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In this paper, we study the stochastic resonance (SR) effect in an optomechanical system driven by a strong
coupling field and two weak signals in both semiclassical and quantum frameworks. In the semiclassical
description, the SR phenomena are found at the cooperation of input signals and system noises. When two signals
coact on our system, the interference effect between the optically induced SR and the mechanically induced SR
can be generated. In particular, a unique beating effect, which makes the SR effect robust against the initial phase
difference of two signals, appears in the SR synchronization process with unsynchronized signals. In addition,
the quantum stochastic resonance effect is numerically observed in the full quantum framework induced by pure
quantum fluctuations.
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I. INTRODUCTION

In recent decades, stochastic resonance (SR) has attracted
considerable attention in various subjects [1,2], such as
physics, chemistry, biology, and engineering science, for its
intriguing and counterintuitive behavior in nonlinear dynam-
ical systems whereby a subthreshold input signal can be
enhanced and optimized at an optimal noise level. SR was first
proposed in 1981 to explain the periodicity of the ice ages
[3,4], and since then it has been demonstrated theoretically
and experimentally in a variety of systems [1,5] and applied
to weak signal amplification [6,7] and detection [8,9]. A
model most intensively investigated of SR is a bistable system
subject to a feeble periodic signal and noise [10,11]. It has
been reported that SR can also occur in monostable systems
[12–14] and multistable systems [15–17] as a consequence
of nonlinearities in those systems. In addition, the SR phe-
nomenon has also been extended into the quantum domain
[18] and attracted increasing attention, such as the spin-boson
system [19], the micromaser system [20], the dissipative
anharmonic oscillator [21], the quantum many-body system
[22], the Dicke model [23], and the Jaynes-Cummings model
[24].

It is known that nonlinearity is a key ingredient to induce
the SR effect. With the development of fabricating optome-
chanical devices, the radiation pressure mediated optome-
chanical nonlinear coupling allows various nonlinear effects,
such as bistability [25], multistability [17,26,27], instability
[28,29], and chaos [30,31]. A standard optomechanical sys-
tem (OMS) consists of an optical cavity where one of the end
mirrors oscillates and the radiation pressure on the moving
mirror creates a nonlinear interaction between the optical
mode and the mechanical mode. The study of SR in such a
basic OMS may have great importance in understanding the
nature of the SR effect [11,32] and application in weak-signal
detection [33].

In this paper we investigate the SR effect in an OMS
subject to two weak signals (optical and mechanical signals)
in the semiclassical framework and one weak mechanical

signal in the quantum domain. In the semiclassical regime,
the SR effect activated by the white noise is studied in three
situations: a single signal, two synchronized signals, and two
unsynchronized signals. The results show that the system
modulated by a single subthreshold signal and a suitable noise
can realize periodic interwell hopping synchronized with the
signal, which is the typical SR effect. Interestingly, except
for the conventional SR resonance peak in the signal-to-noise
ratio (SNR) curve, a stage of decrease appears for lower
signal amplitudes at a lower noise range due to the intrawell
oscillation in a single well.

For the case of two signals, the system response can be
interpreted as the interference between the two signal-induced
SRs. The interference of SRs usually occurs in the multistable
systems [15,17]. Here we present the interference of SRs
occurring in a bistable system, which is jointly induced by
an optical channel and a mechanical channel. We show that
the constructive interference of two synchronized signals can
reduce signal amplitudes for inducing SR, and the beatinglike
effect can appear when one signal is slightly detuned from the
other. We find that the SR effect is robust and insensitive to
the initial phase difference of signals as a result of beating.

In the quantum description, we explore the system stochas-
tic dynamics induced by a weak mechanical force and quan-
tum fluctuations using the quantum trajectory theory [34]. The
results show that at zero temperature the quantum stochastic
resonance (QSR) can also be observed in our bistable OMS
and the system responses are synchronized to the external
signal under appropriate system parameters at the optimal
signal frequency.

