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We consider the one-dimensional Schrödinger equation on a ring, with the cubic term, of either self-attractive
or repulsive sign, confined to a narrow segment. This setting can be realized in optics and Bose-Einstein
condensates. For the nonlinearity coefficient represented by the δ function, all stationary states are obtained
in an exact analytical form. The states with positive chemical potentials are found in alternating bands for the
cases of the self-repulsion and attraction, while solutions with negative chemical potentials exist only in the latter
case. These results provide a possibility to obtain exact solutions for band-gap states in the nonlinear system.
Approximating the δ function by a narrow Gaussian, stability of the stationary modes is addressed through
numerical computation of eigenvalues for small perturbations, and verified by simulations of the perturbed
evolution. For positive chemical potentials, the stability is investigated in three lowest bands. In the case of
the self-attraction, each band contains a stable subband, the transition to instability occurring with the increase
of the total norm. As a result, multipeak states may be stable in higher bands. In the case of the self-repulsion, a
single-peak ground state is stable in the first band, while the two higher ones are populated by weakly unstable
two- and four-peak excited states. In the case of the self-attraction and negative chemical potentials, single-peak
modes feature instability which transforms them into persistently oscillating states.
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I. INTRODUCTION AND THE MODEL

The use of spatially modulated nonlinearities makes it
possible to greatly expand varieties of solitons supported by
competition of local nonlinearities and linear diffraction or
dispersion [1–3]. The simplest example of such settings is
represented by a continuous linear medium into which a cubic
self-focusing nonlinearity is embedded in a narrow region,
that may be approximated by the coefficient in front of the
cubic term taken as the δ function, δ(x). This approximation
leads to the following limit form of the nonlinear Schrödinger
equation (NLSE) for wave function ψ (x, t ) [alias the Gross-
Pitaevskii equation, in terms of atomic Bose-Einstein conden-
sates (BECs) [4]],

iψt + 1

2
ψxx + εδ(x)|ψ |2ψ = 0, (1)

written in the scaled form, with strength ε > 0 of the self-
focusing. This model was introduced in Ref. [5], where the
scattering problem for a plane wave hitting the localized non-
linearity was considered, and localized modulational instabil-
ity of the solution to the scattering problem was discovered.
Note that ε may be fixed as an arbitrary positive value by
means of obvious rescaling of wave function ψ .

In the application to optics, with time t in Eq. (1) replaced
by the propagation distance, z [6], a narrow nonlinearity-
bearing stripe embedded in a planar nonlinear waveguide
may be created by implanting nonlinear dopants into the host
linear medium [7]. In BEC, a similar effect can be achieved
by the locally induced Feshbach resonance, controlled by a
tightly focused laser beam, as suggested by the techniques
demonstrated in Refs. [8–11].

NLSE in the form of Eq. (1) gives rise to an obvious
family of pinned modes (solitons), parameterized by chemical
potential μ < 0,

ψ = (−2μ)1/4 exp(−iμt −
√

−2μ|x|) (2)

(in terms of the NLSE for the propagation of light in planar
waveguides, −μ is the propagation constant). The norm of
the solitons (alias the integral power of the optical beam),

N =
∫ +∞

−∞
|ψ (x)|2dx, (3)

is degenerate for family (2), taking a single value which
does not depend on μ, N ≡ 1. The norm degeneracy is a
characteristic feature of families of Townes solitons (TSs)
[12], which exist in models featuring the critical collapse
driven by self-attractive nonlinearities [13,14]. Accordingly,
this family formally seems neutrally stable in terms of the
well-known Vakhitov-Kolokolov (VK) criterion, dN/dμ <

0, which often plays the role of the necessary stability criterion
for self-trapped states maintained by attractive nonlinearities
[13–15]. However, in reality solitons of the TS type are
subject to nonlinear (subexponentially growing) instability,
which destroys them [13,14]. Indeed, the soliton family (2)
is completely unstable, in the framework of Eq. (1) [16].
It is relevant to mention that, while the original TS family
is represented by axially symmetric solutions of the two-
dimensional NLSE with the cubic nonlinearity [12], a similar
family is known in one dimension too, in the form of the
NLSE with the quintic self-focusing [17]. In fact, the soliton
family (2) may be considered as an alternative example of the
TS family in one dimension.
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Because below we also consider the model with the re-
pulsive localized nonlinearity, ε < 0 in Eq. (4), it is relevant
to mention that, in cases when the repulsive nonlinearity
may support self-trapped modes (e.g., gap solitons, in the
presence of a spatially periodic potential [18–20]), their nec-
essary stability condition may amount to the anti-VK criterion,
dN/dμ > 0 [21]. Note that the localized repulsive nonlinear
term can be efficiently used as a splitter in the design of
soliton-based matter-wave interferometers [22].

