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Many-body states that are invariant under particle relabeling, the permutation symmetric states, occur naturally
when the system dynamics is described by symmetric processes or collective spin operators. We derive
expressions for the reduced density matrix for arbitrary subsystem decomposition for these states and study
properties of permutation symmetric states and their subsystems when the joint system is picked randomly and
uniformly. Thus defining an appropriate random matrix ensemble, we find the average linear entropy and von
Neumann entropy, which implies that random permutation symmetric states are marginally entangled and as a
consequence the tripartite mutual information (TMI) is typically positive, preventing information from being
shared globally. Applying these results to the quantum kicked top viewed as a multiqubit system, we find that
entanglement, mutual information, and TMI all increase for large subsystems across the Ehrenfest or logarithmic
time and saturate at the random state values if there is global chaos. During this time the out-of-time-order
correlators evolve exponentially, implying scrambling in phase space. We discuss how positive TMI may coexist
with such scrambling.
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I. INTRODUCTION

Classical dynamical systems have a hierarchy of complex-
ity from ergodic to mixing and K systems [1]. Classical
Hamiltonian systems that are nonintegrable are capable of
displaying the highest amount of deterministic randomness,
dubbed chaos. Quantum chaos aims to address and extend
these questions to the quantum domain [2,3]. Seminal works
in this regard include semiclassical methods utilizing classical
unstable periodic orbits [4], energy level fluctuations, and
the use of random matrix theory [5–7] and characteristics
of semiclassical Wigner functions of chaotic eigenfunctions
[8,9]. Study of model systems from two-dimensional billiards
[10,11] to quantum maps [12] was crucial in this development
and brought up phenomena including scarring of eigenfunc-
tions and dynamical localization. Most of these works have a
strong focus on the time-independent Schrödinger’s equation
and the properties of the stationary states of a single particle.

Few- and many-particle quantum chaos has received atten-
tion, largely from a spectral statistics point of view, but also
including dynamics and entanglement generation studies [13–
26]. The connections with topics ranging from thermalization
in closed systems to information scrambling are currently be-
ing vigorously explored [27,28]. Although nuclear physicists
have long developed techniques such as the two-body random
matrix and embedded ensembles [29,30] to deal with the spec-
tral statistics of many-body systems, ironically, the nuclear
many-body physics which motivated the canonical random
matrix ensembles [31] is most relevant for single-particle
chaotic systems. With the advent of controlling, evolving, and
measuring quantum systems, dynamical aspects of few- and
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many-body physics and chaos have taken center stage. Two
recent experiments that preserve the purity of complex time-
evolving states illustrate the richness of this domain [32,33].

Quantum information science has added a new perspec-
tive and a new set of questions to the study of quantum
chaos. Here one is naturally led to consider how the dynam-
ical generation of entanglement, quantum discord, and other
information-theoretic quantities between quantum subsystems
is connected with the chaotic dynamics of coupled classical
degrees of freedom [34–45]. In this regard, the tensor product
structure of quantum mechanics, essential for understanding
systems with multiple degrees of freedom, is crucial [34–
36,43]. Attempts to address these questions have resulted
in a better understanding of quantum phenomena such as
entanglement and decoherence by connecting time-evolved
states under quantum chaotic Hamiltonians to properties of
random states.

Such studies address fundamental issues of complexity in
quantum systems and are potentially applicable in quantum
information processing, where quantum correlations such as
entanglement and quantum discord are considered to be a
crucial resource. More recently, out-of-time-order correlators
(OTOCs), which are linked to how large the commutator of
observables can grow with time, have been studied exten-
sively for their connection with chaos as well as information
scrambling; in particular, their growth until the Ehrenfest time
has been investigated [46–52]. Along similar lines, tripartite
mutual information (TMI) has been associated with delocal-
ization of information, or scrambling [53], and connections
between TMI and OTOCs have been explored in this context
[52]. It is conjectured that black holes are the fastest scram-
blers and therefore, perhaps, the most quantum chaotic of
systems. Some studies argue that negative TMI implies the
scrambling of quantum information [52,53].
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Many-body systems have an intimate connection with
chaos, inasmuch as it arises due to nonintegrability resulting
from having fewer constants of motion than the total number
of degrees of freedom. In the quantum domain, this coupling
also results in quantum correlations between the local sub-
systems. Many quantum systems that are nonintegrable and
display chaos, such as the currently intensely investigated
Sachdev-Ye-Kitaev (SYK) model, do not have apparent clas-
sical limits. However, there are many-body systems whose
collective observables have a classical limit that has a con-
ventional integrability-chaos transition.

In our study we employ one such model where a multiqubit
system is collectively modeled as a kicked top [3,54–56] that
transitions from regular to chaotic behavior with a suitable
choice of parameters. Such Floquet, periodically forced sys-
tems, which have natural realizations in quantum circuits [57],
can give rise to a variety of dynamical features allowing us
to explore connections between the complexity of quantum
chaos, properties of random states, and dynamical generation
of tripartite mutual information, OTOCs, and entanglement.
Like the SYK model, the kicked top, considered as a many-
body system, also involves all-to-all interaction of qubits, but
the crucial difference is that the kicked top is not disordered;
the source of the chaos in the system is from both an external
uniform magnetic field and periodic driving.

The lack of disorder is central for enabling collective
variables and for restricting the dynamics to a subspace that
is permutation symmetric. Thus, in this paper, we consider
in detail an ensemble of pure states that are uniformly se-
lected from the permutation symmetric (N + 1)-dimensional
subspace, that is, random permutation symmetric states of N

qubits. We point out how to formulate the reduced density
matrix for an arbitrary number of qubits in such states. A Q-
qubit reduced density matrix can be written as a [(Q + 1) ×
(Q + 1)]-dimensional matrix rather than a 2Q-dimensional
one and therefore we can scale up to a large number of qubits
easily. More crucially it implies that Q-qubit subsystems have
an entropy, and hence entanglement, that cannot be larger
than ln(Q + 1) and in particular we show that typical states
have an entropy that differs from this by a small number.
Thus the states have an entanglement that is not a volume
law (proportional to Q), but more akin to critical spin chains
[58] which follow a so-called area law [59–63]. Thus there
is qualitatively much less entanglement in random N -qubit
permutation symmetric states than in generic states.

We study the eigenvalue distributions of the reduced den-
sity matrices of random permutation symmetric states and
compare them with the Marchenko-Pastur distribution, which
is valid for generic states [64]. In particular, for arbitrary-
sized subsystems we give analytical results for the average
linear entropy of entanglement and provide estimates for the
mutual information based on linear entropy, as well as for
the von Neumann entropy. While time-evolving states in a
chaotic situation tend to these random states, we also study
dynamical generation of quantum correlations as we evolve
coherent states through repeated applications of the kicked-
top unitary. Studies of the dynamical behavior of correlations
like entanglement as a function of chaos for the kicked top
viewed as a systems of qubits have been undertaken in the past
[41,42,44,65]. However, such studies have largely focused

on single-qubit and two-qubit subsystems of the joint per-
mutationally invariant state under evolution. In contrast, we
consider subsystems containing an arbitrary number of qubits
and study their relevant correlations under chaotic dynamics.

Interestingly, we find that the dynamical behavior of TMI
is very similar to the behavior of bipartite mutual information,
which we refer to as mutual information (MI), and entangle-
ment between the subsystems under consideration. We also
find that, despite chaos in the system, TMI is positive for
most states in the permutation symmetric subspace. Indeed,
by applying Lévy’s lemma to permutation symmetric systems,
we show that most states will have positive TMI when there
is a large number of qubits in the system. This confirms the
previous finding that TMI can be positive or negative for
both integrable and nonintegrable systems [53], where non-
integrable spin chains have been shown to result in positive
TMI for a class of states that are prepared in the all-up state,
which incidentally is obviously permutation symmetric. Thus
it also appreciated that the sign of the TMI is dependent on
the type of states that are evolved.

The positive TMI in the present work is a reflection of the
permutation symmetry of the states and is connected, as we
will show below, to the area-law scaling of the entanglement.
Although the TMI is positive, the OTOCs as defined with
symmetric collective operators can grow exponentially as we
demonstrate. We compare the behavior of TMI with that of
OTOCs to further underline that TMI, sometimes defined
as a metric of scrambling of quantum information, captures
different aspects of quantum dynamics than the OTOCs. An-
other salient feature that comes from the study of permutation
symmetric states is that for large enough subsystems the value
of many correlations, such as the MI, TMI, and entanglement,
saturates to the permutation symmetric random state value
after the Ehrenfest time that scales as ln(N ). Thus, while the
sign of the TMI is not a quantum signature of classical chaos,
the time it takes to saturate could be considered one.