This paper is organized as follows. In Sec. II, we introduce
our model and analyze the steady-state solutions as well as
the stability. In Sec. III, we show the SR effects induced by a
single modulated signal and thermal noise in the semiclassical
framework, including the input-output synchronization and
the resonance peak in SNR curve. Then, the combined effect
of two signals in the SR process is discussed. In Sec. IV, we
investigate the QSR effects subject to a weak mechanical force
and pure quantum noise at zero temperature, and the residence
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FIG. 1. Sketch of an optomechanical system. An optical res-
onator, driven by a strong control field Ec and a weak signal field
Es , is coupled to the mechanical oscillator by radiation pressure. A
weak force Fs acts on the mechanical oscillator.

time distribution and the system synchronous responses to the
signal are described. In Sec. V, our conclusions are presented.

II. MODEL

We consider a standard OMS whereby the position of a
mechanical oscillator modulates the resonance frequency of
an optical cavity as shown in Fig. 1. A mechanical mode with
resonance frequency ωm and an optical mode with frequency
ωa are coupled through the radiation pressure. The optical
cavity is driven by a strong control field Ec with frequency ωc

and a weak-signal field Es with frequency ωs ; a weak force
Fs with frequency ωf acts on the mechanical oscillator. In a
rotating frame, the Hamiltonian of the system reads (h̄ = 1)

Ĥ = 1
2ωm(x̂2 + p̂2) + �â†â + gâ†âx̂

+Ec(â† + â) + Es (e−i δt â† + ei δt â)

+Fs cos(ωf t + φ)x̂, (1)

where x̂ and p̂ are the dimensionless position and momentum
operators of the mechanical mode; â†(â) are the creation
(annihilation) operators of the optical mode; g is the optome-
chanical coupling; � = ωa − ωc is the detuning between the
optical mode and the strong coupling field; δ = ωs − ωc is the
frequency difference of the two external driving fields Es and
Ec; whereas φ is the initial phase difference of the two weak
signals Fs and Es .

First, this paper deals with the system in the semiclassical
description, thus we neglect quantum fluctuations of optics
and mechanics. By using the Heisenberg equation of motion
and phenomenologically adding thermal noise and damping
terms, we can obtain the mean value equations of motion for
classical system variables α = 〈â〉, x = 〈x̂〉, and p = 〈p̂〉,

α̇ = −(i� + κ )α − igxα − iEc − iEse
−i δt , (2)

α̇∗ = (i� − κ )α∗ + igxα∗ + iEc + iEse
i δt , (3)

ṗ = −γmp − ωmx − g|α|2 − Fs cos(ωf t + φ) + ξm(t ), (4)

ẋ = ωmp, (5)

where 2γm is the mechanical damping rate, 2κ is the op-
tical decay rate, and ξm is the stochastic noise acting on
the mechanical oscillator. For a high mechanical quality
factor Q = ωm/γm � 1, ξm is the stochastic white noise,
and it obeys the δ-correlation 〈ξm(t )ξm(t ′)〉 = 2D δ(t − t ′)
with the strength of noise D � γm

2 (2n̄ + 1), where n̄ =
[exp(h̄ωm/kBT ) − 1]−1 is the mean thermal excitation num-
ber [35,36]. The thermal optical noise can be ignored at low
temperatures as the thermal occupation of the optical mode is
far below one.

By setting the time derivatives in Eqs. (2)–(5) to zeros, we
can obtain the steady-state equation for mechanical position
xs ,

g2x3
s + 2g�x2

s + (�2 + κ2)xs + gωmE2
c(

ω2
m + γ 2

m

) = 0, (6)

which is a cubic equation of xs . As a consequence, three solu-
tions of xs may exist in a certain range of system parameters,
providing the possibility for bistability.

Following the linear stability analysis, we can rewrite
the system operators as a sum of their steady-state values
and zero-mean fluctuations, i.e., ŷ → ys + ŷ, and obtain the
linearized equations of motion by ignoring high-order terms
of fluctuations:

ẏ = J ŷ + ξ, (7)

where ŷ = [â, â†, p̂, x̂]T , ξ = [−iEse
−i δt , iEse

i δt ,

−Fs cos(ωf t + φ) + ξm(t ), 0]T , and the Jacobian matrix
J is given by

J =

⎡
⎢⎢⎢⎣

−i(� + gxs ) − κ 0 0 −igαs

0 i(� + gxs ) − κ 0 igα∗
s

−gα∗
s −gαs −γm −ωm

0 0 ωm 0

⎤
⎥⎥⎥⎦.

