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Using reservoir computers to distinguish chaotic signals
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Several recent papers have shown that reservoir computers are useful for analyzing and predicting dynamical
systems. Reservoir computers have also been shown to be useful for various classification problems. In this work,
a reservoir computer is used to identify one out of the 19 different Sprott systems. An advantage of reservoir
computers for this problem is that no embedding is necessary. Some guidance on choosing the reservoir computer
parameters is given. The dependance on number of points, number of reservoir nodes, and noise in identifying
the Sprott systems is explored.
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I. INTRODUCTION

Describing chaotic signals is difficult because of their
complex nature. If an experiment produces a chaotic signal,
some way to describe the signal is necessary to detect changes
in the experiment. There have been a number of methods
published for comparing or identifying chaotic signals [1–8],
but most of these methods require embedding the signal in
a phase space, which requires knowledge of the embedding
dimension and delay. Phase space embeddings are also sen-
sitive to noise, as individual points are displaced by noise in
multiple dimensions, so interpoint distances are not accurate.
There are other methods for characterizing attractors, such as
fractal dimension, Lyapunov exponents, and linking numbers
[9]. These methods are commonly used because in theory they
are invariant under orientation preserving diffeomorphisms,
so that a change in the embedded variable or the embedding
method should not change the measurement. In practice,
there are well known problems when applying these standard
methods to real data; see, for example, [10].

There has been quite a bit of recent work on using
reservoir computers to model and predict chaotic systems
[11–15] so it is known that reservoir computers are useful
for analyzing chaotic signals. A reservoir computer is sim-
ply a high-dimensional dynamical system that is driven by
a signal to be analyzed. Usually the dynamical system is
created by connecting a set of nonlinear nodes in a network
so that the entire dynamical system has a stable fixed point.
The dynamical system then responds to the input signal of
interest, acting as a nonlinear filter. Training of the reservoir
computer comes about by forming a linear combination of
many signals from the dynamical system to fit a training
signal; for example, in [14], the dynamical system is driven by
the Lorenz x signal, and a set of signals from the dynamical
system is fitted to the Lorenz z signal. The fit coefficients are
saved. In computational mode, the same dynamical system
is then driven by a Lorenz x signal with different initial
conditions. Using the previously fitted coefficients to make a
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linear combination of signals from the dynamical system, the
z signal corresponding to the particular x signal is reproduced.

The reservoir computer does introduce additional com-
plexity in that the dynamical system typically contains from
100 to 1000 nodes. Long term research focuses on imple-
menting reservoir computers as analog systems [15,16], cre-
ating an advantage in terms of computational speed. Another
complication in applying reservoir computers is that there
is no complete theory of how reservoir computers operate,
so choosing parameters for a reservoir computer to solve
a particular problem proceeds by trial and error. There has
been some work towards a theory of reservoir computing
[11,17–19], with some emphasis on the concept of generalized
synchronization.

In this paper, I begin by describing a reservoir computer
and how to train the computer. I then choose particular pa-
rameters for the reservoir computer using signals from the
Sprott B chaotic system [20]. Next I describe how to create
a coefficient vector that is characteristic of a particular Sprott
system, and I show how to use these coefficient vectors
to determine from which Sprott system a particular signal
originated, and I characterize the error performance of this
signal identification.

II. RESERVOIR COMPUTING

Reservoir computing is a branch of machine learning
[16,21,22]. A reservoir computer consists of a set of nonlinear
nodes connected in a network. The set of nodes is driven by
an input signal, and the response of each node is recorded as a
time series. A linear combination of the node response signals
is then used to fit a training signal. Unlike other types of neural
networks, the network connecting the nonlinear nodes does
not vary; only the coefficients used to fit the training signal
vary.

The reservoir computer used in this work is described by

dR
dt

= λ[αR + βR2 + γ R3 + AR + Ws(t )]. (1)

R is vector of node variables, A is a sparse matrix indicating
how the nodes are connected to each other, and W is a vector

2470-0045/2018/98(5)/052209(7) 052209-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052209&domain=pdf&date_stamp=2018-11-08
https://doi.org/10.1103/PhysRevE.98.052209


T. L. CARROLL PHYSICAL REVIEW E 98, 052209 (2018)

FIG. 1. Block diagram of a reservoir computer. The input signal
s(t ) drives a fixed network of dynamical nodes. The time varying
signal from the nodes is fitted to the training signal g(t ) by a least
squares fit.

that describes how the input signal s(t ) is coupled to each
node. The constant λ is a time constant, and there are M

nodes. For all the simulations described here, α, β, and γ are
set to make the network stable; that is, the network has a stable
fixed point with a large basin of attraction.

