2, as discussed in Sec. IV B. For q = 1/2, the
coefficient C2 is equal to zero. In this case, we need to
investigate higher order terms. Thus, the equation is rewritten
as follows:

v̇ = (K −
√

β2 − 1)v + C3v
3, (C34)

where

C3 = 3 + (−4K +
√

β2 − 1)(2K −
√

β2 − 1)

6(2K −
√

β2 − 1)
.

At the critical point K∗ =
√

β2 − 1, the coefficient C3 is
rewritten as follows:

C3 = 2 − β2

2
√

β2 − 1
.

When C3 �= 0 (β �= √
2), Eq. (C34) indicates the pitchfork bi-

furcation at K =
√

β2 − 1, supercritical pitchfork bifurcation
for C3 < 0 (β >

√
2) and subcritical pitchfork bifurcation for

C3 > 0 (β <
√

2). Especially when q = 1/2 and β = √
2,

both the coefficients C2 and C3 are equal to zero. In this case,
we need to investigate much higher order terms. Thus, the
equation is rewritten again as

v̇ = (K −
√

β2 − 1)v + C5v
5, (C35)

where

C5 = 1

120(2K−
√

β2 − 1)2(4K − 3
√

β2 − 1)
[−15(β2 + 2)

+ 15(2K −
√

β2 − 1)(2K + 5
√

β2 − 1)

+ (16K −
√

β2 − 1)(2K −
√

β2 − 1)2(4K

− 3
√

β2 − 1)].

Note that C4 = 0. Because we now consider the case of
β = √

2, C5 can be rewritten as follows:

C5 = β4 + 4β2 − 8

8(β2 − 1)
√

β2 − 1
= 4 + 4 × 2 − 8

8(2 − 1)
√

2 − 1
= 1

2
. (C36)

Therefore, the system shows a 5th-order pitchfork bifurcation
at K = K∗. As discussed in this appendix, we can determine
the bifurcation types based on the center manifold theory.
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