For completeness we define the TMI between three subsys-
tems A, B, and C as

I3(A : B : C) = I2(A : B ) + I2(A : C) − I2(A : BC), (1)

where I2(X : Y ) = H (X) + H (Y ) − H (XY ) = H (X) − H

(X|Y ) is the MI between X and Y , and H (·) is the Shannon
entropy classically and von Neumann entropy quantum me-
chanically. A negative TMI implies that the joint system BC

contains more information about the input system A than the
subsystems B and C individually. This is the classic case of
when the whole is more than the parts. A related interpretation
is that negative TMI implies that the mutual information
is monogamous, while positive TMI implies that the same
information is being shared by other parties. See [53,66,67]
for further elucidations of and insights into this quantity.

In the case of kicked tops, since there is a mapping to
qubits, we can talk about the TMI between the qubits and
find I3(n1, n2, n3), where ni is the number of qubits in three
different nonoverlapping subsystems. Due to permutation
symmetry, it does not matter which qubits belong to the
partitions. For instance, I3(1, 1, 1) is the TMI between any
three qubits. While the TMI is sensitive to the nature of
classical dynamics, chaos does not imply negative TMI due
to permutation symmetry. In contrast, in the absence of this
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symmetry it is easy to see that typical states have negative
TMI [66].

The remainder of this paper is organized as follows. In
Secs. II and III we study the properties of permutation sym-
metric states and their subsystems, and the properties of
random permutation symmetric states including the eigen-
value distributions of the reduced density matrices. Reviewing
the essential ideas, we derive analytic expressions for the
typical entanglement and information-theoretic quantities of
a random state when we are restricted to the permutationally
invariant subspace of the full tensor product space. This is of
relevance here given the symmetry of the system. In Sec. IV
we discuss the dynamical behavior of tripartite mutual infor-
mation and OTOCs and explore the behavior of the ensemble
average of TMI. Our results are discussed and summarized in
Sec. V.

II. PERMUTATION SYMMETRIC STATES

As has been noted in the Introduction, previous studies
of qubit entanglement in the kicked top have been restricted
to one or two qubits at the most. On the other hand, the
most well-studied case of block entanglement concerning
entanglement of a large number of spins (typically one-half)
with others, especially in the context of random permutation
symmetric states, is largely unexplored in this model. Recent
works such as [68] consider the Schmidt decomposition of
various bipartitions of Dicke states but do not deal with
typicality, randomness, and quantum chaos in this context.
Also previous works such as [69–74] have studied the reduced
density matrices of permutationally invariant systems and
their entanglement. Our approach here is to focus on generic
pure permutation symmetric states with a view of defining
an ensemble of them that would be useful in studies of
quantum chaos as in, for example, the kicked top, which we
subsequently analyze in detail.

This presents an opportunity to study random states re-
stricted to permutation symmetric subspaces. While random
states on the whole Hilbert space are well studied essentially
using methods of random matrix theory, ensembles within
such restrictions remain by and large open. Recently, an exper-
iment used three qubits (j = 3/2) to explore the kicked-top
Floquet unitary operator and claimed evidence for thermaliza-
tion in the chaotic regime [32]. Thus a critical examination of
the permutation symmetric subspace may also be warranted
from such viewpoints. As the stationary and time-evolved
states of the kicked top are permutation symmetric states of
2j qubits, we consider in this section properties of such states
that will interest us.

Consider a system of N qubits. If this system has per-
mutation symmetry, then the effective dimension of the sys-
tem is N + 1 instead of 2N , an exponential difference. The
“standard” basis vectors for such a permutation symmetric N -
qubit system is given by N + 1 orthonormal states known as
Dicke states [75]. Say {|i〉 = |binary expansion of i〉| 0 � i �
2N − 1} is the computational basis for the N -qubit system.
The most natural basis for the permutation symmetric case
is then obtained by taking appropriate linear combinations of
the computational basis vectors. The states involved in any
particular (permutation symmetric) basis vector must have the

same number of zeros and ones so that the linear combination
is invariant under an arbitrary permutation of the qubits. These
are given as

|mN 〉 = 1

cN (m)

∑
0 � i � 2N − 1

w(i) = m

|i〉, 0 � m � N, (2)

where w(i) is the Hamming weight of i, which is the number
1 in the binary expansion of i. The normalization constant is

cN (m) =
√(

N

m

)
=

√
N !

m!(N − m)!
. (3)

It can be easily verified that the N + 1 Dicke states are
orthonormal and indeed permutation symmetric. An arbitrary
N -qubit permutation symmetric pure state can be written as

|ψ〉 =
N∑

m=0

am|mN 〉,
N∑

m=0

|am|2 = 1. (4)

All states of the kicked top, eigenstates or time-evolving ones,
viewed as a multiqubit one, are of this form, with N = 2j + 1.

In order to compute the Q-qubit (Q < N) reduced density
matrix we wish to write this state in terms of tensor products
of Dicke states corresponding to the Q-qubit and the (N −
Q)-qubit subsystems. That is, we want a [(Q + 1) × (N −
Q + 1)]-dimensional coefficient matrix A such that

|ψ〉 =
Q∑

m=0

N−Q∑
n=0

Amn|mQ〉|nN−Q〉. (5)

Such an expansion is well defined as the state has to be
permutation symmetric in the first Q block of spins as well
in its complement. It is useful to note that every state of the
form of Eq. (4) can be written as in Eq. (5), but not vice versa.
Thus the matrix elements Amn are correlated in a specific
way, which is also seen as they will involve the ak which
are only N + 1 in number. However, the advantage of writing
|ψ〉 in this way is that the Q-qubit reduced density matrix (in
the standard Q-qubit permutation symmetric basis) is simply
ρQ = AA† as the subblock Dicke states are also orthonormal.

Now the only remaining task is to determine the matrix
elements of A. Observe that |mQ〉|nN−Q〉 will contribute a
sum of N -qubit computational basis states corresponding to
the Dicke state |(m + n)N 〉. It is important to note that these
need not be equal; rather, the computational basis vectors
obtained from the former Dicke states (tensor product) are
contained in the latter Dicke state. By appropriately handling
the normalization factors involved with the Dicke states, we
see that Amn/cQ(m)cN−Q(n) = am+n/cN (m + n) or

Amn = cQ(m)cN−Q(n)

cN (m + n)
am+n. (6)

As an example if N = 4, an arbitrary permutation symmet-
ric pure state is given in the Dicke basis as

|ψ〉 = a0|04〉 + a1|14〉 + a2|24〉 + a3|34〉 + a4|44〉. (7)
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If

A′ =

⎛
⎜⎜⎜⎜⎝

a0 a1/2 a1/2 a2/
√

6

a1/2 a2/
√

6 a2/
√

6 a3/2

a1/2 a2/
√

6 a2/
√

6 a3/2

a2/
√

6 a3/2 a3/2 a4

⎞
⎟⎟⎟⎟⎠, (8)

then

|ψ〉 =
3∑

i,j=0

A′
ij |ij 〉, (9)

where the binary representation of i, j represents the qubit
states. Thus, in the standard basis the reduced density matrix
of two qubits ρ2 is A′A′†. However, as is clear, the rank of
A′ and consequently ρ2 is only 3, and this therefore calls
for a reduction of the matrix to a typically full-rank 3 × 3
matrix. This is essentially the coefficient matrix in the permu-
tation symmetric basis of {|00〉, (|01〉 + |10〉)/

√
2, |11〉} and

is given by

A =

⎛
⎜⎝

a0

√
2a1/2 a2/

√
6√

2a1/2 2a2/
√

6
√

2a3/2

a2/
√

6
√

2a3/2 a4

⎞
⎟⎠. (10)

In general, a Q-qubit reduced density matrix is derived
from a (2Q × 2N−Q)-dimensional coefficient matrix A′

ij =
aw(i)+w(j )/cN (w(i) + w(j )), with 0 � i � 2Q − 1 and 0 �
j � 2N−Q − 1. However, this is largely rank deficient and it
suffices to consider the typically full-rank [(Q + 1) × (N −
Q + 1)]-dimensional array in Eq. (6).

