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Resonant localized modes in electrical lattices with second-neighbor coupling
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We demonstrate experimentally and corroborate numerically that an electrical lattice with nearest-neighbor
and second-neighbor coupling can simultaneously support long-lived coherent structures in the form of both
standard intrinsic localized modes (ILMs) as well as resonant ILMs. In the latter case, the wings of the ILM
exhibit oscillations due to resonance with a plane-wave mode of the same frequency. This kind of localized
mode has also been termed a nanopteron. Here we show experimentally and using realistic simulations of the
system that the nanopteron can be stabilized via both direct and subharmonic driving. In the case of excitations at
the zone center (i.e., at wave number k = 0), we observed stable ILMs as well as a periodic localization pattern in
certain driving regimes. In the zone boundary case (of wave number k = π/a, where a is the lattice spacing), the
ILMs are always resonant with a plane-wave mode, but they can nevertheless be stabilized by direct (staggered)
and subharmonic driving.
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I. INTRODUCTION

Intrinsic localized modes (ILMs), also known as discrete
breathers (DBs), have been studied in a great variety of
physical systems whose only requirements are that they (i)
be spatially discrete and (typically) periodic, and (ii) ex-
hibit nonlinearity [1,2]. These DB waveforms are exact time-
periodic modes in (chiefly homogeneous) lattices for which
the energy is spatially localized, typically over a few lattice
sites. While some of the prototypical early studies arose
in the context of vibrational-energy localization in atomic
lattices [3,4], relevant considerations quickly expanded—
involving also experimental work—to spin chains [5], and
later to fabricated photonic lattices, Bose-Einstein conden-
sates, Josephson-junction arrays, and microelectromechanical
systems (MEMS), to name just a few examples [6–9]. More
recently, materials systems such as granular chains [10–12] as
well as electrical lattices [13–15] have attracted some interest
as media supporting self-localized modes.

One thing that was realized early on was that ILMs could
only exist when their frequencies fell outside of the spectrum
of linear, extended-wave modes. In fact, even the overtones of
the ILM were forbidden to overlap with any plane-wave mode
frequency. This was established rigorously for Hamiltonian
lattices [16,17]. On the other hand, it was also demonstrated
that discrete breatherlike modes could exist in certain cir-
cumstances even when they did intersect part of the linear
dispersion curve. In these cases, the mode energy was the
highest in a very narrow central region of space, but it did
not strictly go to zero with distance from that center. Instead,
the tails of the ILM were found to exhibit small spatial
oscillations consistent with the wave number of the resonant
plane-wave mode. This type of phenomenon was reported,
for instance, in numerical studies of spin-wave localization
in spin chains with second-neighbor Heisenberg interactions

[18–21]. The authors named this type of self-localization an
“intrinsic localized spin-wave resonance.” No corresponding
experimental observations were obtained, to the best of our
knowledge, in this setting. The term nanopteron has also
been used to signify a solitonlike solution featuring a small
oscillatory background, and additionally discrete versions
of such a solitary wave have been discussed [22,23]; such
structures are also referred to as “weakly nonlocal solitary
waves,” and a summary of (early) theoretical and numerical
efforts along this direction was given in Ref. [24]. However,
experimental studies of such excitations remain very limited;
the only systematic example that we are aware of concerns the
propagation of weakly nonlocal traveling waves in a woodpile
lattice in the work of Ref. [25]. Coherent structures in the form
of weakly localized discrete breathers will be a focal point of
the present study. These are resonant in the sense that their
frequency does intersect the linear dispersion curve, which
means that some energy transfer between a plane-wave mode
and the ILM can occur.

Another key feature of the present work is the consid-
eration of beyond nearest-neighbor interactions, through the
inclusion of second neighbors. The importance of incorporat-
ing such interactions when studying energy localization has
also been reported in a variety of other discrete extended
systems, many of which can be modeled by the nonlinear
Schrödinger equation [26–28]. A particular proposal of this
type, through consideration of so-called zigzag lattices in
nonlinear optics [29], subsequently found remarkable experi-
mental realizations in the context of femtosecond laser-written
waveguide arrays [30]. Subsequent studies in that context
went beyond the study of localization and also toward the
observation of (anharmonic) Bloch oscillations by employ-
ing zigzag waveguide arrays in which the second-neighbor
coupling could be controllably tuned [31]. The relevant
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phenomenology has remained an active topic of study in
recent investigations [32,33], and it will also be central to
the discrete breather phenomenology in the electrical lattices
presented herein.