The particular reservoir computer used here is arbitrary,
and other types of nodes can also be used. The main require-
ments for a reservoir computer are that the nodes are nonlinear
and that the network of nodes has a stable fixed point, so that
in the absence of an input signal the network does not oscillate
[22].

Figure 1 is a block diagram of a reservoir computer.
To train the reservoir computer, an input signal s(t ) and a

training signal g(t ) were chosen and Eq. (1) was numerically
integrated. The first part of the response of the reservoir com-
puter was discarded as a transient, and the next N time series
points ri (t ), i = 1, . . . ,M , from each node were combined in
an N × (M + 1) matrix,

� =

⎡
⎢⎢⎢⎢⎣

r1(1) r1(2) . . . r1(N )

...

rM (1) rM (2) . . . rM (N )

1 1 . . . 1

⎤
⎥⎥⎥⎥⎦. (2)

The last row of � was set to 1 to account for any constant
offset in the fit. The training signal is fitted by

g(t ) =
M∑

j=1

cj rj (t ) (3)

or

g(t ) = �C, (4)

where g(t ) = [g(1), g(2), . . . , g(N )] is the training signal.
The matrix � is decomposed by a singular value decompo-

sition

� = USVT , (5)

where U is N × (M + 1), S is N × (M + 1) with non-
negative real numbers on the diagonal and zeros elsewhere,
and V is (M + 1) × (M + 1).

The pseudoinverse of � is constructed as

�inv = VS
′
U, (6)

where S
′

is an (M + 1) × (M + 1) diagonal matrix, where
the diagonal element S

′
i,i = Si,i/(S2

i,i + δ2), where δ = 1 ×

10−5 is a small number used for ridge regression to prevent
overfitting.

The fit coefficient vector is then found by

C = �invg(t ). (7)

The coefficient vector C will be used as a feature vector to
identify individual signals. The difference between signals i

and j is computed as

�ij =
M+1∑
k=1

√
C2

i (k) − C2
j (k), (8)

where Ci
2(k) is the kth component of the coefficient vector

for signal i.
The training error ET may be computed from

ET = ‖�C − g(t )‖
‖g(t )‖ . (9)

The training error is used as a measure of how well the training
signal g(t ) may be reconstructed from the input signal s(t ) =
[s(1), s(2), . . . , s(N )].

Classification

The coefficient vector C can be used to classify signals.
For each class of signal, a driving signal and a training signal
are chosen; for example, one may drive the reservoir with a
Lorenz x signal and train on a Lorenz z signal. The combina-
tion of the fixed reservoir network and the coefficient vector
C(Lorenz1) found by training on the z signal form a classifier
for the Lorenz system. One may then form a classifier for the
Rossler system by driving the same network with a Rossler
x signal and training on a Rossler z signal. Note that the
reservoir network never changes. A new coefficient vector
C(Rossler2) is found by training on the Rossler z signal.

If a Lorenz system with the same parameters is started
with different initial conditions, the same reservoir network
may be driven with the new Lorenz x signal and trained on
the new Lorenz z signal to yield a new coefficient vector
C(Lorenz2). The new Lorenz signal may be classified by
computing �ij [Eq. (8)] where i indicates C(Lorenz2) and
j indicates C(Lorenz1) or C(Rossler1). The smaller value of
�ij will be found when taking the difference between the two
coefficient vectors for the Lorenz system.

III. SPROTT SYSTEMS

Sprott [20] found a family of 19 different chaotic sys-
tems defined by 3-dimensional ODEs with 1 or 2 quadratic
nonlinearities. Sprott was looking for simple chaotic systems
for both theoretical and practical reasons, as different chaotic
systems were needed for testing potential applications of
chaos. Sprott considered three-dimensional ordinary differ-
ential equations with quadratic nonlinearities. He limited the
nonzero coefficients to a total of 6 to make the search feasible,
and searched this 6-dimensional space for solutions with a
positive Lyapunov exponent. This search yielded 19 distinct
chaotic systems, which he labeled A through S. This group of
chaotic systems is a useful test set for our signal comparison
methods.
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FIG. 2. Embedded time series signal for the Sprott B attractor
with an embedding delay of 2.