With this, the Q-qubit reduced density matrix, as men-
tioned before, is ρQ = AA†. Note that this matrix is (Q +
1) × (Q + 1) dimensional as we are expanding it in terms
of the Q-qubit permutation symmetric standard basis. The
problem of entanglement of Q qubits is reduced to a linear
problem in the number of qubits rather than the usual expo-
nential one, a consequence of the permutation symmetry. Thus
a two-qubit reduced density matrix is a 3 × 3 one and hence
at most rank-3, and the maximum entropy of such a state is
log2 3, rather than two ebits of a general state of two qubits.
In general, a reduced density matrix of Q qubits can have at
most the entropy of log2(Q + 1) ebits as opposed to Q + 1
ebits. Permutation symmetric states are far less entangled than
generic ones. Note that not all permutation symmetric random
mixed states are of the form considered above. For example,
the two-qubit state

a |00〉〈00| + b (|01〉〈01| + |10〉〈10|) + c |11〉〈11| (11)

is manifestly permutation symmetric but is not a mixture of
Dicke states. Thus the reduced density matrices we study are
a subset of permutation symmetric states, specifically those
that can be derived as reduced states of larger permutation
symmetric pure states. For a more formal treatment of the
reduced density matrix of a permutation symmetric state see
Appendix A.

III. RANDOM PERMUTATION SYMMETRIC STATES AND
AN ENSEMBLE OF RANDOM MATRICES

In order to the study the evolution of permutation symmet-
ric states under chaotic but permutation symmetric evolutions
such as in the kicked top, we have to study the properties
of random permutation symmetric states. For our purposes
it suffices to define an ensemble of permutation symmetric
pure states as random permutation symmetric states if the
coefficients am in Eq. (4) are drawn from the uniform (Haar)
measure on the unit sphere in (N + 1)-dimensional space. In
other words, their joint probability distribution is given by

P ({am}) = N !

πN+1
δ

(
1 −

N∑
m=0

|am|2
)

. (12)

While properties of random states including the participation
ratio, Shannon entropy [3], and extreme value statistics [76]
have been studied previously, we are interested in the proper-
ties of subsystems and hence in reduced density matrices as
in Eq. (6). More precisely, we are interested in the properties
of AQA

†
Q, where AQ is constructed from the N + 1 complex

random numbers am as

(AQ)mn =
√√√√(

Q

m

)(
N−Q

n

)
(

N

m+n

) am+n, ρPS
Q = AQA

†
Q, (13)

with 0 � m � Q and 0 � n � N − Q. The normalization of
am guarantees that Tr(AQA

†
Q) = 1, as required for density

matrices. The generally rectangular matrix AQ has strongly
correlated elements as there are only N -independent (com-
plex) random numbers while there are (Q + 1)(N − Q + 1)
entries. Thus ρPS

Q represents an ensemble of positive random
matrices that is of relevance to the study of random or typical
permutation symmetric (PS) states, modeling their reduced
density matrices of subsystems having Q of the total N qubits.

This ensemble has very different properties than the well-
studied normalized Wishart or trace-constrained ensemble. If
G is an (N1 × N2)-dimensional matrix with complex entries
whose real and imaginary parts are independently normally
(zero centered) distributed, the ensemble

ρW
N1

= GG†

Tr(GG†)
(14)

is a normalized Wishart ensemble [77]. Its eigenvalues are dis-
tributed according to the Marchenko-Pastur law [64]. This is
the ensemble of reduced density matrices of N1-dimensional
subsystems of pure states that are uniformly sampled from the
Hilbert space of dimension N1N2.

It is useful to compare ρPS
Q with two Wishart ensembles

that naturally present themselves. One is relevant to a Q-qubit
subsystem of random N qubit states, so that N1 = 2Q and
N2 = 2N−Q, which we will denote by W, 2Q as the subsystem
dimensionality is 2Q. The other is that of a subsystem of
dimension Q + 1 in a randomly chosen bipartite pure state of
dimension (Q + 1) × (N − Q + 1), that is N1 = Q + 1 and
N2 = N − Q + 1, which we will denote by W,Q + 1.

For Q = N/2, without the combinatorial factors in
Eq. (13), the matrix AQ is a square Hankel matrix, and random
Hankel matrices have been considered before in the literature
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FIG. 1. Histogram of eigenvalues of the Q-qubit reduced density
matrix of an N -qubit permutation symmetric system. The eigen-
values have been obtained from subsystems of 10 000 randomly
generated N -qubit permutation symmetric states. The histogram has
been scaled such that the area under the curve is one, so the y axis is
representative of eigenvalue density.

[78] and the existence of the limiting spectral distribution has
been established, although its explicit form remains unknown.
It seems natural in this context to study the ensemble with
the combinatorial factors that also ensure normalization of
the corresponding density matrix. As we are interested in the
spectrum {λi, 1 � i � Q + 1} of ρPS

Q = AQA
†
Q, we will be

interested in the square of the singular values of AQ.
Figure 1 shows the distribution of the {λi} of the 12-

qubit random permutation symmetric ensemble. Shown are
the eigenvalues for Q = 1, 2, 5, and 6, scaled by a factor
Q + 1, and one can see Q + 1 peaks that are merging into a
smooth distribution. Except for the case Q = N/2, the density
vanishes at the origin. When Q = N/2 the density looks very
close to the Marchenko-Pastur law, which after scaling by the

FIG. 2. Histogram of eigenvalues of the block subsystem for a
permutation symmetric system containing the cases of N = 50, 100
and 200 qubits. The eigenvalues have been obtained from N/2-
qubit subsystems of 2500 randomly generated N -qubit permutation
symmetric states and have been scaled by a factor of N/2 + 1. The
histogram has been scaled such that the area under the curve is one,
so the y axis is representative of eigenvalue density. The Marchenko-
Pastur distribution (black line) has been plotted for comparison. The
rightmost inset shows the logarithm of the density in the tail region,
indicating an exponentially decaying tail.

factor Q + 1 [i.e., x = λ(Q + 1)] is

PMP(x) = 1

2π

√
4 − x

x
. (15)

This can be seen in Fig. 2, which has three different
values of N = 50, 100, and 200 qubits. The eigenvalues have
been obtained from N/2-qubit subsystems of 2500 randomly
generated N -qubit permutation symmetric states and have
been scaled by a factor of N/2 + 1. It can be seen that the
scaling causes all the distributions to collapse onto each other,
indicating the existence of a limiting distribution. This lim-
iting distribution, although similar to the Marchenko-Pastur
one, does differ from it slightly in the bulk. In addition, nu-
merical results indicate that the distribution does not diverge
at the origin and has an exponentially decaying tail unlike the
Marchenko-Pastur distribution that diverges at the origin and
has a finite support in [0, 4].

A. Average purity and linear entropy

The superscript label in ρPS
Q is now dropped for brevity. The

easiest nontrivial quantity that maybe found for the ensemble
is its average purity 〈Trρ2

Q〉PS and hence the average linear

entropy 〈Sl
Q〉PS = 1 − 〈Trρ2

Q〉PS. Here ρQ = AQA
†
Q, where

AQ is from the random ensemble as described in Eqs. (13)
and (12), while 〈·〉PS indicates averaging with respect to this
permutation symmetric ensemble,

〈
Trρ2

Q

〉
PS =

〈
Q+1∑
i=1

λ2
i

〉
PS

=
Q∑

k,j=0

(
Q

k

)(
Q

j

) N−Q∑
m,n=0

(
N − Q

m

)(
N − Q

n

)

× 〈ak+maj+na
∗
k+na

∗
j+m〉√(

N

k+m

)(
N

j+n

)(
N

k+n

)(
N

j+m

) . (16)

052205-5



SESHADRI, MADHOK, AND LAKSHMINARAYAN PHYSICAL REVIEW E 98, 052205 (2018)

If the ai are drawn from the distribution (12) it is easy to see
that 〈|ai |2|aj |2〉 = 1/[(N + 1)(N + 2)] if i �= j and 2/[(N +
1)(N + 2)] if i = j . These are the only nonzero average terms
that are needed to show that

〈ak+maj+na
∗
k+na

∗
j+m〉 = 1

(N + 1)(N + 2)
(δmn + δkj ). (17)

Using this, the average purity becomes

〈
Trρ2

Q

〉
PS = 1

(N + 1)(N + 2)

⎡
⎣∑

k,j,m

(
Q

k

)(
Q

j

)(
N−Q

m

)2

(
N

k+m

)(
N

j+m

)

+
∑
k,m,n

(
Q

k

)2(N−Q

m

)(
N−Q

n

)
(

N

k+m

)(
N

k+n

)
]
. (18)

Seemingly intimidating, the combinatorial sums are in fact
benign: The first is

∑
k,j,m

(
Q

k

)(
Q

j

)(
N−Q

m

)2

(
N

k+m

)(
N

j+m

) = (N + 1)2

(N − Q + 1)
(19)

and the second follows on replacing Q with N − Q. Hence
finally

〈
Trρ2

Q

〉
PS = N + 1

(Q + 1)(N − Q + 1)
,

(20)〈
Sl

Q

〉
PS = Q(N − Q)

(Q + 1)(N − Q + 1)
.