In this paper, we report on experimental and numerical
observations of ILMs in an electrical lattice with nearest-
neighbor and second-neighbor coupling. A key distinguishing
feature of our work with respect to earlier optical realizations
is that contrary to the scenarios of the latter type [30,31],
where the second-neighbor coupling is predominantly linear,
in our case it is fundamentally nonlinear, as will be evident
in the mathematical model below. Moreover, the theoretical
model contains a nonlinear coupling of each node to its
nearest neighbors comparable to the on-site nonlinearity, a
feature also rather uncommon in the optical setting; see, e.g.,
the relevant discussion of [34]. It is shown that this lattice can
support two types of long-lived, experimentally observable
localized modes: the standard ILM (whose wings asymptot-
ically approach zero), and the resonant ILM or nanopteron
(whose wings manifest oscillations). The former branches off
from the zone-center (ZC) mode (k = 0), whereas the latter
derives from the zone-boundary (ZB) mode (k = π/a). For a
first analytical exploration, we deploy a simplified model of
the lattice that uses harmonic and square-anharmonic on-site
terms, approximating the full nonlinearity of the electrical
unit-cell resonator fairly well while ignoring the resistive
currents through the diode. In this context, we can numerically
approximate the solutions, and we show that both standard
ILMs as well as resonant ILMs come in two varieties of
double-peaked and single-peaked profiles.

On the experimental side, both types of localized modes
are generated and stabilized with an external driver. In the
case of the standard ILM (here also referred to as the ZC
ILM), the driving signal is spatially homogeneous with a
frequency just below the bottom of the linear dispersion
curve. For resonant ILMs or nanopterons (also referred to
as ZB ILMs), we employ a spatially staggered driver just
below the ZB mode in frequency, as well as subharmonic
driving. Realistic dynamical simulations are performed, and
these too indicate that such excitations can be generated via
modulational instability of the relevant extended mode.

II. THE SYSTEM AND THE THEORETICAL MODEL

The nonlinear lattice shown in Fig. 1 consists of N unit
cells each comprised of a linear inductor L1 in parallel with a
nonlinear capacitor C(V ) and coupled via inductances L2 and
L3. The nonlinear capacitor is typically realized by a (reverse-
biased) varactor diode with a capacitance given as a function
of the differential voltage Vn across the capacitor. More details
about the diode are given in panel (b) of Fig. 1.

For reasons of analytical tractability, we begin the dis-
cussion by exploring a simplified dynamical model, where
the nonlinear element is considered to be strictly capacitive,
which, in contrast to a diode, precludes the possibility of
resistive currents flowing through the element. This is the
primary limitation of this model in modeling the real varactor
diode used in the experiment. Later, we will come back to a
more realistic, yet also more complex, model that we use as

FIG. 1. (a) Schematic representation of the coupled nonlinear
transmission line. (b) A closer view of the detailed diode model and
the forcing by an external signal.

the basis for direct simulations. This more complex model is
based on the elements shown in Fig. 1(b).

Proceeding with the simpler model, and using the Kirch-
hoff node rule, the equations for the unit-cell circuit become

In = In+1 + I1 + dQn

dt
+ IL1,

L3
dI1

dt
= 2Vn − Vn−2 − Vn+2, (1)

where IL1 is the current through the inductor L1, and Qn is
the charge on the nth capacitor. Combining Eq. (1) with the
auxiliary equations L1dIL1/dt = Vn and L2dIn/dt = Vn−1 −
Vn, we obtain the following governing equation:

d2Qn

dt2
= −Vn

L1
+ 1

L2
(Vn+1 + Vn−1 − 2Vn)

+ 1

L3
(Vn+2 + Vn−2 − 2Vn). (2)

To get the relationship between Qn and Vn, a particular
functional form of C(V ) has to be specified, which can then
be integrated with respect to the voltage to yield Q(V ). For
instance, if an exponential dependence is assumed, C(Vn) =
C0 exp(−αVn), then integration and subsequent inversion of
the resulting expression will produce,