The instability of the TS family in the framework of the
fundamental model (1) makes it necessary to look for physi-
cally relevant modifications of the model, which may stabilize
solitons maintained by the strongly localized nonlinearity;
actually, this implies the necessity to lift the TS norm degen-
eracy [23]. One possibility is to add a spatially periodic linear
potential to Eq. (1) [16], and another is to consider a set of two
localized nonlinearities, both represented by the δ function
[24,25]. In the latter case, only self-trapped modes which keep
the symmetry with respect to the pair of δ functions, are stable,
while replacement of the ideal δ functions by a regularized
approximation [see Eq. (26) below] creates stability regions
for antisymmetric and asymmetric modes too (they exist as
completely unstable exact solutions in the case of the pair of
ideal δ functions).

Another possibility is to consider Eq. (1) on a ring, i.e., to
rewrite it in the scaled form, with x replaced by the angular
coordinate defined in the interval of −π < θ < +π :

iψt + 1

2
ψθθ + εδ(θ )|ψ2|ψ = 0, (4)

subject to the periodic boundary conditions (b.c.):

ψ (θ = −π, t ) = ψ (θ = +π, t ),

ψθ (θ = −π, t ) = ψθ (θ = +π, t ) (5)

The energy (Hamiltonian) of the system is

H = 1

2

[∫ +π

−π

|ψθ |2dθ − ε|ψ (θ = 0)|4
]
. (6)

As mentioned above, the strength of the localized nonlin-
earity in Eq. (4), ε, may be fixed by the rescaling of wave
functions ψ , if the analysis admits variation of its norm (3).
For the presentation of results in a compact form, in the case
of self-attraction, ε > 0, it is convenient to fix ε = +3, and in
the case of repulsion a convenient choice is ε = −1, which is
adopted below, although these normalizations do not have any
specific significance.

The ring-shaped setting can be implemented in diverse
physical settings, including toroidal traps for BEC, which
were proposed theoretically [26] and realized in many ex-
periments [27–35]. In optics, the ring model implies guided
light propagation along cylindrical surfaces, which has also
been reported in various forms, such as concentric multilayer
omniguiding fibers with a hollow core [36–38], multilayer
fibers which provide Bragg confinement in the radial direction
[39–42], concentric structures built in photorefractive materi-
als [43,44], and laser sources in the form of VCSELs [45–48].
In addition to optics, the guided transmission of plasmonic
waves in narrow cylindrical layers has been realized too
[49,50]. These settings make it possible to impart topological

characteristics to photonic modes, the vorticity being the
simplest one. The topological structure may protect various
modes against perturbations in photonics [51] (as well as in
BEC [52] and acoustics [53]), an important recently intro-
duced example being provided by surface modes in diverse
realizations of photonic topological insulators [54–64].

While the ring models are often introduced as linear ones,
they may readily include nonlinearity, which makes it pos-
sible to predict solitons localized in the azimuthal direction
[65–67]. In particular, states supported by a periodic mod-
ulation of the local nonlinearity in the rings were studied
in Ref. [68]. Further, the cubic nonlinearity in the ring may
be localized in a narrow segment, as implied by Eq. (4). In
particular, similar settings in BEC loaded in toroidal traps
have been created with narrow “weak links” embedded in the
respective ring-shaped configurations [31,34,35] .

A model similar to one based on Eq. (4), but with a pair
of self-attractive (ε > 0) δ-functional nonlinear spots set at
diametrically opposite points, was introduced in Ref. [69].
The analysis of the model, which was limited solely to states
with the negative chemical potential [i.e., ψ (x) composed
solely of hyperbolic functions] had led to a conclusion that,
similarly to what was reported for the infinite system in
Ref. [24], only modes symmetric with respect to the pair
of two nonlinearity spots may be stable in the case of ideal
δ functions, while the replacement of them by regularized
approximations gives rise to stable asymmetric modes too.
Although the ring-shaped system with the single δ-functional
nonlinearity seems simpler and, in a sense, more fundamental,
it was not studied before, being the subject of the current
work, for both signs of the chemical potential, μ ≷ 0, and
both signs of ε in Eq. (4). As mentioned above, ε < 0 implies
the localized repulsive cubic term, which is also possible in
BEC and optics, but was not considered in Ref. [69].