To reiterate, the above is the average Q-qubit purity and lin-
ear entropy of random N -qubit permutation symmetric pure
states. As expected, it is symmetric under the replacement
Q → N − Q.

Comparing with the Wishart ensembles, it is known [79]
that the average purity of an M-dimensional system in an
MN -dimensional random pure state is (M + N )/(1 + MN ).
Using this we get

〈
Sl

Q

〉
W,2Q = (2Q − 1)(2N−Q − 1)

2N + 1
,

〈
Sl

Q

〉
W,Q+1 = Q(N − Q)

1 + (Q + 1)(N − Q + 1)
. (21)

It is understandable that the second ensemble W,Q + 1 is
close in entropy to that of permutation symmetric states. That
it is slightly smaller than that of permutation symmetric states
is consistent with the behavior of the density of eigenvalues.
While the one for the W,Q + 1 ensemble is the Marchenko-
Pastur one that diverges at the origin and is sharply cut off
at x = λ(Q + 1) = 4, the PS ensemble seems to not diverge
at the origin and extends to infinity with an exponentially
decaying tail.

One quantity frequently used in previous studies is Sl
1,

which is the linear entropy of a single qubit [42,44]. In this

case 〈
Sl

1

〉
PS = 1

2

(
1 − 1

N

)
,

〈
Sl

1

〉
W,2Q = 1

2

(
1 − 3

2N + 1

)
, (22)

〈
Sl

1

〉
W,Q+1 = 1

2

(
1 − 3

2N + 1

)
.

Thus, while for both permutation symmetric and asymmetric
random states the average of the linear entropy of single-qubit
density matrix approaches the thermalized value of a most
mixed state (=1/2), the approach is algebraic in the number
of qubits for the permutation symmetric states while it is
exponential for the asymmetric states if it is assumed to be
a Q-qubit subsystem.

For the case of N = 2Q we have, for large N ,

〈
Sl

N/2

〉
PS ≈ 1 − 4

N
,

〈
Sl

N/2

〉
W,2Q ≈ 1 − 2

2N/2
, (23)

again illustrating the algebraic rate of scaling to maximum
entropy as compared to an exponential one for Q qubits. The
case of a (Q + 1)-dimensional subsystem of a random state
(W,Q + 1) has the same leading-order deviation from 1 as
the PS states. At this level for large N and N = 2Q the linear
entropies are indistinguishable. The differences however can
be seen in quantities like the von Neumann entropy, to which
we turn now.

B. Average von Neumann entropy

While the linear entropy is easy to calculate and find the
average of, it is not additive, and in fact the von Neumann
entropy has the special place as the measure of entangle-
ment. In the absence of a joint probability density function
of the eigenvalues of the reduced density matrix or other
features of the ensemble, we resort to numerical methods
for this quantity. One thing that can be definitely said is
that SvN

Q � log2(Q + 1), as the rank of the reduced density
matrix is at most Q + 1. In sharp contrast, for random non-
symmetric states, the von Neumann entropy is bounded by
Q and the average differs from this by at most an order 1
number.

Extensive numerical calculations support the simple
formula

〈
SvN

Q

〉
PS = −

〈
Q+1∑
i=1

λi log2 λi

〉
PS

≈ log2(Q + 1) − α
Q + 1

N − Q + 1
, (24)

where 1 � Q � N/2, 1 
 N , and α ≈ 2/3 is a constant. The
leading-order correction to this seems to be 1/(N + 1) for the
case of Q = N/2, and Fig. 3 gives the numerical evidence
supporting this claim. The numerically computed average
von Neumann entropy and the approximate formula given in
Eq. (24) for a Q-qubit subsystem of an N -qubit permutation
symmetric system match quite well.

It is of interest to see how close the entropy for permutation
symmetric states is to that of random states in a [(Q + 1) ×
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FIG. 3. Comparison between numerically computed average von
Neumann entropy and the approximate formula given in Eq. (24)
[along with 1/(N + 1) correction] for a Q-qubit subsystem of an
N -qubit permutation symmetric system. It can be seen that the
approximate formula (green line) matches reasonably well with
the numerically computed average (blue line), in contrast with the
approximation (25) obtained from Page formula (red line). The
numerical values have been obtained by averaging over 10 000
random permutation symmetric states.

(N − Q + 1)]-dimensional space, namely, the W,Q + 1 en-
semble. Using the large-N approximation again with N = 2Q

yields, using a formula conjectured by Page [80] and proved
thereafter [81–83],

〈
SvN

Q

〉
W,Q+1 ≈ log2(Q + 1) − 1

2 ln 2
≈ log2(Q + 1) − 0.721.

(25)

A comparison with Eq. (24) implies that 〈SvN
Q 〉W,Q+1 is

marginally smaller than for the random permutation symmet-
ric case, whose average is ≈0.66 smaller than the maximum
entanglement. This is shown in Fig. 3 as the systematic lower
entropy for the W,Q + 1 case, which is consistent with the
lower linear entropy.

In contrast for random states of N qubits without any
symmetry, the W, 2Q case,

〈
SvN

Q

〉
W,2Q ≈ Q − 1

ln 2

2Q

2N−Q+1
. (26)

Thus permutation symmetric states have marginal entangle-
ment that scales with system size in a logarithmic manner.
This has been known for some time using different approaches
and in Dicke states [61], but in the context of random states
this has not been studied before. It is interesting to note that
the asymmetric random states follow a volume law while
permutation symmetric states are marginal and increase log-
arithmically with the subsystem size, similar to critical spin
chains and integrable conformal field theories [58–63], and
subsequently this affects the behavior of mutual information
[84]. This has implications for the sign of the tripartite mutual
information as we now discuss.

C. Tripartite mutual information

With the above, it is possible to estimate the behavior of
TMI in random permutation symmetric states as well as the
Wishart ensemble of 2N qubits. Using the definition of the

FIG. 4. The TMI (vN ) between one-qubit, two-qubit, and two-
qubit subsystems of a 12-qubit system. The blue points show the
TMI for different realizations of asymmetric random states, and it
can be seen that the average obtained from Page formula (blue line)
matches with the numerical average. The green triangles, on the other
hand, show TMI for different realizations of random PS states, and
the average TMI obtained from Eq. (24) is moderately close to the
numerical average.

TMI in Eq. (1) it follows that

〈I3(Q,Q,Q)〉PS ≈ 3 log2(Q + 1) − 3 log2(2Q + 1)

+ log2(3Q + 1)

= log2

[
(3Q + 1)(Q + 1)3

(2Q + 1)3

]
> 0, (27)

where we have simply used SA ≈ log2(Q + 1) and ignored
corrections. This is sufficient to show that the TMI average
value for random permutation symmetric states is positive.
The above will be a good approximation only for large Q

and N .
For the case of the ensemble of all random states on

the full 2N -dimensional space, using the leading-order term
in Eq. (26) gives, for the TMI, 3Q − 6Q + 3Q = 0 and
therefore it is necessary to use the deviation from maximally
entangled states in that formula and this yields

〈I3(Q,Q,Q)〉W,2Q ≈ −22Q−N−1

ln 2
(24Q − 3 × 22Q + 3).

(28)

This is negative as x2 − 3x + 3 � 3/4. This is again valid
for large Q and N . Therefore, typical states not only are
entangled but they also have negative TMI, implying that
information is distributed in multipartite ways. In contrast
for permutation symmetric states, the entanglement is small,
being only logarithmic in the number of qubits and hence the
TMI is typically positive and the information is stored more in
bipartite partitions and is not spread out. We can observe this
numerically in Fig. 4, where we compute TMI for subsystems
of random states with and without permutation symmetry.