Vn = −Q0

C0
ln

(
1 − Qn

Q0

)
, (3)

where Q0 = C0/α. However, this frequently used (due to its
simplicity) relationship when applied to a single oscillator
does not generate a soft nonlinearity. In other words, contrary
to what is the case for the latter, here the mode frequency
increases with increasing amplitude. It is an experimental
fact about the varactor diodes that they are characterized by
soft nonlinearity. Even truncating the Taylor expansion of
Eq. (3) after the cubic term would still yield an oscillator
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whose frequency increases with amplitude. To achieve soft
nonlinearity, we focus on the scenario in which the square
term dominates over the cubic (see also Ref. [13]). It turns
out that keeping only the first two terms provides a frequency-
amplitude dependence that is fairly close to the experimental
data. This approximation was also used in Ref. [35]. Thus, we
assume

Vn = Q0

C0

(
qn + 1

2
q2

n

)
, (4)

with qn = Qn/Q0 [Eq. (3)].
Now inserting Eq. (4) into Eq. (2), we obtain

d2qn

dτ 2
= −

(
qn + 1

2
q2

n

)
+ γ

[(
qn+1 + 1

2
q2

n+1

)

+
(

qn−1 + 1

2
q2

n−1

)
− 2

(
qn + 1

2
q2

n

)]

+ δ

[(
qn+2 + 1

2
q2

n+2

)
+

(
qn−2 + 1

2
q2

n−2

)

− 2

(
qn + 1

2
q2

n

)]
, (5)

where τ = ω0t is the effective time parameter, ω2
0 =

1/(L1C0) is the frequency of the uniform mode, and γ =
L1/L2 and δ = L1/L3 are inductor ratio parameters.

Anticipating the possibility of dynamic anharmonic modes,
we set a trial solution [36] as

qn(τ ) = A[φn(τ ) cos(kna + ω̃τ ) + ξn(τ )], (6)

where A is the maximum amplitude, a is the lattice spacing,
cos(kna + ω̃τ ) is a moving carrier wave with ω̃ = ω/ω0,
while k and ω are its wave vector and frequency, respectively.
φn(τ ) and ξn(τ ) are the vibrational envelope and the nonoscil-
latory displacement, respectively. For initial displacements,
τ = 0, φn cos(kna) is often known as ac displacement, and ξn

as dc displacement. We set A = 1 for simplicity, then insert
Eq. (6) into Eq. (5), and use the rotating-wave approximation
method (RWA), which discards the terms oscillating at multi-
ples of the fundamental mode frequency. Also assuming that
φn and ξn are τ -independent, we can obtain the cosine terms

φn[−1 + ω̃2 − 2δ − 2γ − (1 + 2δ + 2γ )ξn]

+ γ [φn−1(1 + ξn−1) + φn+1(1 + ξn+1)] cos(ak)

+ δ[φn−2(1 + ξn−2) + φn+2(1 + ξn+2)] cos(2ak) = 0, (7)

and the static displacement terms

δφ2
n−2 + γφ2

n−1 − φ2
n − 2(δ + γ )φ2

n + γφ2
n+1

+ 4γ ξn−1 + 2γ ξ 2
n−1 + δ

[
φ2

n+2 + 2ξn−2(2 + ξn−2) − 8ξn

]
− 4ξn − 8γ ξn − 2ξ 2

n − 4δξ 2
n − 4γ ξ 2

n + 4γ ξn+1

+ 2γ ξ 2
n+1 + 4δξn+2 + 2δξ 2

n+2 = 0. (8)

Equations (7) and (8) are used in the next section to find
numerically approximate breather solutions that can be tested
against the experimental and numerical results.

FIG. 2. Dispersion relation showing frequency as a function of
ka. The standard ILMs and resonant ILMs should be found at ka = 0
and ka = π under the dispersion curve, respectively.

The linearized (around the vanishing state) form of Eq. (5)
yields the following dispersion relation:

ω̃2(k) = 1 + 4γ sin2

(
ka

2

)
+ 4δ sin2(ka). (9)

The dispersion curve is shown in Fig. 2. A frequency gap
exists below the zone-center (uniform) mode due to the in-
ductor to ground in each unit cell, but additionally a quasigap
also appears at the zone boundary due to the second-neighbor
inductors. By this term (quasigap) we mean the absence of
plane-wave modes below the ZB mode in frequencies that
have a wave number close to π/a (i.e., close to the edge of
the Brillouin zone). This creates the possibility that resonant
ILMs could be found arising from the ZB mode. Note that the
curvatures of the band at the two zone edges are both positive
(for δ > 0).