(8)

The criterion of a stable solution is that the real parts of all
eigenvalues of the Jacobian matrix J are negative.

The mechanical position x versus the detuning � is illus-
trated in Fig. 2. It is clear that the system exhibits mechanical
bistability and the mechanical position undergoes a transition
from a single solution to three solutions. In the three-solution
region, the upper and lower branches correspond to two stable
solutions, and the middle branch is unstable. In the following,
we are interested in system dynamics in this bistable region.

To investigate the dynamics of the mechanical mode, we
approximately derive the equation of motion merely for the
mechanical mode under κ � γm, g where the dynamics of
the optical mode is much faster than that of the mechanical
mode and α̇ (α̇∗) can be set to zero to solve the stable value of
α (α∗). In this case, the equation of motion for the mechanical
mode can be simplified to

ẍ + γmẋ = − ω2
mx − ωm

[
g

|Ec + Ese
−i δt |2

(� + gx)2 + κ2

+ Fs cos(ωf t + φ) − ξm(t )

]
. (9)
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FIG. 2. The system stability diagram. Blue stands for the stable
branches, and red stands for the unstable branch. The parameters are
κ = 2.0ωm, γm = 2 × 10−4ωm, Ec = 5.05ωm, and g = 0.72ωm.

From this, we can obtain the effective potential function for
the position of the mechanical oscillator in the absence of
noise,

U (x) = 1

2
ω2

mx2 + ωmFs cos(ωf t + φ)x

+ ωm|Ec + Ese
−i δt |2

κ
arctan

� + gx

κ
. (10)

As shown in Fig. 3, the effective potential varies periodi-
cally in the presence of the optical signal Es = 0.021ωm (left
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FIG. 3. Effective potential function of the mechanical position
in one period with the optical signal Es = 0.021ωm (left panel)
or the mechanical force Fs = 0.032ωm (right panel). The detuning
� = 3.626ωm, the frequency difference δ = 0.0006 × 2πωm, the
mechanical signal frequency ωf = 0.0006 × 2πωm, and the initial
phase difference φ = 0. The other parameters are the same as those
in Fig. 2.
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FIG. 4. Stochastic resonance with single modulation signal Es

(left panel) or Fs (right panel) in the semiclassical description. (a) and
(b) are time evolutions of the signals; (c) and (d) present the steady-
state position of the mechanical mode without mechanical thermal
noise D = 0 (red solid curves) and with D = 0.003ωm (blue curves).
The other parameters are the same as those in Fig. 3.

panel) or the mechanical force Fs = 0.032ωm (right panel).
Assuming that the two signals are synchronous over time, i.e.,
φ = 0, we can see that both signals give periodic modulation
on the potential function and the modulations from the two
signals are synchronized.

III. STOCHASTIC RESONANCE IN THE SEMICLASSICAL
FRAMEWORK

In this section, we present our main results in the semi-
classical description: SR phenomena of our system under
different thermal noise and driving signals. In all simulations,
we assume that the mechanical oscillator is initially located at
the original coordinate, i.e., x(t = 0) = 0. To observe noise-
induced system responses, the signals are chosen to be below
thresholds. That means the mechanical oscillator cannot cross
the potential barriers only driven by the signals.

Figure 4 presents the system dynamics due to a single mod-
ulation signal Es (left panel) and Fs (right panel), respectively,
for the mechanical position x. It is clear that, in the absence
of noise, the signals are too weak to drive the mechanical
oscillator from one potential well into the other, and they can
only drive small-amplitude oscillations within a single well as
shown in the red curves in Figs. 4(c) and 4(d). By adding a
certain amount of thermal noise D = 0.003ωm to the system,
the noise-assisted hopping between the double potential wells
can be observed, and the hopping is exactly synchronized with
signal frequencies. This is a typical signature of the SR effect.