Often it is easier for calculations to use the linear entropy
and hence we define, even if a little dubious, linear entropic
TMI by using for H (·) in Eq. (1) the linear entropies. Hence,
using Eq. (20), we can get the exact average linear entropic
TMI, for example,

〈
I l

3(1, 1, 1)
〉
PS = (N − 3)(N2 − N + 4)

4(N − 2)N (N − 1)
≈ 1

4
− 1

4N
(29)

052205-7



SESHADRI, MADHOK, AND LAKSHMINARAYAN PHYSICAL REVIEW E 98, 052205 (2018)

and

〈
I l

3(m,m,m)
〉
PS ≈ 6m3

(m + 1)(2m + 1)(3m + 1)
. (30)

These demonstrate again that the TMI of permutation sym-
metric states, now with the linear entropy, is also positive on
average. However, this is not quite useful as it is easy to check
that it is also positive for random states that are not symmetric,
that is, when the reduced density matrix is from the Wishart
ensemble. Additivity of the entropy is an important property
and as the linear entropy is not additive, it does not distinguish
the ensembles. We have verified, for example, that the Rényi
entropy, which is additive at any order, does in fact have the
capability.

In the preceding discussion, we noted that a positive value
for average TMI is observed for the PS ensemble. This state-
ment can in fact be extended to cover individual (random)
states by the use of Lévy’s lemma. In Appendix B we show
how to apply Lévy’s lemma to permutation symmetric sys-
tems so that the average of the quantities we are interested in
is taken only over random PS states and not asymmetric states.
Using this, we can easily see that for a large number of qubits
in the total system, the TMI (based on either von Neumann or
linear entropy) for most random PS states is nearly equal to
the average TMI. Thus, if the average TMI is positive, we can
expect most states to have positive TMI as well, given that we
are working in large enough dimensions.

Now, from Eq. (1) we can see that positive TMI implies
that I2(A : B ) + I2(A : C) > I2(A : BC), which would mean
that the (bipartite) mutual information is not monogamous.
Monogamy of an information measure refers to the ability
of a party to share correlations, as defined by this measure,
with other parties. Our results therefore suggest connections
between mutual information in permutation symmetric sys-
tems and monogamy. More precisely, if we start with a
pure permutation symmetric state |ψABCD〉 corresponding to
some partition ABCD, the mutual information that A shares
individually with the subsystems B and C is greater than what
it shares with the joint system BC. Thus, the subsystems
can share correlations with other parties. Since the mutual
information is a measure of total correlations, the correlations
that can be shared may be either classical or quantum.

IV. MUTUAL INFORMATION AND ENTANGLEMENT IN
THE KICKED TOP

We now turn to the details of the kicked-top propagator,
evolve states using it, and explore how in the chaotic regime
the random state values of the preceding section hold. In
the process we study the short-time evolution and growth
of several interesting measures, the mutual information, the
tripartite mutual information, the entanglement, and the out-
of-time-ordered correlator.

A. The kicked top as a many-body spin model

The kicked top consists of a single large rotor whose
quantum evolution over one time period τ of the kicking is

given by the propagator [3]

U = exp

(
−i

k

2j
J 2

z

)
exp(−ipJy ). (31)

Since [ J2, Ji] = 0, we are restricted to a (2j + 1)-
dimensional Hilbert space and we can use the standard an-
gular momentum bases {|j,m〉| − j � m � j}, which are the
simultaneous eigenstates of J2 and Jz. Here k and p are
parameters. The classical map [3,54–56] is from the surface
of the sphere (J 2

x + J 2
y + J 2

z )/j 2 = 1 into itself. It can have
regular as well as chaotic dynamics, and this behavior is
controlled by k. We use p = π/2 below, for which k = 0 is
integrable, being simply a rotation about the y axis, while
around k = 3 the phase space is a mixed one, with a measure
of chaotic and regular trajectories, while for k = 6 it is almost
fully chaotic.

The mapping between the kicked-top model and the dy-
namics of qubits allows us to study the kicked top as a
many-body system [32,42,44,65]. Since J2 is conserved, the
state of the system can by mapped to a 2j -qubit (or, equiv-
alently, spin- 1

2 ) system, with the additional constraint that
the qubits are always permutation symmetric. The existence
of such a mapping can be understood from the fact that
permutation symmetry effectively reduces the dimension of
the 2j -qubit system from 22j to 2j + 1 and thus a linear
isomorphism exists from the angular momentum j system
to the permutation symmetric 2j -qubit system. The “natural”
basis states for the permutation symmetric 2j -qubit system
are therefore the Dicke states. To be explicit, replacing J x,y,z

with
∑2j

l=1 σx,y,z/2, the unitary or Floquet operator of the
resultant 2j spin system is

U = exp

⎛
⎝−i

k

8j

2j∑
l �=l′=1

σ z
l σ z

l′

⎞
⎠ exp

(
−i

π

4

2j∑
l=1

σ
y

l

)
, (32)

where the σ
x,y,z

l are the standard Pauli matrices and an overall
phase is neglected.

Thus the spin model can be regarded as a kicked long-range
transverse field Ising model which has identical interactions
between all pairs of spins. While the nearest-neighbor trans-
verse field Ising model, kicked or otherwise, is integrable (see,
for example, [85]), the long-range model can be nonintegrable
in the thermodynamic limit, which is also the classical limit
j → ∞. Floquet models of many-body spin systems are being
actively explored in the literature from many perspectives
including many-body localization. Thus the kicked top in this
many-body avatar presents an opportunity to study entan-
glement sharing and other typical questions that have been
addressed thus far using many other spin models [86], besides
giving us a simple, if potentially chaotic, thermodynamic
limit.

If the state vector of the system after n kicks is |ψn〉, the
state after the (n + 1)th kick is given by |ψn+1〉 = U |ψn〉.
In order to study the quantum-classical correspondence, one
typically takes spin coherent states [87,88] as initial states.
These states are parametrized by θ and φ and are minimum-
uncertainty states and therefore closest analogs to points on
the classical phase space, aiding a quantum-classical com-
parison. Noting that |j, j 〉 has minimum J2 uncertainty (the
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variance of J2 goes as j ), the rest of the minimum-uncertainty
states are generated by rotating this state using R(θ, φ) =
exp{iθ [Jx sin(φ) − Jy cos(φ)]}, i.e., |θ, φ〉 = R(θ, φ)|j, j 〉.
As a state of qubits this is simply the tensor product of
qubit states whose Bloch sphere position is uniformly (θ, φ):
|θ, φ〉 = ⊗2j [cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉].

Starting from such an initial spin coherent state, the time-
evolved state Un|θ, φ〉 resides in the permutationally invariant
subspace of the complete Hilbert space of the 2j qubits. If
the classical kicked top is in a completely chaotic regime, the
quantum one generates pseudorandom states for sufficiently
large time n [3]. Viewed as a multiqubit state, it is in the
permutation symmetric subspace and therefore we can expect
in this case that the results of the preceding section on random
permutation symmetric states hold.

There are two aspects of studying the behavior of TMI
and bipartite correlations such as the mutual information and
entanglement in permutation symmetric states like the ones
generated when the dynamics is governed by the kicked-top
Hamiltonian. One is the investigation of their temporal behav-
ior that governs their growth and the other is exploring long-
time averages or saturation values that would correspond to
ensemble averages such as those calculated from the random
permutation symmetric states.

B. Growth of information measures and entanglement

It is of particular interest to probe the dynamical behavior
of these correlations as a function of the initial coherent state
localized in the regular or chaotic regions of the kicked-
top phase space. Unlike initial states localized in regular
regions, the long-time evolution of the state under global
chaos can be expected to thermalize or equilibrate and this
leads us to the study of ensemble averages. Earlier works
left the study of the dynamics of these quantum correlations
across arbitrary subsystem decompositions unexplored and
have largely focused on subsystems consisting of a single or at
most two qubits of a multiqubit kicked top [42,44]. Moreover,
the dynamical behavior of quantities like entanglement and
discord were compared rather qualitatively in the chaotic and
regular regimes. We find that the Ehrenfest time plays a crucial
role for saturation of many of the measures.