In the model elaborated in the present work, states with
μ < 0 (they exist only for ε > 0) are qualitatively similar to
those reported for the pair of ideal δ functions in Ref. [69].
The most essential results are reported for μ > 0, with both
signs of ε. This case was not addressed in Ref. [69], as it is
difficult to obtain respective analytical solutions, composed
of trigonometric functions, for the pair of δ functions in
the ring. The results produced here for μ > 0 provide direct
insight into the structure of nonlinear band-gap modes in
the form of exact analytical solutions, which is not available
in other models, to the best of our knowledge. In particu-
lar, we report exact solutions for both single-peak ground
states and multipeak excited modes, while their stability is
studied with the help of numerical methods. This is done by
means of a solution of the eigenvalue problem [70] for the
linearized Bogoliubov-de Gennes (BdG) equations for small
perturbations [4]. The predictions produced by the calculation
of the BdG eigenvalues are validated by direct simulations of
the perturbed evolution, while formal predictions of the VK
criterion are not completely correct in the present model.

The numerical results are obtained with the ideal δ func-
tion replaced by a narrow Gaussian with small width ξ , as
specified below by Eq. (26). In this connection, it is relevant
to discuss how realistic the use of the δ function is for
modeling physical settings. In BEC, the width of the nonlinear
layer, induced by the optically controlled Feshbach resonance,

052203-2



RING MODES SUPPORTED BY CONCENTRATED CUBIC … PHYSICAL REVIEW E 98, 052203 (2018)

cannot be smaller than the respective wavelength, ∼1 μm.
On the other hand, the ring-shaped quasi-one-dimensional
trap can be created with diameter �3 mm [28], hence, in
the scaled form, the regularization parameter in Eq. (26) is
bounded by condition ξ � 10−4. In optics, the technique of
the thermal indiffusion makes it possible to create highly
doped stripes of width �4 μm [7], while the the VCSEL-like
structure can be made with diameter � 300 μm [47], thus
corresponding to ξ � 0.004. In the numerical calculations,
we chiefly use ξ = 0.01 and 0.005 (in some cases), which
are relevant values, in terms of these estimates. Such values
of ξ produce numerical results which are extremely close
to the analytical ones obtained in the model with the ideal
δ function. Furthermore, additional numerical considerations
demonstrate that the results remain practically the same (in
particular, as concerns the stability), at least, up to ξ � 0.2.

In fact, in the case of ε < 0 there is no essential constraint
on the size of ξ , while in the case of self-focusing, ε > 0, there
is a constraint imposed by the condition of the modulational
stability of the field in the nonlinear layer of width ξ . A
simple estimate demonstrates that the modulational instability
does not set in if amplitude φ0 of the field at θ = 0 satisfies
constraint

φ2
0 < 2/(εξ ). (7)

All the results presented below meet this condition.
The rest of the paper is organized as follows. In Sec. II

analytical solutions for stationary modes are displayed, for
the ideal δ function with both signs of ε in Eq. (4), and both
signs of μ. Numerical results for stationary solutions and their
stability are reported in several parts of Sec. III, and the paper
is concluded by Sec. IV.

II. ANALYTICAL SOLUTIONS

Stationary solutions to Eqs. (4) and (5) with chemical
potential μ are looked for as ψ (θ ) = e−iμtφ(θ ), where real
function φ(θ ) satisfies equation

μφ + 1

2
φ′′ + εδ(θ )φ3 = 0, (8)

(with φ′ ≡ dφ/dθ ) at −π < θ < +π , supplemented by the
periodic b.c. which are set at θ = ±π , as per Eq. (5):

φ(−π ) = φ(+π ), φ′(−π ) = φ′(+π ). (9)

Equation (8) implies that one should actually solve the linear
equation,

φ′′ + 2μφ = 0, (10)

separately at −π < θ < 0 and 0 < θ < +π , subjecting them
to b.c. (9), and to the condition for the jump of the first
derivative at θ = 0, which follows from the integration of
Eq. (9) in an infinitesimal vicinity of θ = 0:

φ′|θ=+0 − φ′|θ=−0 = −2εφ3|θ=0, (11)

while φ(θ ) is continuous at θ = 0.