Each set of ODEs for the Sprott systems was integrated
using a fourth order Runge-Kutta integrator with a time step
of 0.01. The integrator output was decimated by keeping every
50th point to produce a time series.

As an example, the Sprott B system was described by the
differential equations

dx

dt
= yz,

dy

dt
= x − y,

dz

dt
= 1 − xy. (10)

.
Figure 2 is a plot of the embedded attractor for the Sprott

B system.
Figure 3 is the autocorrelation of the x(t ) signal from the

Sprott B system. The autocorrelation will be used in setting
the parameters for the reservoir computer.

IV. RESERVOIR COMPUTER PARAMETERS

There is currently no theory for designing a reservoir
computer to solve a particular problem, so parameter choice
for Eq. (1) must proceed by trial and error. The training error
ET from Eq. (9) was used as a metric to judge the accuracy
of the reservoir computer: the smaller ET , the better the
computer. The parameters that produce the smallest ET may
not be the best parameters for calculating the difference �ij

between two signals, but optimizing for �ij requires that we

FIG. 3. Autocorrelation R(x(t ), x(t + τ )) for the x(t ) signal
from the Sprott B system.

FIG. 4. Mean of the training error ET for all of the 19 different
Sprott systems as the time constant λ defined in Eq. (1) is varied. The
input signal s(t ) = x(t ) for all 19 Sprott systems, and the training
signal g(t ) was also equal to x(t ).

know in advance that the two signals are different. We may
not know in advance if the signals are the same or different.

First, the parameters α = −3, β = 1, and γ = −1 in
Eq. (1) were chosen so that the network was stable. The
number of nodes was set at M = 100. Next, the specific net-
work matrix A and input coupling vector W were determined.
The parameters A and W were determined by choosing 100
randomly selected A and W pairs and keeping the pair that
yielded the lowest training error TE .

For the determination of A and W, the input signal s(t ) and
the training signal g(t ) were set to the x(t ) variable from the
Sprott B system. Both s(t ) and g(t ) were normalized to have
a mean of 0 and a standard deviation of 1. The time constant
λ was set to an arbitrary value of 1.

The input signal s(t ) was 6000 points long, and after driv-
ing the reservoir, the first 1000 points from all signals were
discarded as a transient. One hundred random realizations
of A were generated from a uniform random distribution
between ±1. The matrix A was sparse, with 20% of its
elements nonzero, and all nodes had at least one connection
to other nodes. A was normalized so that the largest absolute
value of the real part of its eigenvalues was 0.5. Another 100
random realizations of W were generated from a uniform
random distribution between ±0.5.

The training error [Eq. (9)] was recorded for each random
network configuration and the A and W pair that gave the
lowest training error ET was retained as part of the optimum
parameter set.

Next the value for the time constant λ, which determined
the frequency response of the reservoir, was set. The reservoir
computer responds to a finite band of frequencies, so to make
sure this band of frequencies was optimal for analyzing the
Sprott system signals, the time constant was varied between
0.5 and 10 and the training error was computed with the input
and training signals s(t ) and g(t ) equal to the x(t ) signals for
each of the 19 Sprott systems.

Figure 9 is a plot of the mean of the training error ET for
all 19 different Sprott systems as the time constant λ is varied.

Figure 4 shows that the mean of the training error for all
the Sprott systems is small for λ = 7, so the time constant
for the reservoir computer in Eq. (1) is set to 7. The minima
for each of the individual Sprott systems occurred at roughly
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FIG. 5. Phase shift φ for a single node being driven by a sine
wave, as a function of the node time constant λ. φ has its closest
approach to 0 for λ = 6.6.

the same value of λ, so the minimum of the mean was a
good approximation. If the value of λ at which the minimum
training error occurred was very different for different Sprott
systems, then the signals could probably be distinguished
by their frequency content alone, and no reservoir computer
would be necessary.

Figure 5 shows a possible reason that the minimum training
error occurs at λ = 7. For Fig. 5, a single node was driven by a
sine wave with a period of 20 points, which is the approximate
number of points per cycle for the Sprott systems in this paper.
Figure 5 shows the shift in phase between the node variable
r (t ) and the driving sine wave s(t ). The closest approach to
zero for the phase shift φ between the driving sine wave and
the single node response occurred at λ = 6.6, near the value
of λ = 7 that minimized the training error.