In accordance with this idea, we plot the behavior of TMI
with time in the kicked top in regular, mixed, and chaotic
regimes (see Fig. 5). One would notice right away that the
extent of regularity of the classical dynamics bears its sig-
natures on the TMI. Regular dynamics leads to oscillatory
TMI with large time variations and large values. In particular,
I3(1, 1, 1) is shown for an initial coherent state in a 20-qubit
system. When k = 1 the dynamics is regular and we see
large positive values of the TMI, indicating that information
is shared more in a bipartite manner than collectively. When
k = 3 the dynamics is that of a mixed phase space and starting
from a regular region leads to large oscillations of the TMI
that seems to be damping over very long timescales. At the
same value of k, starting from an initial state localized in
a region in which the classical limit is chaotic leads to a
rapid growth and saturation of the TMI with small oscillations
around 0.234. Comparing this to the corresponding average
TMI (vN) for random permutation symmetric states, which

FIG. 5. The TMI, MI, and entanglement (computed using von
Neumann entropy) between three one-qubit subsystems for j = 10
(i.e., a 20-qubit system) in the kicked top. The TMI has been obtained
in (a) the regular region with k = 1 and φ = 0.63, (b) a point in the
regular island of the mixed phase space for k = 3 and φ = 0.63, (c)
a point in the chaotic sea of the mixed phase space for k = 3 and
φ = 2, and (d) the globally chaotic region with k = 6 and φ = 0.63
(in each case, p = π/2 and θ = 2.25). It can be seen that the TMI
reflects the regular nature of the underlying classical dynamics.

is approximately equal to 0.245, corroborates our expectation
that chaos in the kicked top thermalizes the initially coherent
state, making it similar to a random PS state.

A similar situation arises when k = 6 when the classical
map is essentially globally chaotic, only the rise is even faster
and the fluctuations are smaller. It is this growth rate in a
regime of global chaos that is examined further. Figure 6
compares the growth of TMI with that of mutual information
and entanglement computed using von Neumann entropy as
well as linear entropy for j = 750 (i.e., a 1500-qubit system),
with each of the subsystems containing 100 qubits each. To
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FIG. 6. The TMI, MI, and entanglement between three 100-qubit
subsystems for j = 750 (i.e., a 1500-qubit system) in the kicked top
using (a) von Neumann entropy and (b) linear entropy. It can be seen
that the bipartite mutual information and entanglement qualitatively
behave like the TMI.

put the growth of TMI seen in this figure in perspective, we
estimate the Ehrenfest time which is given as

tEhrf ∼ ln
(
h−1

eff

)
/λcl = ln(2j + 1)/λcl, (33)

where the effective Planck constant heff goes as an inverse
dimension and λcl is the classical Lyapunov exponent of the
underlying system.

The Lyapunov exponent for the classical kicked-top map
for k = 6 is approximately 0.97, and for j = 750, we get
an Ehrenfest time of approximately 7.54 time steps. It is
evident from Fig. 6 that the mutual information and TMI
grow over the Ehrenfest time. We also see that the behavior
of the bipartite mutual information I2(A : B ) and I2(A : BC),
entanglement, and the TMI are qualitatively alike. While we
have shown this for subsystems containing equal numbers of
qubits, this seems to be true even otherwise.

This implies, therefore, that the information between the
subsystems A and B (or between A and the joint subsystem
BC) is similar to the information shared jointly by A, B,
and C. Also, the entanglement grows in the same way. One
possible reason for such a behavior could be that the total
state of the kicked top grows during the Ehrenfest time due
to the effect of underlying classical dynamics and this total
state is what is mapped to a PS system of qubits. This
growth therefore is reflected in the reduced density matrices
obtained from this PS state and the measures computed from
these. For such time-varying scenarios in PS systems, one
therefore needs to reevaluate the significance of the TMI, as
the information provided by TMI is also given by mutual
information or even entanglement.

The TMI is defined with the entropies being additive von
Neumann entropy. It appears that the TMI (or mutual informa-
tion) approaches the saturation value with an exponential rate.

FIG. 7. (a) Plot of F (n), C2(n), and C4(n) for j = 750, k = 6,
and p = π/2. The OTOC value has been divided by j 4 to normalize
(or, equivalently, the operators are normalized by j ). (b) Semiloga-
rithmic plot of the OTOC for j = 750, 1000, 1500, 2000 and k = 6.

We note this by plotting the log2 behavior of the TMI with the
saturation value subtracted (not shown here). However, a more
careful analysis is required for ascertaining the behavior of
TMI during the growth and for quantifying the corresponding
growth rates.

C. Out-of-time-ordered correlators

The scrambling of localized information in many-body
systems is being studied and out-of-time-ordered correlators
are used to characterize these [48,51,52,89]. It is convenient to
define these via the growth of commutators. As we wish to re-
main in the permutation symmetric subspace, the operators we
choose are also permutation invariant and not local. However,
it is interesting to study this as it is a simple model of quantum
chaos with a well-understood classical limit. For example, this
was studied in the kicked rotor in [90] and there also has been
a proposal to investigate scrambling experimentally using the
kicked top [91].

While postponing a detailed discussion to future work, we
wish to contrast and compare this growth with that of the
measures discussed above. Define

F (n) = −Tr[Jx (0), Jx (n)]2 = 2[C2(n) − C4(n)],

C2(n) = Tr
[
J 2

x (n)J 2
x (0)

]
, (34)

C4(n) = Tr[Jx (n)Jx (0)Jx (n)Jx (0)],

where Jx (n) = U−nJx (0)Un, C2(n) is a two-point correlator,
and C4(n) is the four-point OTOC whose decrease with time
essentially contributes to the growth of the commutator. The
C2(n) behavior is one of fast relaxation within a diffusion time
[51]. In Fig. 7 we plot these three quantities (usual plot and
semilogarithmic plot) for j = 750, k = 6, and p = π/2 and

052205-10



TRIPARTITE MUTUAL INFORMATION, ENTANGLEMENT, … PHYSICAL REVIEW E 98, 052205 (2018)

see exponential growth in F (t ). It is interesting that there are
oscillations in C2(n) and C4(n) initially that compensate and
lead to an exponential increase in the commutator.

The rate of growth of F (t ) seems to be slightly higher
(≈2.5) than the estimate from simply replacing the commuta-
tor by classical Poisson brackets and estimating their growth
rate at twice the Lyapunov exponent (≈1.94). On comparing
with the other measures such as entanglement of a block of
qubits or TMI, in Fig. 6 we see that the Ehrenfest time is
the logarithmic time during which the commutator increases
exponentially and then saturates rather quickly.

Thus, while there is an exponential growth of the commu-
tators and hence scrambling, it seems to be at variance with
the positive TMI observed above. Of course there is chaos,
as well as mixing in the classical limit of the kicked top.
The resolution may be in the fact that there is scrambling
in phase space but not in qubit space. The initial coherent
state, localized in phase space, spreads out exponentially and
scrambles in the sense of becoming nonlocal in phase space;
however, when viewed as scrambling within the qubits that
comprise the effective spin model there is none. This di-
chotomy is also a reflection of the strong statistical properties,
such as spectral fluctuations and eigenvector statistics, of the
kicked top when viewed as a map on the sphere and a single
large spin, compared to the marginal entanglement present in
subsystems when viewed as collections of qubits.

There is however an effect or reflection of the scrambling
in the qubit space, not in the sign of the TMI but in terms of
equilibration of the measures such as entanglement and tri-
partite mutual information to values that are given by random
symmetric ensembles. More importantly, for sufficiently large
subsystems, these grow over a logarithmic time ∼log2(N ).
If there is no chaos we see a much slower growth of these
quantities and while more detailed studies are needed, the
timescale seems to be as large as the Heisenberg time ∼N

(see Fig. 5).

D. Saturation and long-time averages

In addition to the dynamical behavior, we also study
the time-averaged TMI in the kicked top. We have already
noted that the signature of classical dynamics is present in
the time-varying TMI. Figure 8 shows that such a behav-
ior is also present when we take time averages of TMI.
In particular, comparing this figure with Fig. 9, we can
see that classical structures leave their mark on the quan-
tum system, with regular islands being visible for integrable
regimes and low-period periodic orbits being present for the
chaotic regimes. The latter is also a result of eigenfunction
scarring [11].

One can note in particular that the average TMI for a large
number of points in the phase space is positive. This is true
not only in the globally chaotic region, but also in the mixed
and regular regimes. In the globally chaotic case, we can see
that the average TMI varies approximately from 0.22 to 0.27,
while the average TMI obtained from random PS states for
the corresponding case is approximately equal to 0.24. As
before, this indicates that chaotic evolution nearly transforms
the initially coherent states to random PS states.

FIG. 8. Time-averaged TMI between three one-qubit subsystems
for j = 6 (12 qubits) and p = π/2, with the initial state correspond-
ing to a coherent stated associated with a 50 × 100 grid discretizing
θ ∈ [0, π ) and φ ∈ [0, 2π ). The time-averaged TMI is obtained
for (a) k = 1, corresponding to a classically regular region, (b)
k = 3, a mixed regime, and (c) k = 6, a globally chaotic region,
and is computed by averaging over 1000 iterations starting from the
initial coherent state. It can be seen that the classical structures are
reproduced to a certain extent.