A. Solutions for μ > 0

As said above, most interesting are solutions for positive
values of the chemical potential, and both signs of ε, as similar

exact results were not reported in previous studies. A relevant
solution to linear equation (10), satisfying b.c. (9), is

φ(θ ) = φ0 cos[
√

2μ(π − |θ |)], (12)

where real amplitude φ0 is found from the substitution of
expression (12) in b.c. (11) at θ = 0:

φ2
0 = −

√
2μ sin(π

√
2μ)

ε cos3(π
√

2μ)
. (13)

The calculation of the integrals in Eqs. (3) and (6) for this
solution yields its norm and energy:

N = φ2
0

[
π + 1

2
√

2μ
sin(2

√
2μπ )

]
, (14)

H = μφ2
0

[
π − 1

2
√

2μ
sin(2

√
2μπ )

]
− ε

2
φ4

0 cos4(
√

2μπ ).

(15)

The energy can be obtained in the form of E = E(N ) by
eliminating μ from Eqs. (14) and (15).

An obvious condition for the existence of this solution
is φ2

0 > 0 . First, at ε > 0 (the self-attractive nonlinearity),
it follows from this condition and Eq. (13) that μ must
satisfy inequality tan (π

√
2μ) < 0, hence the solutions for

ε > 0 exist in the following bands (intervals of values of the
chemical potential):

1

2

(
1

2
+ n

)2

< μ <
1

2
(1 + n)2, n = 0, 1, 2, . . . . (16)

In the opposite case of the repulsive nonlinearity, ε < 0,
Eq. (13) yields φ2

0 > 0 in a set of bands alternating with those
given by Eq. (16):

1

2
n2 < μ <

1

2

(
n + 1

2

)2

, n = 0, 1, 2, . . . . (17)

Typical examples of the exact solutions, and the respective
dependences N (μ), juxtaposed with their numerical coun-
terparts, are displayed, for ε > 0 and ε < 0, in Figs. 1 and
2, respectively (as mentioned above, the cases of ε > 0 and
ε < 0 are represented, severally, by ε = +3 and ε = −1). The
stability or instability indicated in the figures is identified as
per results of the analysis presented below. In addition to that,
the analytical expression (15) and its numerically generated
counterpart demonstrate that, quite naturally, the energy of
stationary states populating different bands is much higher in
higher-order bands, for the same values of N (not shown here
in detail).

In terms of the local density, φ2
0 (x), the modes shown in

Fig. 1 for ε > 0 in the nth band feature 2(1 + n) peaks [i.e.,
two, four, and six peaks in the first, second, and third bands,
respectively, see Eq. (16)]. On the other hand, the modes
displayed for ε < 0 in Fig. 2, have, essentially, 2n peaks [i.e.,
one, two, and four peaks in the first, second, and third bands,
respectively, as per Eq. (17)], if the shallow splitting of the
peak at x = 0 is not counted for n = 1 and 2. In particular,
the stationary mode in the first band, with the single density
peak at θ = ±π , which is displayed in Fig. 2(a) (and is always
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FIG. 1. (a–c) Typical examples of stable analytical modes, given by Eqs. (12) and (13) for ε = 3, and their counterparts, pro-
duced by the numerical solution of Eq. (8) using the regularized δ function (26), with ξ = 0.01. In panels (a), (b), and (c), the
stationary solutions are displayed, severally, with the chemical potentials and norms (μ = 0.35, Nnumerical = 0.55, Nanalytical = 0.54),
(μ = 1.66, Nnumerical = 1.57, Nanalytical = 1.53), and (μ = 4.3, Nnumerical = 0.69, Nanalytical = 0.67), which places them in the first, second, and
third bands, as defined by Eq. (16) with n = 0, 1, and 2, respectively. (d–f) N (μ) curves for the analytical solutions, calculated as per Eqs. (14)
and (13), and their numerically generated counterparts, in the first, second, and third bands, respectively. The full bands correspond to intervals
0.125 < μ < 0.5 (n = 0), 1.125 < μ < 2 (n = 1), and 3.125 < μ < 4 (n = 2). Portions of the N (μ) curves, representing stable and unstable
subfamilies of the stationary solutions, are designated as indicated in the notation boxes. Definitely unstable segments of the N (μ) curves,
which correspond to extremely large values of N , are cut off by panel frames.
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FIG. 2. (a–c) Typical examples of analytical modes, given by Eqs. (12) and (13) with ε = −1, and their counterparts,
produced by the numerical solution with ξ = 0.01 in Eq. (26). In panels (a), (b), and (c) the chemical potential
and norm take values (μ = 0.03, Nnumerical = 2.35, Nanalytical = 2.38), (μ = 0.6, Nnumerical = 1.24, Nanalytical = 1.26), and
(μ = 2.3, Nnumerical = 4.20, Nanalytical = 4.32), which places them in the first, second, and third bands, as defined by Eq. (17) with
n = 0, 1, and 2, respectively. The mode shown in panel (a) is a stable ground state, while ones in (b) and (c) are weakly unstable excited
states. (d) The N (μ) curve for the analytical solution and its counterpart, produced by the numerical solution of Eq. (14) with ξ = 0.01, in the
first band, which covers the interval of 0 < μ < 0.125. This branch, representing the ground state, is completely stable. The branches of the
excited states, populating the second and third bands, are not displayed, as they are subject to weak instability.