V. SIGNAL IDENTIFICATION

It has been shown that reservoir computers are useful
for signal identification or classification, for speech signals
(for example, [23]), or image recognition [24]. For signal
fitting, the smallest training error will undoubtedly come
when the training signal g(t ) is equal to the input sig-
nal s(t ); such is not the case for the error in identifying
signals.

To identify the Sprott signals, the reservoir computer of
Eq. (1) was driven with the signal x(t ) from each of the
Sprott systems, while the training signal g(t ) was set equal to
x(t + τ ). The reservoir computer of Eq. (1) was numerically
integrated with a fourth order Runge-Kutta integration routine
with a time step of 0.1. The first 1000 time steps were
discarded and the next 5000 time steps from each node were
used to find the fitting coefficients C as in Eq. (7).

For each Sprott system, a time series consisting of 600 000
points of the x(t ) signal was generated and divided into 100
sections of 6000 points each. The reservoir computer node
variables R(t ) were all initialized to an initial value of 0.
For each section, the reservoir computer was driven by the
input signal s(t ) = x(t ) and the first 1000 points of the net-
work response variables ri (t ), i = 1, . . . , M , were dropped to
eliminate the transient. The fitting coefficients for each Sprott
system for each of the 100 sections were found according to
Eqs. (2)–(7).

FIG. 6. Probability of making an error PE in identifying the 19
Sprott systems when the input signal to the reservoir computer s(t ) =
x(t ) and the training signal is g(t ) = x(t + τ ).

For each of the 19 Sprott systems there were therefore 100
sets of coefficients Ci (k), where i = A, B, . . . , S indicates the
particular Sprott system and k = 1, 2, . . . , 100 indicates the
section of the Sprott signal.

The difference between two Sprott systems was defined in
Eq. (8) as �ij . The difference between two sections from two
Sprott systems is

�ij (l1, l2) =
M+1∑
k=1

√
C2

i (l1, k) − C2
j (l2, k), (11)

where l1 = 1, 2, . . . , 100 and l2 = 1, 2, . . . , 100 indicate the
different sections of the Sprott signals, i and j indicate the
different Sprott systems, and k = 1, 2, . . . , M + 1 indicates
the particular component of the coefficient vector.

When comparing the Sprott systems, when sections l1 and
l2 are compared, if the minimum value of �ij (l1, l2) is not
�ii (l1, l2),

min[�ij (l1, l2)] < �ii (l1, l2), j �= i, l1 �= l2, (12)

then an error is recorded. The comparisons are made for all
the coefficient vectors of all the sections of all 19 Sprott sys-
tems, and the probability PE of making an error in correctly
identifying each Sprott system was recorded.

Figure 6 is a plot of the probability PE of making an error
in identifying the Sprott systems as the delay τ in the training
signal g(t ) = x(t + τ ) varies. Figure 6 shows that the smallest
error in identifying the Sprott systems occurs when τ > 0, so
the training signal g(t ) does not match the input signal x(t ).
The minimum error occurs for values of τ between 4 and 7.

The identification error probability is lower when the train-
ing signal g(t ) is delayed from the input signal x(t ) because
the relation between the delayed signal and the nondelayed
signal contains information unique to the particular chaotic
system. Knowing what comes later in time for a particular
signal gives more information than just knowing the signal at
a particular time. To quantify this extra knowledge, the mutual
information between the input signal x(t ) and the training
signal g(t ) was computed.

To compute the mutual information, each signal was trans-
formed into a symbolic time series using the ordinal pattern
method [25]. Each signal was divided into windows of 4
points, and the points within the window were sorted to
establish their order; for example, if the points within a
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FIG. 7. Mean of the mutual information I (0, τ ) between x(t )
and x(t + τ ) for all 19 Sprott systems.

window were 0.1, 0.3, −0.1, 0.2, the ordering would be 2,
4, 1, 3. Each possible ordering of points in x(t ) represented a
symbol σq (0), q = 1, . . . , Ns0, where Ns0 was the number of
possible symbols. Each symbol in the delayed signal x(t + τ )
was σq (τ ), q = 1, . . . , Nsτ . The probabilities p(σq (0)) and
p(σq (τ )) were found for each symbol. The mutual informa-
tion between the signal x(t ) and the delayed version x(t + τ )
was