Except for the input-output synchronization, a resonance
peak in the relation of the SNR versus noise is another signa-
ture of SR. We now analyze this feature with the mechanical
signal Fs only under different intensities. Here we adopt
the standard definition of the SNR: the signal in the power
spectrum divided by the noise background at the driving
signal frequency, i.e., SNR = Ps/Pn [2].
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FIG. 5. The SNR in the decibel unit versus the noise intensity
D for different amplitudes of the mechanical signal Fs . The other
parameters are the same as those in Fig. 4 except for Es = 0.

In Fig. 5, the SNR of the mechanical signal versus the
noise strength is plotted for three different amplitudes of
the signal. For Fs = 0.032ωm, we can see a clear resonance
peak in the SNR curve, and the trend is quite standard. It
is interesting to note that, for lower signal amplitudes (Fs =
0.015ωm and Fs = 0.005ωm), the SNR first experiences a
stage of decrease other than the main SR resonance peak as
the noise increases. In this decreased stage the mechanical
oscillator is actually performing intrawell oscillations around
the localized potential minima since the noise is too low
to induce the interwell transition. As the noise intensity D

increases, the noise-assisted interwell hopping occurs, and the
main interwell SR peak appears.

The system dynamics driven by a single mechanical or
optical signal has been analyzed above. Now we turn our
attention to the situation of two signals simultaneously acting
on the system. Figure 6 shows the mechanical response of the
system in the presence of two signals and shows how their
frequency difference affects the SR effect. First we consider
the situation that two signals have the same modulation fre-
quency and phases. With the matched modulation frequen-
cies (δ = ωf ) and appropriate noise, the periodic hopping
between two stable states can be observed in Fig. 6(a). The
corresponding spectrum on the logarithmic scale is shown
in Fig. 6(b) where a single peak is centered at the signal
frequency of 0.0006 × 2πωm. It can be easily explained as the
constructive interference caused by two synchronized signals.
In addition, compared to the single signal case, the amplitudes
of two signals required for SR to occur are substantially
decreased, which is beneficial to the detection of weak signals
in experiments. And the system parameters we have used are
feasible for current experiment conditions [37].

When the modulation frequency difference �ω = δ − ωf

is a small but nonzero value, some interesting phenomena take
place as shown in Figs. 6(c) and 6(d). Here we choose �ω =
δ/10. The interplay of the two signals results in a complicated
beatinglike phenomenon where a slow modulation envelope
and fast interwell and intrawell hoppings coexist. It is clear
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FIG. 6. The SR synchronization phenomena in the presence of
two signals for (a) δ = ωf and (c) δ − ωf = δ/10. (b) and (d) are
the corresponding Fourier spectra. The red solid curve in (c) is
the function of 0.5 cos(�ωt/2) − 3.0. The other parameters are the
same as those in Fig. 4 except Es = 0.012ωm and Fs = 0.015ωm.

that the period of the slow envelope matches well with the
curve cos(�ωt/2), which is consistent with the theory of the
beating signal. We can see that, in the regions with large
modulation amplitude, the interference between the signal-
induced responses is constructive and the system experiences
a periodic interwell transition. In contrast, for the regions with
low modulation amplitude, their interference is destructive,
and hence the mechanical oscillator cannot cross the potential
barrier and it oscillates inside a single well. Correspondingly,
there are multiple peaks in the frequency domain for �ω 	= 0
[see Fig. 6(d)]. Two main signal peaks at the input signal
frequencies δ and ωf and a difference frequency signal peak
at δ/10 can be seen. Furthermore, the main resonance peak
at δ in Fig. 6(d) is lower than that in Fig. 6(b). It is not a
surprising result since the interference of two signals is the
strongest when they are exactly synchronized as discussed in
Ref. [17].