stable, as shown below), may be identified as the ground state
of the system with ε < 0, as its energy, for given N , is always
lowest, in comparison with the states found in the second and
third bands. On the other hand, the multipeak solutions, which
populate the second, third (and higher-order) bands at ε < 0,
may be interpreted as excited states, always being weakly
unstable, as shown below too. For ε > 0, the identification of
a ground state makes it necessary to consider solutions with
μ < 0, which are addressed in the following subsection (recall
that states with μ < 0 do not exist for ε < 0).

It is worthy to note that all N (μ) curves displayed in Fig. 1
meet the above-mentioned VK criterion, dN/dμ < 0, thus
having a chance to be (partly or entirely) stable. Further, in
Fig. 2(d) the N (μ) dependence for ε < 0 satisfies the anti-VK
criterion [21], dN/dμ < 0, thus upholding the stability of the
soliton family.

B. Solutions for μ < 0

In the infinite domain, negative values of the chemical
potential correspond to pinned solitons (2), which, as said
above, are completely unstable solutions. In the ring-shaped
system, the relevant solution to Eq. (10), subject to b.c. (9), is

φ(θ ) = φ0 cosh[
√

−2μ(π − |θ |)], (18)

φ2
0 =

√−2μ sinh(
√−2μπ )

ε cosh3(
√−2μπ )

; (19)

cf. Eqs. (12) and (13). As follows from Eq. (19), this so-
lution exists, for μ < 0, solely in the case of the attractive
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FIG. 3. (a) A typical example of an [unstable; see Fig. 4(d)] stationary mode existing at μ < 0, as produced by the analytical solution
given by Eqs. (18) and (19), juxtaposed with the corresponding numerical solution of Eq. (8), for μ = −1, ε = 3 and ξ = 0.01. The respective
norms are Nnumerical = 0.342, Nanalytical = 0.334. (b, c) N (μ) and H (N ) curves for the analytical solutions, produced by Eqs. (20) and (21),
and their numerically generated counterpart, for μ < 0 and ε = 3. Unlike all other plots, the numerical ones in this panel were generated with
ξ = 0.005, to achieve sufficient accuracy.

nonlinearity, ε > 0. The norm and energy of the solution for
μ < 0, given by Eqs. (18) and (19), are

N = φ2
0

[
π + 1

2
√−2μ

sinh(2
√

−2μπ )

]
, (20)

H = (−μ)φ2
0

[
1

2
√−2μ

sinh(2
√

−2μπ ) − π

]

− ε

2
φ4

0 cosh4(
√

−2μπ ). (21)

It is relevant to note that the solution for μ < 0, given by
Eqs. (18), (19) and (20), (21), can be obtained from the above
one for μ > 0, based on Eqs. (12), (19), and (14), (15), as an
analytical continuation from μ > 0 to μ < 0, according to the
straightforward relations:√

2μ = i
√

−2μ, sin(
√

2μπ ) = i sinh(
√

−2μπ ),

cos(
√

2μπ ) = cosh(
√

−2μπ ). (22)

A typical example of the mode with μ < 0, and the respective
N (μ) and H (N ) dependences are displayed, along with their
numerically found counterparts, in Fig. 3. Note that, unlike
the solutions found above at μ > 0, whose norm may take
indefinitely large values, diverging at the left edge of each
band, as per Eqs. (14) and (13), straightforward analysis of
Eqs. (20) and (19) reveals, as seen in Fig. 3(b), that at μ < 0
the norm is bounded from above by

N < Nmax ≈ 1. 074/ε. (23)

This largest value of the norm is attained at

μmax ≈ −0.150. (24)