The analysis above was based on a simplified model of the
varactor diode as a nonlinear capacitor. A fuller description
of the diode must also account for current going through it,
thereby including resistive dissipation. Reference [37] derives
equations that include this feature as well as external driving,
which, when modified to our system with second-neighbor
coupling, read

c(vn)
dvn

dτ
= yn − iD (vn) + cos(�τ )

RC0ω0

−
(

1

Rl

+ 1

R

)
vn

ω0C0
,

dyn

dτ
= −vn + L1

L2
(vn+1 + vn−1 − 2vn)

+ L1

L3
(vn+2 + vn−2 − 2vn), (10)

where R is the driving resistor of 10 k�, yn represents the
current through the inductor L1, and Rl , c(v), and iD (v) are
given in Ref. [37] as

iD (v) = − Is

ω0C0Vd

exp(−βVdv),
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with β = 38.8V−1 and Is = 1.25 × 10−14 A. Furthermore,
v = V

Vd
, c = C

C0
, and

C(V ) =
{

Cv + Cw(V ′) + C(V ′)2 if V � Vc,

C0e
−αV if V > Vc.

Here, V ′ = (V − Vc ), α = 0.456V−1, Cv = C0 exp(−αVc ),
Cw = −αCv , C = 100 nF/V2, and Vc = −0.28 V. It is worth-
while to note that the presence of (and division by) c(vn)
renders all the terms (including the second-neighbor ones)
in Eq. (10) nonlinear if we attempt to derive a second-order
equation, say for yn.

Equation (10) represents the more accurate variant of our
model that we will use to compare more directly to experi-
mental results [37]. Importantly, it encompasses the driving
and damping aspects inherent in the electrical lattice. Hence,
we utilize in what follows the simplified model of Eq. (5)
to obtain insight into the potential existence and structural
form of the breathers; then we explore whether such structures
survive in the more realistic setting containing the driving and
damping.

III. RESULTS AND DISCUSSION

A. Approximate (RWA-based) numerical solutions
in the undriven, undamped lattice

We now employ the Newton-Raphson method to determine
the solutions of Eqs. (7) and (8). If an initial guess of displace-
ments that are single-humped and localized at the center of
the lattice is given, then solutions to these coupled, nonlinear
algebraic equations can be determined though an iterative
process. Here, motivated by the experiments below, we use the
values L1 = L2 = 470 μH, L3 = 680 μH, so γ = 1, δ ≈ 0.7.
Both ZB (ka = π ) and ZC (ka = 0) ILMs are found in chains
with 35 sites when imposing periodic boundary conditions, as
shown in Fig. 3. Notice that the dc value is close to zero except
near the ILM centers.

The relationship between the frequency of ILMs and their
ac amplitude is shown in Fig. 4, which was obtained via
continuation of the solution in ω. The frequencies of single-
peaked ILMs are always a little higher than those of double-
peaked ILMs with the same ac amplitude. What is interesting
is that for smaller lattices, here N = 35, the ILM branches
off from the k = 0 plane-wave (uniform) mode at a nonzero
amplitude. For larger lattice sizes, this does not occur, as is
shown in the figure for N = 128. The qualitative reason is that
for small lattices, the zone-center ILM is wide enough that its
wings do not reach a small amplitude within the extent of the
lattice.

When the frequency of the single-peaked ZB ILM becomes
lower, and its amplitude higher, a strong resonance appears
between our approximate breather profiles, as obtained by
Eqs. (7) and (8) and shown in Fig. 5(a), and the resonant
linear plane-wave mode of the dispersion curve. Figure 5(b)
shows the numerical evolution using the RWA output as an
initial condition. This waveform does not appear to be robust
when simulated using the full governing equations. The time
evolution of Eq. (5) using a Runge-Kutta algorithm is shown
in Fig. 5(b). We see that the initial waveform propagates for

FIG. 3. Comparison of ac and dc displacements for approximate
ILMs, as obtained within the RWA from the solution of Eqs. (7) and
(8). (a) Single-peaked ZB (resonant) ILM (ω̃ = 2.22), (b) double-
peaked ZB ILM (ω̃ = 2.22), (c) single-peaked ZC ILM (ω̃ = 0.95),
and (d) double-peaked ZC ILM (ω̃ = 0.95). The filled squares (red)
are for ac displacements, and the filled circles (black) show the dc
displacements.