Finally, we analyze the influence of the initial phase dif-
ference φ of the optical and mechanical signals on the SR
phenomenon. From Fig. 3, we know that when two signals are
initially synchronized, i.e., φ = 0, their modulations on the
potential function have the same pace and therefore they cause
the best constructive interference in the SR phenomenon.
For the other initial phases, their influences will be partly or
fully canceled. To confirm this effect, we plot the mechanical
responses for �ω = 0 with φ = π/2 and φ = π in Figs. 7(a)
and 7(c). It is obvious that the SR effect diminishes to vanish
as φ varies from 0 to π . However, the situation is dramatically
different when the frequency difference of two signals is
nonzero, i.e., �ω = δ/10. As shown in Figs. 7(b) and 7(d),
the beatinglike phenomenon always exists for different initial
phases, and the input-output synchronization remains as good
as that in Fig. 6(c). Therefore, the beatinglike phenomenon
can make the synchronization behavior and the SR effect more
robust to the initial phase fluctuations.
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FIG. 7. The mechanical responses for several values of initial
phase difference φ without (left panel) or with (right panel) a
frequency difference. (a) φ = π/2, �ω = 0; (b) φ = π/2, �ω =
δ/10; (c) φ = π, �ω = 0; (d) φ = π, �ω = δ/10. The other pa-
rameters are the same as those in Fig. 6.

IV. QUANTUM STOCHASTIC RESONANCE IN THE FULL
QUANTUM FRAMEWORK

In the preceding sections, we have studied the SR phenom-
ena in the semiclassical framework. Now we turn to inves-
tigate the QSR effect induced by pure quantum fluctuations
using the quantum trajectory method [34] at zero temperature.
For a single trajectory, the system dynamic conditioned on
noisy homodyne detection can be described by the stochastic
master equation (h̄ = 1),

dρ(t ) = dt{i[ρ(t ), Ĥ ] + D[
√

2κâ]ρ(t ) + D[
√

2γmb̂]ρ(t )}
+ dW (t )H[

√
2κâ]ρ(t ), (11)

where ρ(t ) is the density operator, Ĥ is the Hamiltonian of
the OMS given in Eq. (1), and dW is the Wiener increment,
satisfying 〈dW 〉 = 0 and 〈(dW )2〉 = dt . The superoperators
D and H are defined as

D[Â]ρ = 1
2 (2ÂρÂ† − Â†Âρ − ρÂ†Â), (12)

H[Â]ρ = Âρ + ρÂ† − Tr[Âρ + ρÂ†]ρ. (13)

The corresponding homodyne detection current is given by

I (t ) =
√

2κ〈â + â†〉 + dW (t )/dt. (14)

For convenience, we only investigate the QSR effect in-
duced by a subthreshold weak force Fs and the quantum noise.
In Figs. 8(a)–8(c), we present the residence time distributions
subject to the periodic weak force Fs cos(ωf t ) for three
different modulation frequencies f = 6f0, f0, f0/6, where
ωf = f × 2πωm and f0 = 0.03. The results show that the
resonance can be achieved under appropriate parameters by
varying the modulation frequency, distingptshed by a separate
peak of the distribution [see Fig. 8(b)].

In Figs. 8(d)–8(i), we show a few representative trajectories
of the photon number (〈â†â〉) and the mechanical position
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FIG. 8. The system responses subjected to a weak force and the
quantum noise for three different modulation frequencies. (a)–(c)
Histograms for the residence time distributions; (d)–(f) the average
photon numbers. The gray curve is the function of 0.5 cos(ωf t ),
characterized the period of the weak force; (g)–(i) the mechanical po-
sitions. The parameters are Ec = 5.15ωm, Es = 0, Fs = ωm, γm =
0.3ωm, and f0 = 0.03. The other parameters are the same as those in
Fig. 4.

(〈x〉). The system responses are synchronized to the signal
best at the optimal modulation frequency f0; a higher fre-
quency 6f0 or a lower frequency f0/6 leads to the destruction
of synchronization, similar to the responses of the SR effect
activated by thermal noise. However, due to different noise
levels and system parameters, it requires a different timescale
or frequency scale of the signal to satisfy the QSR matching
condition.

V. CONCLUSION

To summarize, we have investigated noise-induced syn-
chronization to external signals in a bistable optomechanical
system in the semiclassical and quantum frameworks. Either a
single optical signal or a single mechanical signal can induce
the SR effect in our system. When the two external signals
act on the system jointly, we can observe an interference of
SRs, which leads to the beatinglike phenomenon depending
on the frequency difference between signals. In addition, due
to the beatinglike effect, the input-output synchronization is
more robust against the initial phase difference of two signals.
Our results reveal that the optical pathway can be utilized
to control the mechanical SR effect and detect the weak
mechanical signal in a basic optomechanical system. Besides,
we have numerically demonstrated the QSR effect induced
by a weak force and pure quantum noise using the quantum
trajectory method. The QSR effect, similar to the SR effect
induced by the white noise, can be obtained under different
system parameters at the optimal modulation frequency.