Further, the H (N ) dependence at μ < 0 features two branches
in Fig. 3(c) in accordance with the fact that, in a narrow
interval of norms, N (μ = −∞) ≡ 1/ε < N < Nmax (i.e.,
0.333 < N < 0.358 for ε = 3), two different values of μ
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FIG. 4. (a–d) Imaginary and real parts of the perturbation eigenfrequency, λ, vs the chemical potential μ > 0, in the system with ε = 3 and
ξ = 0.01. Panels (a), (b), and (c) display, respectively, the dependences for μ > 0 and n = 0, 1, and 2 (c) in Eq. (16). Panel (d) displays the
dependences for μ < 0. Only eigenfrequencies with the largest instability growth rate, Im{λ}, are displayed, the underlying stationary modes
being stable at Im{λ} = 0. Boundaries between stable and unstable subbands, which are specified in Table I, are designated by vertical dashed
lines. Panels (e) and (f) show the same, but in the case of the repulsive nonlinearity, ε = −1, in the second and third bands, which correspond
to Eq. (17) with n = 1 (a) and n = 2 (b), respectively [the first band, corresponding to n = 0, is not shown here, as it has Im(λ) ≡ 0]. Note
that Im{λ} is very small in panels (e) and (f), and Re(λ) = 0 in panels (d), (e), and (f).

052203-7



ELAD SHAMRIZ AND BORIS A. MALOMED PHYSICAL REVIEW E 98, 052203 (2018)

FIG. 5. Direct simulations of the evolution of initially perturbed modes with μ < 0 for ε = 3 and ξ = 0.01, which are predicted to be
unstable by the linear-stability analysis; see Fig. 4(d). Panels (a) and (b) pertain, respectively, to original stationary modes with μ = −0.5,
N = 0.344 and μ = −0.17, N = 0.36, the latter one being close to the state with the largest norm, whose parameters are given by Eqs. (23)
and (24).

correspond to given N . The solitons at μ < 0 always features
a single density peak, like in Fig. 3(a).

The stability of these solutions is identified in the following
section, by means of numerical methods. Actually, they are
always subject to a (relatively weak) instability, even if the
respective N (μ) dependence, as seen in Fig. 3(b), satisfies the
VK criterion, dN/dμ < 0, in an interval of

0 < −μ < −μmax ≈ 0.150. (25)

Formally, the stationary solutions found at μ < 0 realize
the ground state of the system with ε > 0, as seen from the
comparison of their negative energy, displayed in Fig. 3(c),
with the positive energy of the solutions found, for the same
values of ε and N , at μ > 0. However, the instability of these
stationary solutions suggests that the role of the ground state
may be picked up by robust breathers which spontaneously
develop from the unstable stationary states with μ < 0; see
Fig. 5 below.

III. NUMERICAL SOLUTIONS

A. Stationary solutions

In the numerical solution of the evolution and stationary
equations (4) and (8), the δ function was approximated by the
standard regularized expression,

δ̃(θ ) = 1√
πξ

exp

(
−θ2

ξ 2

)
, (26)

with sufficiently small ξ . Stationary equation (8) with the
regularized δ function was numerically solved by means of the
Newton-Raphson method, which is a root-finding algorithm
that uses a truncated Taylor expansion to find a zero of a
given function in a vicinity of an expected zero point [70].
Time-dependent solutions to Eq. (4) were then simulated
by means of the split-step fast-Fourier-transform algorithm,
which is well known to be appropriate for the NLSE [70]. The
conservation of the integral norm and energy was monitored
in all the dynamical simulations.

B. The linear-stability analysis: The Bogoliubov-de Gennes
(BdG) equations

To analyze the stability of stationary solutions of Eq. (4)
against small perturbations, perturbed solutions were taken in
the usual form [4,70]:

ψ (θ, t ) = e−iμt {φ(θ ) + η[e−iλtu(θ ) + eiλ∗t v∗(θ )]}, (27)

where η is an infinitesimal amplitude of the perturbation,
u(θ ) and v(θ ) represent its eigenmode, and λ is the corre-
sponding (generally, complex) perturbation eigenfrequency,
the stability condition being Im{λ} = 0 for all λ (the asterisk
stands for the complex conjugate). The substitution of this
expression in Eq. (4) and linearization (i.e., the derivation of
the BdG equations for the small perturbations) leads, after
straightforward manipulations, to the eigenvalue problem for
λ, written in the matrix form:(

L̂ −εδ(θ )φ2(θ )

εδ(θ )φ2(θ ) −L̂

)(
u

v

)
= λ

(
u

v

)
, (28)

where we define operator L̂ ≡ −μ − 1
2d2/dθ2 − 2εδ(θ )|φ|2,

and the solution for {u(θ ), v(θ )} must satisfy the same b.c. (5)
as above.