a number of periods, but eventually disintegrates by radiat-
ing energy into the resonant extended modes. This is also
clearly seen in the two-dimensional Fourier transform graphs.
Figure 5(c) corresponds to the early times (from 0 to 30 on
the τ axis, before full disintegration), while Fig. 5(d) shows

FIG. 4. The frequency of ILMs and associated plane-wave
modes as a function of ac amplitude, φn cos(kna), of the ILM
center. (a) Zone-boundary ILMs and (b) zone-center ILMs. The
filled squares (black) are for ka = 0 and ka = π plane-wave modes,
respectively, which also have parabolic fitting lines (black). For
N = 35, the filled circles (red) are for double-peaked modes, and
the plus markers (green) show the single-peaked modes. A second
lattice size, N = 128 (squares and crosses), is also shown; here the
ILMs are seen to branch off sooner.
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FIG. 5. (a) Displacements of a single-peaked resonant ILM (ω̃ =
2.14); (b) time evolution of the single-peaked resonant ILM at ω̃ =
2.14; (c) Fourier transformation of the time evolution during 0 < τ <

30 and (d) during 40 < τ < 70, compared with the dispersion curve
(white line).

the later time window (between 40 and 70 on the τ axis).
Comparing these two images, we see clearly that energy is
transferred from the ZB ILM to the resonant extended mode.
In this way, the approximate as well as resonant nature of the
relevant ZB waveform is manifested. For smaller amplitude
ILMs, this transfer also happens, but at a slower rate, so that
they appear robust for longer periods of time. At the ZC,
while the ILM has no direct resonance, its overtones still
intersect the linear spectrum. The RWA cannot account for
this process, but direct simulations also indicate a slow decay
of the long-lived localized mode.

B. Experimental results and numerical simulations

We have constructed the lattice shown in Fig. 1 of 32 nodes
with L1 = 470 μH, L2 = 680 μH, and C0 = 800 pF. Care
was taken to select inductors with very similar inductances to
reduce spatial inhomogeneity. These component values yield
a frequency of f0 = ω0/(2π ) ∼= 260 kHz. The lattice takes the
shape of a ring to eliminate boundaries. This also practically
implies the generic implementation of periodic boundary con-
ditions in the context of numerical computations.

To access the area of interest in k space, we drive the
system at all lattice nodes via 10 k� resistors connected to
the top end of the diodes. The idea then is to directly excite
plane-wave modes by having the driver match their frequency;
alternatively, the driver can also be set to twice the mode
frequency for subharmonic excitation—a method we employ
later. For direct driving, we also have added some control of
the driver wave number. In particular, in order to stimulate the
ZB plane-wave mode, we tune the signal generator to about
580 kHz and introduce a phase shift of π between neighboring
nodes. This kind of spatially staggered driving can be easily
accomplished by sending the original sinusoidal driving signal
through an inverter (such as an inverting amplifier of gain 1)
for half of the nodes while using the direct signal for the other
half.

FIG. 6. Experimental data illustrating the averaged square volt-
age (v2

n) evolution (color bar on the right) at each node n of the lattice
as a function of time. (a) The spatially uniform driver was set to
249 kHz in frequency at an amplitude of 2.0 V. Two broad zone-
center ILMs are generated. (b) The driver frequency is decreased to
239 kHz. The system develops a repeating pattern of two ILMs that
interact multiple times.

Performing a frequency sweep with a spatially homo-
geneous driving, only the ZC uniform mode is observed,
whereas for spatially staggered driving, as is natural to expect,
we only couple to the ZB mode. Having demonstrated that the
ZC and ZB extended modes can be excited in this fashion, we
explore whether ILMs can also be generated and stabilized by
these two types of driving. In particular, we examine experi-
mentally whether a temporally periodic driver can couple to
and sustain these modes.

Figure 6 shows that this is indeed the case for the zone
center when driving uniformly at each node in the experiment.
The averaged square voltage density plot (see the color bar)
indicates that two fairly broad ILMs are generated—their
width is enhanced by the presence of next-neighbor couplings.
The average square of the voltage is shown at each node,
which was calculated by squaring all voltages and then using a
boxcar integration method with a time window of one period.
The driver frequency here is set to 249 kHz, or ωd = 0.97ω0,
and the amplitude is 2.0 V. When the driver frequency is
decreased to 239 kHz, or ωd = 0.93ω0, a repeating pattern
of two ILMs merging and splitting is observed.