I (0, τ ) =
Ns0∑

q1=1

Nsτ∑
q2=1

p[σq1(0), σq2(τ )] log10

×
(

p[σq1(0), σq1(τ )]

p[σq1(0)]p[σq2(τ )]

)
. (13)

Figure 7 is a plot of the mean of the mutual information
between the input signal x(t ) and the delayed version x(t + τ )
for all 19 Sprott systems. The mutual information between
x(t ) and x(t + τ ) decreases sharply for τ � 3 and then starts
to level off. The delayed signal x(t + τ ) has new information
not present in x(t ), although the amount of new information
does not increase as rapidly for τ > 3.

The probability of identification error plot in Fig. 6 in-
creases for τ > 7. The Sprott systems produce chaotic sig-
nals, so for long delays, x(t + τ ) will be uncorrelated with
x(t ). As an example, Fig. 3 is a plot of the autocorrelation
R(x(t ), x(t + τ )) for the x(t ) signal from the Sprott B system.
The autocorrelation for the Sprott B system pictured in Fig. 3
first drops below 0 for τ = 4. For the other Sprott systems, the
autocorrelation for the x(t ) signal drops below 0 for delays
ranging from τ = 2 to τ = 6, except for the Sprott C system,
where the autocorrelation does not drop below 0 until τ = 33,
but the autocorrelation for the Sprott C system does have its
first minimum at τ = 5. If the delay τ for the training signal
g(t ) = x(t + τ ) is increased by too much, the training signal
becomes uncorrelated with the input signal and the probability
of identification error will increase.

To find the ideal delay for the training signal g(t ) =
x(t + τ ) for each of the 19 Sprott systems, τi , i =
A, B, . . . , S, was set equal to the delay for which the
autocorrelation for that signal first dropped below 0 or
reached its first minimum. An additional delay τadd was
then added to each τi , so each of the 19 training signals
was gi (t ) = xi (t + τi + τadd ). Figure 8 shows the probability
of identification error PE as a function of the added de-

FIG. 8. Probability of identification error PE as a function of the
added delay τadd for the 19 Sprott systems. The input signal was
si (t ) = xi (t ), while the training signal was gi (t ) = xi (t + τi + τadd ),
where the index i indicated the particular Sprott system. The delay
τi was the delay for which the autocorrelation of the x(t ) signal from
Sprott system i first dropped below 0 or reached its first minimum.

lay for the Sprott systems. The identification error is min-
imized for τadd = 2. It is evident that the optimum delay
for the training signal g(t ) = x(t + τ ) is slightly greater
than the delay for which the first minimum occurs in the
autocorrelation function. Choosing this delay maximizes
the new information provided by the training signal but keeps
the training signal from becoming too uncorrelated with the
input signal. This simple rule is similar to the conventional
wisdom for choosing the delay window in a delay embedding,
that the window length should be equal to the delay at which
the first zero (or first minimum) in the autocorrelation is seen.

To summarize the preceding section: Longer delays mean
that the delayed training signal contains more new informa-
tion (Fig. 7), but this new information is counterbalanced by
the decreasing correlation between input and training signals
(Fig. 3). This is the same trade-off that comes into play when
choosing the delays for delay embedding of a signal.

A. Number of data points

Figure 9 shows the error in identifying the 19 Sprott
systems PE as a function of the total number of points used N .
The total number of points includes the 1000-point transient.
As a comparison, probability of error from the density method
of [6,7] is also plotted. The reservoir computer method re-
quired fewer points to identify the Sprott systems, and it did
not require that the signal be embedded in a phase space.