The numerical solution of Eq. (28), with the δ function
approximated as per Eq. (26), produces, for each stationary
solution, a spectrum of eigenfrequencies λ. The analysis of the
numerical data leads to conclusions about the stability of the
modes with ε > 0 (the self-attractive nonlinearity) and μ > 0,
which are displayed in Table I. It identifies stable and unstable
subbands in each of the three lowest existence bands defined
by Eq. (16).

In a detailed form, the same results which are summarized
in Table I, are displayed, in terms of the dependence of the
largest instability growth rate of the perturbation, Im{λ}, on
μ, along with respective Re{λ}, in Fig. 4, where segments
with Im{λ} = 0 represent stable stationary states. Actually, all
complex eigenvalues exist in quartets, ±iIm{λ} ± Re{λ}, with
independent signs ± in front of the imaginary and real parts.

052203-8



RING MODES SUPPORTED BY CONCENTRATED CUBIC … PHYSICAL REVIEW E 98, 052203 (2018)

TABLE I. Three lowest bands, corresponding to n = 0, 1, and
2 in Eq. (16), in which the exact solutions, given by Eqs. (12)
and (13), exists for μ > 0 and ε > 0, and subbands in which they
are stable, according to values of the perturbation eigenfrequencies
produced by the numerical solution of the BdG equations for ε = 3
and regularization parameter ξ = 0.01 in Eq. (26).

First band (n = 0) Second band (n = 1) Third band (n = 2)

0.125 < μ < 0.5 1.125 < μ < 2 3.125 < μ < 4.5

Stability subband Stability subband Stability subbands

0.337 < μ < 0.5 1.66 < μ < 1.70 4.194 < μ < 4.5

They reduce to double eigenvalues if either Im{λ} = 0 or
Re{λ} = 0, the underlying solution being stable in the former
case.

We stress that the existence of well-defined stable subbands
in the second and third bands implies that the stationary
modes with multipeak shapes [see Figs. 1(b) and 1(c)] may
be stable in the present system, while most previously studied
nonlinear systems with self-attractive nonlinearity admit only
the stability of the simplest single-peak modes. On the other
hand, the instability of all the states in each band with the
norm exceeding a certain critical value, Ncr, is explained by
the fact the underlying equation (1) on the infinite line, with
the ideal δ function, gives rise to the critical collapse, because
is maintains the TS family, as mentioned above (TS solutions
exist precisely in the case when the critical collapse occurs
[13,14,17]). In particular, for the first band the numerical
result, rescaled back to ε = 1 [for comparison with Eq. (1)],
yields

Ncr (ε = 1) = 3Ncr (ε = 3) ≈ 1.94, (29)

i.e., almost exactly twice the above-mentioned critical value
for Eq. (1), Ncr = 1. The doubling is explained by the shape of
the mode displayed in Fig. 1(a): it is seen that approximately
half of the total norm is placed around δ(θ ), and the other half
is collected around the diametrically opposite position, θ =
π , the two peaks being separated by points where the local
density vanishes.

According to the analytical result given by Eqs. (14) and
(13), as well as according to what is seen in Figs. 1(d)–1(f),
the N (μ) dependences in all the three bands satisfy the VK
criterion. However, this criterion does not apply to complex
eigenvalues, being only relevant for purely imaginary ones,
with Re{λ} = 0 [13,14]. This fact explains why only parts of
the three bands carry stable modes, as shown by Table I and
Figs. 4(a)–4(c).

For the same ε > 0, the stability of the single-peak station-
ary modes with μ < 0, such as the one shown in Fig. 3(a),
is summarized in Fig. 4(d). It is seen that, strictly speaking,
all such modes are unstable against perturbations with purely
imaginary eigenfrequencies, in contradiction with the VK
criterion, as Fig. 5 features dN/dμ < 0 in interval (25).
However, the largest value of Im{λ} in this interval is actually
very small in comparison with typical values of instability
growth rates in other panels of Fig. 4. This fact suggests that
the instability of the stationary solutions may be quite weak in
this region, which is corroborated by direct simulations of the

perturbed evolution; see Fig. 5(b). Actually, the instability of
these single-peak modes, which are close to their counterparts
supported by the δ-functional self-attractive cubic nonlinear-
ity in the infinite domain [cf. solutions (18) and (2)], is a
“remnant” of the instability of modes (2) in the infinite system.