V. SUMMARY AND DISCUSSION

In this paper, multiqubit permutation symmetric states have
been studied in general. An algorithm for getting the reduced
density matrix of any number of qubits was given. This led to
the definition of a random matrix ensemble that is of relevance
in such cases, the random permutation symmetric states. It
has been shown that the distribution of the eigenvalues of the
reduced density matrices of this ensemble, while similar to
the Marchenko-Pastur distribution, is also different in crucial
features and defines a different universality class.

For such a random ensemble we have derived analyt-
ical expressions for the average purity and linear entropy
of arbitrary subsystems and approximate expressions for the
average von Neumann entropy. In particular, random permu-
tation symmetric states have an area-law kind of entanglement
scaling only as log2 (number of qubits in the subsystem). This
small multipartite entanglement effectively results in positive
tripartite mutual information, for which we derive analytical
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FIG. 9. Phase portrait of the classical kicked top map, showing
(a) globally regular dynamics for k = 1, (b) a mixed dynamics with
coexisting regions of chaoticity and regularity for k = 3, and (c)
(almost) globally chaotic dynamics for k = 6. In all cases, p = π/2
is used.

estimates. In comparison we pointed out that random states
with no symmetry would have a typical TMI value that is
negative.

We applied these general statements to a qubit model of
the kicked top which can show a range of dynamical behavior
from the regular to the fully chaotic. An interesting aspect
that has been recently investigated in certain quantum chaotic
systems is the notion of scrambling of information, which
refers to the delocalization with time of initially localized
information across the system. Both OTOC and TMI have
been proposed as a measure to detect scrambling of informa-
tion, wherein a growth or decay of the OTOC and a negative
value of TMI are considered as signatures of scrambling.
In our analysis of the kicked top, we observe that OTOCs
defined with observables on phase space grow exponentially
fast with time (within the Ehrenfest time), while as noted
above, permutation symmetry in the system is responsible for
most states having a positive value of TMI. Thus the quantum
chaos in this case results in scrambling in phase space while
remaining unscrambled in qubit space.

While Iyoda and Sagawa have also pointed out that TMI
for certain initial states is positive [53], they argue that the
effective dimension of the set of such states is small. If we

consider the qubit model of the kicked top, the permutation
symmetric subspace that we are restricted to is only N + 1 of
the total 2N -dimensional one and is therefore consistent with
their observations. It will be interesting to explore the model
in the nonpermutation symmetric subspace when it may not
have an interpretation as a kicked top. Nevertheless, it is
likely that the same parameter regimes lead to strongly chaotic
behavior, negative TMI, and exponentially growing OTOCs.
We are also hopeful that our observations about permutation
symmetric states will be of broad applicability.

Note added. Recently, another work appeared [92] which
investigates scrambling in long-range spin chains, including
the case of a kicked top.

APPENDIX A: SUBSYSTEMS OF PERMUTATION
SYMMETRIC SYSTEMS

In Sec. II we saw that the structure of Dicke states can be
used to write permutation symmetric vectors of N qubits in
terms of the tensor product of permutation symmetric vectors
containing Q and N − Q qubits (Q < N). Equation (5) holds,
however, only when the vectors are viewed as elements of
the full 2N -dimensional space. We can nevertheless use the
idea presented in Eq. (5) to work with permutation symmetric
systems without viewing them as a subspace of a larger space.
An apparent tradeoff of working exclusively with permutation
symmetric spaces is that the tensor product structure would
be lost, as an (N + 1)-dimensional space in general cannot
be written as a tensor product of (Q + 1)- and (N − Q + 1)-
dimensional spaces. Fortunately though, it is still possible to
work conveniently with subsystems. We show in the following
that we can embed a permutation symmetric vector of N

qubits into the tensor product of Q-qubit and (N − Q)-qubit
permutation symmetric spaces such that inner products are
preserved.

Proposition 1. For dX, dY , dZ ∈ N, let {|iX〉 | 0 � i � dX}
be some fixed orthonormal basis of X, {|jY 〉 | 0 � j � dY } be
a fixed orthonormal basis of Y , and {|kZ〉 | 0 � k � dZ} be a
fixed orthonormal basis of Z such that dX = dY + dZ . Then
the map

ι : X → Y ⊗ Z,

ι

(
dX∑
i=0

ai |iX〉
)

=
dY∑

j=0

dZ∑
k=0

Ajk|jY 〉|kZ〉,

with

Ajk = Cjkaj+k =
√√√√(

dY

j

)(
dZ

k

)
(

dX

j+k

) aj+k,

is linear and injective. Further, the map is isometric (i.e.,
preserves inner products).

Proof. That the map is linear is clear. To see that it is injec-
tive, note that if ι(|aX〉) = 0 for some |aX〉 ∈ X, then each of
the coefficients Ajk is zero. Thus ai = 0, implying |aX〉 = 0
(i.e., the kernel of ι is trivial), establishing the injectivity of
ι. Showing isometry of ι involves a simple computation using
the Vandermonde convolution identity.

Towards this end, say |aX〉 = ∑
i ai |iX〉 and |bX〉 =∑

i bi |iX〉 so that 〈|aX〉, |bX〉〉 = ∑
i a

∗
i bi . On the other hand,
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〈ι(|aX〉), ι(|bX〉)〉 = ∑
j

∑
k A∗

jkBjk = ∑
j

∑
k C2

jka
∗
j+kbj+k .

Now the sum over 0 � j � dY and 0 � k � dZ is done
along the cross-diagonals j + k = r . That is, fix an r

(0 � r � dX = dY + dZ) and sum over max(0, r − dZ ) �
j � min(r, dY ) and do this for all 0 � r � dX,

〈ι(|aX〉), ι(|bX〉)〉 =
dX∑
r=0

a∗
r br(
dX

r

) min(r,dY )∑
j=max(0,r−dZ )

(
dY

j

)(
dZ

r − j

)

=
dZ∑
r=0

a∗
r br(
dX

r

) min(r,dY )∑
j=0

(
dY

j

)(
dZ

r − j

)

+
dX∑

r=dZ+1

a∗
r br(
dX

r

) dX−r∑
j=0

(
dY

j

)(
dZ

dX − r − j

)

=
dZ∑
r=0

a∗
r br(
dX

r

) (
dX

r

)
+

dX∑
r=dZ+1

a∗
r br(
dX

r

) (
dX

r

)

(using Vandermonde convolution)

=
dX∑
r=0

a∗
r br

= 〈|aX〉, |bX〉〉

The above assumes that dY � dZ; if not, sum over k instead,
following the same steps. Thus, ι is an isometry. �

Hence, given an N -qubit permutation symmetric state, we
can work as if it has a tensor product decomposition in terms
of permutation symmetric states of Q and N − Q qubits.

Furthermore, if we were to embed these vectors in the
full 2N -dimensional space (by mapping each basis vector
to the appropriate Dicke state), then these are actually the
same vector. To elaborate on this point, say, given a vector
space V of dimension dV + 1, we define the linear map EV

as one that takes some fixed basis vectors of the space V to
the corresponding Dicke states in the 2dX -dimensional space
(dV � dX),

EV (|iV 〉) = 1√(
dV

i

) ∑
0 � l � 2dX − 1

w(l) = i

|l〉, 0 � i � dV .

(A1)

The action on the fixed basis vectors |iV 〉 can be extended
linearly to define EV on every vector of V (and such an
extension is unique). With such a linear map, we can see
that the vectors related by the embedding ι are actually equal
in the full 2dX -dimensional space. In other words, we have
EX = (EY ⊗ EZ ) ◦ ι, which is essentially the content of Eq. (5)
mentioned in Sec. II.

Now, since we always work in dimensions linear in the
number of qubits, one can study permutation symmetric sys-
tems with a very large number of qubits. In such a scenario,
it may be helpful to obtain the combinatorial coefficients
appearing in the expression for reduced density matrix recur-
sively. So if Ckl are the combinatorial coefficients as defined

in Proposition 1, we have the following recursion relations for
the same:

Ck+1,l =
√(

Q − k

N − k − l

)√(
k + l + 1

k + 1

)
Ckl, (A2)

Ck,l+1 =
√(

N − Q − l

N − k − l

)√(
k + l + 1

l + 1

)
Ckl, (A3)

Ck+1,l+1 =
√(

Q − k

N − k − l − 1

)√(
k + l + 2

k + 1

)

×
√(

N − Q − l

N − k − l

)√(
k + l + 1

l + 1

)
Ckl (A4)

Here we have used N in place of dX and Q in place of
dY , which denote the number of qubits in the system and
the subsystem, respectively. These relations can be used to
compute Ckl when working with a large number of qubits.