The error performance of the reservoir computer of Eq. (1)
was also compared to the error performance of a reservoir
computer with a different type of node. The most commonly
used node type in the reservoir computer literature is a
sigmoid nonlinearity, so a reservoir computer described by
Eq. (14) was also simulated:

Ri (n + 1) = α

[
1

1 + e−Ri (n)
+ AR(n) + Ws(t )

]
. (14)

The parameter α = 0.35. The network connection matrix A
and the input coupling vector C were the same as in Eq. (1),
as were the input and training signals. The probability of
error for identifying the 19 Sprott systems using the reservoir
computer with a sigmoid nonlinearity is also plotted in Fig. 9.
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FIG. 9. Probability of error PE as a function of number of points
N in the input time series s(t ) = x(t ) for identifying the Sprott
systems using a reservoir computer as described in Eq. (1), labeled
as “nonlinear equation.” The input signal was s(t ) = x(t ) for each of
the Sprott systems, while the training signal g(t ) = x(t + τ ), where
τ was the delay for the first 0 or first minimum of the autocorrelation
function for each Sprott system plus 2 time steps. The figure also
shows the probability of error for identifying the Sprott systems from
the density method of [6,7], labeled as the “density method” and from
a reservoir computer using a sigmoid node described in Eq. (14)
(“sigmoid”). The number of points N for the reservoir computers
includes the 1000 point transient.

The probability of error when the sigmoid nonlinearity is used
is approximately the same as when the nonlinear equation (1)
is used.

B. Number of nodes

It seems that the number of nodes M in the reservoir
computer should make a difference in the probability of error
in identifying the Sprott systems, and Fig. 10 confirms this
suspicion. Each time the number of nodes M was changed,
optimal values for the connection matrix A and the input
vector W were determined as in Sec. IV. The identification

FIG. 10. Probability of error PE in identifying the 19 Sprott
systems using the reservoir computer of Eq. (1) when the number
of nodes M in the network was varied. The delay τ in the training
signal g(t ) = x(t + τ ) was set to τ = τi + 2, where τi the delay for
which the autocorrelation for Sprott system i first drops below 0 or
has its first minimum.

FIG. 11. Probability of error in identifying the 19 Sprott systems
with added Gaussian white noise. The noise level is the ratio of the
noise standard deviation to the signal standard deviation. The delay
τ in the training signal g(t ) = x(t + τ ) was set to τ = τi + 2, where
τi is the delay for which the autocorrelation for Sprott system i first
drops below 0 or has its first minimum.

error PE as a function of the number of reservoir computer
nodes M is plotted in Fig. 10.

Figure 10 shows that the scatter in the probability of iden-
tification PE is very large as the number of nodes increases.
Most likely this scatter is caused by the fact that the network
connection matrix A is not optimal. As the number of nodes
M increases, the number of elements in A increases as M2,
so the probability of randomly generating an optimum matrix
A from a fixed number of random realizations decreases,
meaning that A is less likely to be optimum as M increases.

C. Added noise

Figure 11 shows the probability of identification error PE

for identifying the 19 Sprott systems as noise is added to the
input signal; s(t ) = x(t ) + η(t ), where η(t ) is Gaussian white
noise. The reservoir computer was described by Eq. (1). The
noise level in Fig. 11 is the ratio of the standard deviation
of the noise signal to the standard deviation of x(t ). For
each of the Sprott systems the delay τ used to determine the
training signal g(t ) = s(t + τ ) was the delay for which the
autocorrelation for that Sprott system first dropped below 0
(or had its first minimum) plus 2 time steps. The noise level
on the training signal g(t ) is the same as the noise level on the
input signal s(t ).

Figure 11 shows that the reservoir computer of Eq. (1) is
robust to moderate amounts of added noise.

VI. SUMMARY

Reservoir computers are useful for identifying chaotic
signals, as the example in this paper shows. Using a reservoir
computer, it was possible to correctly identify signals from the
19 different Sprott systems with a error probability lower than
that in a method that used density to identify chaotic systems
[6,7]. An advantage of the reservoir computer method is that
no embedding is required, so it is not necessary to estimate
dimension or delay.

One drawback to using reservoir computers is that there
is no theory to guide the selection of reservoir computer
parameters. The strategy used in this paper was to choose
input and training signals x(t ) and g(t ) and vary the reservoir
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parameters to minimize the training error TE , Eq. (9). This
approach gives reasonable parameters, but it is not optimum,
since the parameters where the training error is minimized
may not be the parameters that minimize the error in iden-
tifying different systems, PE .

The reservoir computer method does require numerically
integrating a network of M nonlinear systems, and as Fig. 10

shows, larger values of M give lower error probabilities.
Implementing a reservoir computer on a digital computer
is slow, although the different nodes may be integrated
in parallel. The real promise of reservoir computing is
that the nodes may be implemented with analog systems,
in which case speed increases over digital computing are
possible.
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