Lastly, results of the linear-stability analysis for the sta-
tionary solutions with μ > 0, found in the model with the
repulsive nonlinearity, ε < 0, are summarized in Figs. 4(e)
and 4(f). These solutions are completely stable in the first
band gap, which corresponds to n = 0 in Eq. (17). This result
is very natural, as the ground state in the model with the
repulsive nonlinearity, which populates the lowest band, must
be definitely stable. On the other hand, the excited states
populating the second and third bands [which correspond,
respectively, to n = 1 and 2 in Eq. (17)], are weakly unstable,
in formal contradiction with the anti-VK criterion. However,
this weak instability does not really destroy the stationary
modes from the second and third bands, see below.

C. Simulations of the perturbed evolution of stationary modes

The predictions for the stability and instability of the
stationary modes, produced above by the solution of the
BdG equations, have been verified by comparison with direct
simulations of Eq. (4), in which the input was taken as the cor-
responding stationary modes with small random perturbations
added to them. First, all the solutions which were predicted to
be stable, viz., those belonging to the stable subbands in Table
I in the case of ε > 0 and μ < 0, as well as ones belonging
to the first band in the case of ε < 0 and μ > 0, see Fig. 2(d),
were found to be stable in the direct simulations, while the
solutions belonging to unstable regions in Table I evolve into
chaotic states (not shown here in detail).

Further, in the case of ε < 0 and μ > 0, the perturbed evo-
lution of two- and four-peak modes belonging to the second
and third bands, where the numerical solution of the BdG
equations yields very small values of the instability growth
rate in Figs. 4(f) and 4(e), demonstrates small-amplitude
oscillations around the persistent stationary modes (not shown
here in detail). In other words, these modes remain effectively
stable ones.

Lastly, direct simulations of the perturbed evolution of
the stationary modes which are found, at ε > 0, with μ <

0 demonstrate that their instability, predicted by the com-
putation of perturbation eigenvalues in Fig. 4(d), leads to
spontaneous transformation of the modes into robustly oscil-
lating breathers, as shown in Fig. 5. The stationary solution
which carries the largest instability growth rate, at μ = −0.5
in Fig. 4(d), develops into a breather with large-amplitude
oscillations [Fig. 5(a)]. On the other hand, Fig. 5(b) shows
that, for μ close to point (24), at which the norm of the
stationary model attains the maximum value (23), and the
respective instability growth rate in Fig. 4(d) is quite small, the
resulting breather features small-amplitude oscillations, hence
it may be categorized as a nearly stable state.

IV. CONCLUSION

The objective of this work is to generate basic stationary
states in the model which is based on the one-dimensional
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Schrödinger equation on a ring, with the nonlinearity, of either
attractive or repulsive sign, ε > 0 or ε < 0, concentrated at a
single point, which may be represented by an ideal δ function,
or by a regularized narrow profile. In the case of the ideal δ

function, all the stationary solutions have been found in the
exact analytical form. In particular, the stationary states with
positive chemical potential, μ > 0, populate bands alternating
for ε > 0 / ε < 0, and the stationary states with μ < 0 fill
a semi-infinite band, solely for ε > 0. While the exact solu-
tions for μ < 0 are qualitatively similar to those previously
reported for the ring with a pair of localized nonlinearities
[69], those for μ > 0, which were not found in previous
works, provide a unique insight into exact band-gap states in
the nonlinear model. The stability of the stationary states was
investigated by means of numerical methods (the computation
of perturbation eigenfrequencies and direct simulations of the
perturbed evolution) in the three lowest bands for μ > 0,
revealing that each band, in the case of ε > 0, is split into
stable and unstable subbands, the stability loss occurring with
the increase of the total norm, N , at some critical level. Thus,
multipeak states, populating the higher (second and third)
bands, are partly stable in them. In the case of the repulsive

nonlinearity, the single-peak ground state is completely stable
in the first band, while the two- and four-peak excited states
in the two higher bands are weakly unstable in terms of their
eigenvalues, staying virtually stable in direct simulations. In
the case of the attractive self-interaction, the bound states
with μ < 0 are subject to the instability which spontaneously
transforms them into robust breathers. The latter instability is
weak for the states with the norm close to the maxim value.

The analysis reported in this work can be extended for a
more general setting, when a narrow stripe carrying a higher-
order nonlinearity (e.g., quintic) is embedded into a medium
with the uniformly distributed nonlinearity of a different type
(e.g., cubic), as suggested by the analysis performed for the
infinite domain in Ref. [71]. Another relevant direction may
be the analysis of a model similar to the present one, but with
two components, governed by nonlinearly coupled NLSEs;
cf. Ref. [25].
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