052202-5



MIN XIE, BIXUAN FAN, XIAOLI HE, AND QINGQING CHEN PHYSICAL REVIEW E 98, 052202 (2018)

ACKNOWLEDGMENTS

The authors would like to thank Dr. Z. Duan for valuable
suggestions. We gratefully acknowledge financial support

from the National Natural Science Foundation of China under
Grants No. 11504145 and No. 11664014 and from the Natural
Science Foundation of Jiangxi Province under Grants No.
20161BAB211013 and No. 20161BAB201023.

[1] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni,
Rev. Mod. Phys. 70, 223 (1998).

[2] T. Wellens, V. Shatokhin, and A. Buchleitner, Rep. Prog. Phys.
67, 45 (2004).

[3] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453
(1981).

[4] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus 34, 10
(1982).

[5] V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Schimansky-
Geier, Usp. Fiz. Nauk 169, 7 (1999).

[6] P. Jung and P. Hänggi, Phys. Rev. A 44, 8032 (1991).
[7] R. L. Badzey and P. Mohanty, Nature (London) 437, 995 (2005).
[8] B. Kosko and S. Mitaim, Phys. Rev. E 64, 051110 (2001).
[9] F. Duan, F. Chapeau-Blondeau, and D. Abbott, Phy. Rev. E 84,

051107 (2011).
[10] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S.

Santucci, Phys. Rev. Lett. 62, 349 (1989).
[11] F. Mueller, S. Heugel, and L. J. Wang, Phys. Rev. A 79,

031804(R) (2009).
[12] J. M. G. Vilar and J. M. Rubi, Phys. Rev. Lett. 77, 2863 (1996).
[13] A. N. Grigorenko, S. I. Nikitin, and G. V. Roschepkin,

Phys. Rev. E 56, R4907(R) (1997).
[14] N. V. Agudov, A. V. Krichigin, D. Valenti, and B. Spagnolo,

Phys. Rev. E 81, 051123 (2010).
[15] P. K. Ghosh, B. C. Bag, and D. S. Ray, Phys. Rev. E 75, 032101

(2007).
[16] S. Arathi and S. Rajasekar, Phys. Scr. 84, 065011 (2011).
[17] B. Fan and M. Xie, Phys. Rev. A 95, 023808 (2017).
[18] R. Löfstedt and S. N. Coppersmith, Phys. Rev Lett. 72, 1947

(1994).
[19] M. Grifoni and P. Hänggi, Phys. Rev. Lett. 76, 1611 (1996).
[20] A. Buchleitner and R. N. Mantegna, Phys. Rev. Lett. 80, 3932

(1998).

[21] H. H. Adamyan, S. B. Manvelyan, and G. Y. Kryuchkyan,
Phys. Rev. A 63, 022102 (2001).

[22] S. F. Huelga and M. B. Plenio, Phys. Rev. Lett. 98, 170601
(2007).

[23] D. Witthaut, J. Phys. B: At., Mol. Opt. Phys. 45, 225501
(2012).

[24] Q. Qiu, S. Tao, C. Liu, S. Guan, M. Xie, and B. Fan, Phys. Rev.
A 96, 063808 (2017).

[25] Z. Duan, B. Fan, T. M. Stace, G. J. Milburn, and C. A. Holmes,
Phys. Rev. A 93, 023802 (2016).

[26] F. Marquardt, J. G. E. Harris, and S. M. Girvin, Phys. Rev. Lett.
96, 103901 (2006).

[27] C. Schulz. A. Alvermann, L. Bakemeier, and H. Fehske,
Europhys. Lett. 113, 64002 (2016).

[28] V. B. Braginsky, S. E. Strigin, and S. P. Vytchanin, Phys. Lett.
A 287, 331 (2001).