APPENDIX B: LÉVY’S LEMMA FOR PERMUTATION
SYMMETRIC SYSTEMS

Lévy’s lemma is a statement describing the relation be-
tween the values taken by a Lipschitz continuous function
defined on a sphere and its average with respect to the uniform
measure on the sphere. The normalization requirement of
quantum states allows us to consider the state as a point on
a unit sphere. The work in [93] describes the use of Lévy’s
lemma in the context of quantum systems. In particular, that
study covers the cases of von Neumann and linear entropies
for a system of qubits. However, if we directly apply those
results to a PS system of qubits, the average would correspond
to the Wishart ensemble, while we are interested in averages
over the PS ensemble. Thus we need to appropriately adapt
the relevant proofs presented by Hayden et al. [93] to cover
the case of the PS system of qubits so that the averages indeed
correspond to those over the PS ensemble.

Our starting point is the property noted in Appendix A,
that given any N -qubit permutation symmetric vector, it has
a tensor product decomposition in terms of Q-qubit and
(N − Q)-qubit permutation symmetric vectors. So, given any
permutation symmetric vector |aX〉 ∈ X of dimension dX + 1
and subsystems Y and Z of dimensions dY + 1 and dZ + 1, re-
spectively (so that dX = dY + dZ), let the map G : X → L(Y )
take this vector to the reduced density matrix of subsystem Y .
That is,

G(|aX〉) = TrZ|ι(aX )〉〈ι(aX )|, (B1)

where ι is the embedding defined in Appendix A. We will
combine this with the proof of Lipschitz continuity of von
Neumann entropy and purity [93] to adapt them to the per-
mutation symmetric case. In the following discussion, the
Lipschitz continuity of functions is considered with respect
to the Euclidean norm.

Proposition 2. (i) The von Neumann entropy is a Lipschitz
continuous function for permutation symmetric states. That is,
the function f : X → R, defined as

f (|aX〉) = SvN (G(|aX〉)),
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is Lipschitz continuous with respect to the Euclidean norm
for dY � 2. (ii) The linear entropy is a Lipschitz continuous
function for permutation symmetric states. (iii) The tripartite
mutual information between any three subsystems of a per-
mutation symmetric system is Lipschitz continuous, where the
TMI is calculated either using von Neumann or linear entropy.
For the case of von Neumann entropy, each of the subsystems
must have at least two qubits and so the total system should
have at least six qubits.

Proof. (i) In Ref. [93] it has been shown that given any
|φY⊗Z〉 ∈ Y ⊗ Z, the function f ′ : Y ⊗ Z → R defined as
f ′(|φY⊗Z〉) = SvN (ρY ) (where ρY is the reduced density ma-
trix of subsystem Y ) is Lipschitz continuous for dY � 2, with
the Lipschitz constant bounded above by

√
8 log2(dY + 1). In

other words,

|f ′(|φY⊗Z〉) − f ′(|ψY⊗Z〉)|
�

√
8 log2(dY + 1)‖|φY⊗Z〉 − |ψY⊗Z〉‖2

for dY � 2, where ‖ · ‖2 is the Euclidean norm. As this is
valid for any vector in Y ⊗ Z, it is in particular valid for
ι(|aX〉), ι(|bX〉) ∈ Y ⊗ Z given any |aX〉, |bX〉 ∈ X. Noting
that f (|aX〉) = f ′(ι(|aX〉)), we get

|f (|aX〉 − f (|bX〉)| �
√

8 log2(dY + 1)‖ι(|aX〉) − ι(|bX〉)‖2

�
√

8 log2(dY + 1)‖|aX〉 − |bX〉‖2

(using linearity and isometry of ι)

for dY � 2. Thus, f (|aX〉) = SvN (G(|aX〉)) is Lipschitz
continuous with the Lipschitz constant bounded above by√

8 log2(dY + 1).
(ii) We start by showing that for any |aX〉 ∈ X, the function

f (|aX〉) =
√

Tr[G(|aX〉)2] is Lipschitz continuous. Again, we
resort to the corresponding result for the case |φY⊗Z〉 ∈ Y ⊗
Z in [93]. In particular, for the function f ′ : Y ⊗ Z → R

defined as f ′(|φY⊗Z〉) =
√

Tr(ρ2
Y ), Ref. [93] showed that

|f ′(|φY⊗Z〉) − f ′(|ψY⊗Z〉)| � 2‖|φY⊗Z〉 − |ψY⊗Z〉‖2.

As before, taking any |aX〉, |bX〉 ∈ X, we apply the above
for ι(|aX〉), ι(|bX〉) ∈ Y ⊗ Z while noting that f (|aX〉) =
f ′(ι(|aX〉)) to get

|f (|aX〉) − f (|bX〉)| � 2‖|aX〉 − |bX〉‖2,

where we have utilized the linearity and isometry of ι. Now
observe that f is bounded above by 1 since Tr(ρ2) � 1 for any
density matrix ρ. Thus, |f 2(|aX〉) − f 2(|bX〉)| = |f (|ax〉) −
f (|bX〉)||f (|aX〉) + f (|bX〉)| � 4‖|aX〉 − |bX〉‖2, where the
triangle inequality, the upper bound of f , and the above
inequality have been used. Therefore, f 2 is Lipschitz con-
tinuous with the Lipschitz constant bounded above by 4. As
the linear entropy corresponding to the state |aX〉 is given

by 1 − f 2(|aX〉), it is Lipschitz continuous with the Lipschitz
constant bounded above by 4.

(iii) Let A, B, and C with dimensions dA + 1, dB + 1, and
dC + 1, respectively, be subspaces of the space X with dimen-
sion dX + 1. We abbreviate the space of the joint permutation
symmetric systems as follows: AB has dimension dA + dB +
1, BC has dimension dB + dC + 1, AC has dimension dA +
dC + 1, and ABC has dimension dA + dB + dC + 1. Further,
these spaces are such that dA + dB + dC � dX. Now, say
fY : X → R is either the von Neumann entropy or the linear
entropy (corresponding to a given subsystem Y ). We know
that fY is Lipschitz continuous with the Lipschitz constant
bounded above by ηY , which is equal to

√
8 log2(dY + 1) for

the case of von Neumann entropy and equal to 4 for the case
of linear entropy.

Let f TMI : X → R be defined as

f TMI(|aX〉) = fA(|aX〉) + fB (|aX〉) + fC (|aX〉) − fAB (|aX〉)

− fBC (|aX〉) − fAC (|aX〉) + fABC (|aX〉).

Then for any vectors |aX〉, |bX〉 ∈ X, using the triangle in-
equality and the Lipschitz continuity of fY , we get

|f TMI(|aX〉) − f TMI(|bX〉)|
� (ηA + ηB + ηC + ηAB + ηBC + ηAC + ηABC )‖|aX〉

− |bX〉‖2.

Therefore, f TMI is Lipschitz continuous with the Lipschitz
constant bounded above by η = (ηA + ηB + ηC + ηAB +
ηBC + ηAC + ηABC ). In other words, the TMI defined on
permutation symmetric spaces is Lipschitz continuous for
either von Neumann entropy or linear entropy. Note that for
Lipschitz continuity of von Neumann entropy, we require
dY � 2 for each of the subsystems. �

Now that we have the von Neumann entropy, linear en-
tropy, and TMI as Lipschitz continuous functions on permu-
tation symmetric systems, we can resort to Lévy’s lemma. To
recall, Lévy’s lemma is stated as follows [93].

Lemma. Let f : Sn−1 → R be a Lipschitz continuous
function (with respect to the Euclidean norm in Rn) with a
Lipschitz constant η, where Sn−1 is a unit sphere in Rn. If
x ∈ Sn−1 is picked randomly (with respect to the uniform
measure on the sphere), then for ε � 0 we have

P{|f (x) − E[f ]| � ε} � 2 exp

(
− nε2

9π3 ln(2)η2

)
,

where E[f ] is the expectation value of f with respect to the
uniform measure on the sphere.

Thus, for large enough dimensions, we can say that almost
all random permutation symmetric states have von Neumann
entropy, linear entropy, and TMI close to the respective av-
erages. In particular, positive average TMI implies that most
states also have positive TMI.
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