Direct numerical simulations of Eq. (10) corroborate these
experimental findings. Here, a lattice of 35 nodes is initiated
with small spatial noise; the time evolution of its averaged
square voltage in the presence of driving is shown in Fig. 7. In
Fig. 7(a), we can see two ZC ILMs, and they seem quite robust
at this driving frequency. When the frequency gets lower as

052201-5



CHEN, ABDOULKARY, KEVREKIDIS, AND ENGLISH PHYSICAL REVIEW E 98, 052201 (2018)

FIG. 7. The time-evolution numerical results of the averaged
square voltage of ZC ILMs at an amplitude of 2.0 V with a frequency
of (a) ω̃ = 0.97 and (b) ω̃ = 0.93.

shown in Fig. 7(b), the dynamics exhibits a periodic local-
ization pattern, but otherwise persists. Thus, the simulations
appear to faithfully reproduce the experimental observation of
Fig. 6 at identical driving parameters. The qualitative reason
for the appearance of the dynamic localization pattern at these
lower frequencies is that it represents a transition region to
one ILM at even lower frequencies.

Next, let us turn to the zone boundary, where we switch
to spatially staggered driving (k = π/a). The linear ZB
mode at k = π/a is calculated to reside at around 585 kHz.
Figure 8(a) shows the experimental results for a sinusoidal
driver frequency set to 500 kHz, or ωd = 0.85ωZB, and an
amplitude of 1.6 V. Four ZB ILMs are observed in the lattice
for these driving conditions.

Figure 8(b) shows the corresponding numerical simulation
of the excited ZB ILMs. The driver amplitude is identical,
although the frequency has to be raised somewhat, here to
539 kHz. The initial displacements start from zero but with a
small noise perturbation. Four stable ZB ILMs are generated
via modulational instability (MI). The MI is not shown in this
figure. In Fig. 8(c), the ILMs centered at nodes 7 and 8 as
well as 30 and 31 in the simulation are clearly identifiable
as having single-peaked symmetry in the lowest panel. In the
middle panel, after some elapsed time within the same period,
the staggered driver signature dominates. Then, in the top
panel, the two ILMs centered about 8 and 30 have clearly
changed toward a double-peaked antisymmetric configura-
tion. We point out that this periodic exchange between double-
peaked and single-peaked ILM profiles continues thereafter,
in accordance also with the experimental results of Fig. 8(a).

FIG. 8. (a) Experimental data for fd = 500 kHz and an
amplitude 1.6 V. We see multiple ZB ILMs. (b) Numerical simulation
with the same driving voltage, and a frequency of ω = 539 kHz. (c)
Numerical voltage profile at three different times: τ = 3010, 3011,
and 3012.

In the experiment it is possible to lower the driver fre-
quency further while increasing the amplitude in order to
reduce the number of ZB ILMs. This is illustrated in Fig. 9(a),
where only one ILM remains. From the experimental profiles
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FIG. 9. (a) Experimental frequency is lowered to 479 kHz and
amplitude raised to 2.0 V. We observe one ZB ILM persisting
indefinitely. (b) Voltage profile at three times: t = 44.8, 46.4, and
48.0 μs. The resonance signature in the wings of the ILM is clearly
evident in the bottom and top traces, but the ZB signature of the
driver dominates in the middle trace.

displayed in Fig. 9(b), it is clear that this represents a ZB ILM
with neighboring nodes out-of-phase with one another. Fur-
thermore, the data display clear evidence for ILM resonance
with the part of the plane-wave spectrum with which it shares
the same frequency. This is again most easily discerned in
Fig. 9(b), which shows the voltage profile at three particular
instants of time. We see the ILM with a symmetric (top
panel) and antisymmetric (bottom panel) configuration of the
voltages, while the middle panel transitions between the two.
Note also that the plane-wave signature is evident within the
wings of the ILM in both the top and bottom panels, yet the
nature of the configuration is less clear in the middle panel.