[29] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J.
Vahala, Phys. Rev. Lett. 95, 033901 (2005).

[30] T. Carmon, M. C. Cross, and K. J. Vahala, Phys. Rev. Lett. 98,
167203 (2007).

[31] L. Bakemeier, A. Alvermann, and H. Fehske, Phys. Rev. Lett.
114, 013601 (2015).

[32] F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F.
Nori, and L. Yang, Nat. Photonics 10, 399 (2016).

[33] S. Aldana, C. Bruder, and A. Nunnenkamp, Phys. Rev. A 90,
063810 (2014).

[34] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University, Cambridge, UK, 2010).

[35] R. Benguria and M. Kac, Phys. Rev. Lett. 46, 1 (1981).
[36] S. Barzanjeh, D. Vitali, P. Tombesi, and G. J. Milburn, Phys.

Rev. A 84, 042342 (2011).
[37] S. Groblacher, K. Hammerer, M. R. Vanner, and M.

Aspelmeyer, Nature (London) 460, 724 (2009).

052202-6

https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1088/0034-4885/67/1/R02
https://doi.org/10.1088/0034-4885/67/1/R02
https://doi.org/10.1088/0034-4885/67/1/R02
https://doi.org/10.1088/0034-4885/67/1/R02
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.3402/tellusa.v34i1.10782
https://doi.org/10.3402/tellusa.v34i1.10782
https://doi.org/10.3402/tellusa.v34i1.10782
https://doi.org/10.3402/tellusa.v34i1.10782
https://doi.org/10.3367/UFNr.0169.199901c.0007
https://doi.org/10.3367/UFNr.0169.199901c.0007
https://doi.org/10.3367/UFNr.0169.199901c.0007
https://doi.org/10.3367/UFNr.0169.199901c.0007
https://doi.org/10.1103/PhysRevA.44.8032
https://doi.org/10.1103/PhysRevA.44.8032
https://doi.org/10.1103/PhysRevA.44.8032
https://doi.org/10.1103/PhysRevA.44.8032
https://doi.org/10.1038/nature04124
https://doi.org/10.1038/nature04124
https://doi.org/10.1038/nature04124
https://doi.org/10.1038/nature04124
https://doi.org/10.1103/PhysRevE.64.051110
https://doi.org/10.1103/PhysRevE.64.051110
https://doi.org/10.1103/PhysRevE.64.051110
https://doi.org/10.1103/PhysRevE.64.051110
https://doi.org/10.1103/PhysRevE.84.051107
https://doi.org/10.1103/PhysRevE.84.051107
https://doi.org/10.1103/PhysRevE.84.051107
https://doi.org/10.1103/PhysRevE.84.051107
https://doi.org/10.1103/PhysRevLett.62.349
https://doi.org/10.1103/PhysRevLett.62.349
https://doi.org/10.1103/PhysRevLett.62.349
https://doi.org/10.1103/PhysRevLett.62.349
https://doi.org/10.1103/PhysRevA.79.031804
https://doi.org/10.1103/PhysRevA.79.031804
https://doi.org/10.1103/PhysRevA.79.031804
https://doi.org/10.1103/PhysRevA.79.031804
https://doi.org/10.1103/PhysRevLett.77.2863
https://doi.org/10.1103/PhysRevLett.77.2863
https://doi.org/10.1103/PhysRevLett.77.2863
https://doi.org/10.1103/PhysRevLett.77.2863
https://doi.org/10.1103/PhysRevE.56.R4907
https://doi.org/10.1103/PhysRevE.56.R4907
https://doi.org/10.1103/PhysRevE.56.R4907
https://doi.org/10.1103/PhysRevE.56.R4907
https://doi.org/10.1103/PhysRevE.81.051123
https://doi.org/10.1103/PhysRevE.81.051123
https://doi.org/10.1103/PhysRevE.81.051123
https://doi.org/10.1103/PhysRevE.81.051123
https://doi.org/10.1103/PhysRevE.75.032101
https://doi.org/10.1103/PhysRevE.75.032101
https://doi.org/10.1103/PhysRevE.75.032101
https://doi.org/10.1103/PhysRevE.75.032101
https://doi.org/10.1088/0031-8949/84/06/065011
https://doi.org/10.1088/0031-8949/84/06/065011
https://doi.org/10.1088/0031-8949/84/06/065011
https://doi.org/10.1088/0031-8949/84/06/065011
https://doi.org/10.1103/PhysRevA.95.023808
https://doi.org/10.1103/PhysRevA.95.023808
https://doi.org/10.1103/PhysRevA.95.023808
https://doi.org/10.1103/PhysRevA.95.023808
https://doi.org/10.1103/PhysRevLett.72.1947
https://doi.org/10.1103/PhysRevLett.72.1947
https://doi.org/10.1103/PhysRevLett.72.1947
https://doi.org/10.1103/PhysRevLett.72.1947
https://doi.org/10.1103/PhysRevLett.76.1611
https://doi.org/10.1103/PhysRevLett.76.1611
https://doi.org/10.1103/PhysRevLett.76.1611
https://doi.org/10.1103/PhysRevLett.76.1611
https://doi.org/10.1103/PhysRevLett.80.3932
https://doi.org/10.1103/PhysRevLett.80.3932
https://doi.org/10.1103/PhysRevLett.80.3932
https://doi.org/10.1103/PhysRevLett.80.3932
https://doi.org/10.1103/PhysRevA.63.022102
https://doi.org/10.1103/PhysRevA.63.022102
https://doi.org/10.1103/PhysRevA.63.022102
https://doi.org/10.1103/PhysRevA.63.022102
https://doi.org/10.1103/PhysRevLett.98.170601
https://doi.org/10.1103/PhysRevLett.98.170601
https://doi.org/10.1103/PhysRevLett.98.170601
https://doi.org/10.1103/PhysRevLett.98.170601
https://doi.org/10.1088/0953-4075/45/22/225501
https://doi.org/10.1088/0953-4075/45/22/225501
https://doi.org/10.1088/0953-4075/45/22/225501
https://doi.org/10.1088/0953-4075/45/22/225501
https://doi.org/10.1103/PhysRevA.96.063808
https://doi.org/10.1103/PhysRevA.96.063808
https://doi.org/10.1103/PhysRevA.96.063808
https://doi.org/10.1103/PhysRevA.96.063808
https://doi.org/10.1103/PhysRevA.93.023802
https://doi.org/10.1103/PhysRevA.93.023802
https://doi.org/10.1103/PhysRevA.93.023802
https://doi.org/10.1103/PhysRevA.93.023802
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1209/0295-5075/113/64002
https://doi.org/10.1209/0295-5075/113/64002
https://doi.org/10.1209/0295-5075/113/64002
https://doi.org/10.1209/0295-5075/113/64002
https://doi.org/10.1016/S0375-9601(01)00510-2
https://doi.org/10.1016/S0375-9601(01)00510-2
https://doi.org/10.1016/S0375-9601(01)00510-2
https://doi.org/10.1016/S0375-9601(01)00510-2
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.98.167203
https://doi.org/10.1103/PhysRevLett.98.167203
https://doi.org/10.1103/PhysRevLett.98.167203
https://doi.org/10.1103/PhysRevLett.98.167203
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1038/nphoton.2016.73
https://doi.org/10.1038/nphoton.2016.73
https://doi.org/10.1038/nphoton.2016.73
https://doi.org/10.1038/nphoton.2016.73
https://doi.org/10.1103/PhysRevA.90.063810
https://doi.org/10.1103/PhysRevA.90.063810
https://doi.org/10.1103/PhysRevA.90.063810
https://doi.org/10.1103/PhysRevA.90.063810
https://doi.org/10.1103/PhysRevLett.46.1
https://doi.org/10.1103/PhysRevLett.46.1
https://doi.org/10.1103/PhysRevLett.46.1
https://doi.org/10.1103/PhysRevLett.46.1
https://doi.org/10.1103/PhysRevA.84.042342
https://doi.org/10.1103/PhysRevA.84.042342
https://doi.org/10.1103/PhysRevA.84.042342
https://doi.org/10.1103/PhysRevA.84.042342
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171