A spatially staggered driving signal can ordinarily lock
onto any ZB mode, and here we find that it can also stabilize
a resonant ILM. A question is whether such ILMs can also
be excited via spatially uniform but subharmonic driving. It
is known that subharmonic driving, being itself a nonlinear
process, can project out into modes within the linear band,
thus potentially coupling to a ZB ILM. Indeed, we find that
the resonant ILM at the ZB can be excited in this manner. The
results are shown in Fig. 10(a). Here the driver frequency was
set to 980 kHz with a large amplitude of 9.5 V and was of

FIG. 10. (a) Experimental node voltages for subharmonic driving
at a frequency of 980 kHz with an amplitude of 9.5 V. We observe
one main resonant, subharmonically driven ILM, and voltage profiles
at two instants of time: 42.8 (solid) and 43.6 (dotted) μs. (b) The
spatial Fourier amplitudes computed from the experimental data. The
dashed trace with square markers (blue) is computed from the dataset
in (a). Circles (black) are obtained from the data in Fig. 9. We see that
subharmonic generation of resonant ILMs enhances the oscillatory
background.

square-wave shape. One main ILM centered at nodes 26 and
27 is generated (along with some smaller energy localization
at n = 30). However, we now also see an enhanced plane-
wave signature from the resonant part of the dispersion curve.

To analyze the difference between the two types of driving,
we compute from the experimental data, V (n, t ), the two-
dimensional fast Fourier transform, which yields a Fourier
amplitude as a function of frequency and wave number. We
then select the slice corresponding to the fixed oscillation
frequency of the ILM. The result is displayed in Fig. 10(b),
where the dashed blue line (square markers) corresponds to
the subharmonic driver, and the solid black line (circles) corre-
sponds to a direct driver. The latter is computed from the data
in Fig. 9. It is clear that the peak response heights are distinct
for the two types of driving. While direct driving results in
the greatest amplitude at the ZB (k = −π/a), subharmonic
driving deposits slightly more energy into the resonant plane
waves than the ZB ILM. This may not be surprising since
a subharmonic driver can presumably excite these modes
directly and not just indirectly via the ILM resonance with
these plane waves.
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IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated experimentally that two types of
long-lived (enough to also be experimentally observed) ILMs
exist and can be generated in an electrical lattice with the
addition of second-neighbor couplings: standard and resonant
ILMs, also known as nanopterons. The former appear at the
ZC, whereas the latter appear at the ZB. We have further-
more investigated these ILMs numerically using a simplified
model of the varactor diodes, and we identified suitable initial
guesses for such breathers based on the undamped-undriven
simplified model within the rotating-wave approximation.

In the experiment, resonant ILMs can be preserved over
the course of the dynamical evolution by either direct or
subharmonic driving. In the simplified model without gain
and loss, the resonant ILM may scatter its energy into the
resonant plane waves and be thus led to decay. However,
more realistic numerical simulations that incorporate damping
and driving show that resonant ILMs can be preserved at the
ZB due to the action of the periodic driving. We conclude
that at both the zone boundary as well as the zone center,
ILMs can be found and stabilized by the driver, in good
qualitative agreement with the RWA-predicted structures and
the corresponding numerical simulations.

Nevertheless, numerous open questions have also emerged
in this study. For the ZC modes, it does not elude us that
their harmonics find themselves inside the band of linear
excitations. Without dissipation, this would clearly represent
a pathway that is detrimental to the longevity of these local-
ized structures. The same is true for the ZB ILMs, which
in the undamped and undriven model can, in principle, be
resonantly decaying toward extended-state excitations. On the

other hand, as indicated above, in the driven and damped
model variant of the system, the breathers appear to be
robust. Nevertheless, a natural question is whether they can
constitute exact time-periodic solutions of the system, and
perhaps even more importantly (from the relevant Floquet
multiplier analysis of the corresponding monodromy matrix)
whether they will be genuinely stable. A continuation over the
frequencies may reveal possible variations and bifurcations
along the relevant branch, potentially revealing the source of
the observed mobility of the ZC structures, as the frequency
is decreased. Numerous additional topics can be considered
in further detail, including also the modulational stability in a
semiexact analytical form: although this may not be possible
to perform in the full breather setting, it should definitely be
tractable in a monochromatic discrete nonlinear Schrödinger-
like approximation of the model. A more systematic classifi-
cation of the unstable modes and the corresponding byprod-
ucts of the MI may well prove helpful toward identifying the
number of instability-induced breathers for each frequency.
All these are important questions in this emerging field of
the study of highly nonlinearly coupled chains involving both
first and second neighbors. As such, they will be considered
in future studies on the subject.
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