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We show that a scaling approach successfully characterizes clustering and intermittency in space and time,
in systems of noninteracting particles driven by fluctuating surfaces. We study both the steady state and the
approach to it, for passive particles sliding on one-dimensional Edwards-Wilkinson or Kardar-Parisi-Zhang
(KPZ) surfaces, with particles moving either along (advection) or against (antiadvection) the growth direction
in the latter case. Extensive numerical simulations are supplemented by analytical results for a sticky slider
model in which particles coalesce when they meet. Results for single-particle displacement versus time show
to what extent particle dynamics is slaved to the surface, while scaling properties of the probability distribution
of the separation of two particles determine the scaling form of average overlap of a pair of trajectories. For
the many-particle system, clustering in steady state is studied via moments of particle number fluctuations in a
single stretch, revealing different degrees of spatial multiscaling with different drivings. Temporal intermittency
in steady state is established by showing that the scaled flatness diverges as the stretch size scaled by system
size approaches zero for all the three drivings, but with different exponents, reflecting strongest clustering for
KPZ advection and weakest for KPZ antiadvection. Finally, we consider the approach to the steady state and
study both the flatness and the evolution of equal-time correlation functions as in coarsening of phase-ordering
systems. Our studies give clear evidence for a simple scaling description of the approach to steady state, with the
scale set by a length that grows in time. An investigation of aging properties reveals that flatness is nonmonotonic
in time with two distinct branches and that a scaling description holds for each one.
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I. INTRODUCTION

The motion of passive particles advected by a fluid field
has long been of interest in nonequilibrium statistical me-
chanics [1,2]. More generally, when subjected to a random
force field with long-ranged correlations, passive particles
exhibit strong clustering [3–5], characterized by pronounced
inhomogeneities in density. Clustering has a strong effect
on both static and dynamic correlations. This is because the
formation of a large cluster increases the density in its local
neighborhood, with a concomitant depletion of density in an
extended region around it. The effect is thus that a fixed point
in space experiences long periods of stasis, punctuated by
infrequent, strong bursts of activity whenever a cluster visits
its immediate neighborhood. This phenomenon is known as
intermittency. In this paper we are primarily concerned with
a quantification of intermittency, both after a steady state
with clustering has formed, and, importantly, also during the
approach to such a state.

We study a family of simply defined models involving
passive particles, which shows different degrees of cluster-
ing (Figs. 1–3). The particles slide on a fluctuating surface,
stochastically following surface slopes without affecting the
surface dynamics. The degree of particle clustering and inter-
mittency depend strongly on the nature of surface driving; the
main purpose of this paper is to quantify this dependence and

*tapas134@gmail.com
†barma23@gmail.com

study associated scaling properties of the resulting clustered
state. We study driving by a one-dimensional Kardar-Parisi-
Zhang (KPZ) surface [6,7] with particles moving either along
(advection) or against (anti-advection, KPZ-AA) the direction
of surface growth [8], and also by an Edwards-Wilkinson
(EW) surface [9]. The density profile in typical steady-state
configurations shown in Fig. 1 illustrates the different degrees
of clustering for the three different drivings.

To quantify this, we study particle number fluctuations
in an extended stretch, using measures defined in terms of
structure functions; a simple diagnostic is the flatness, the
ratio of the fourth moment to the square of the second moment
[10]. The unifying feature of our results is the occurrence
of scaling, with a divergence of flatness for small scaling
argument being the hallmark of intermittency in both space
and time. Also, values of exponents characterizing scaling
divergences allow quantification of different degrees of clus-
tering. These methods are of broad applicability and may
fruitfully be used in a number of settings. For instance,
in the context of biological systems that exhibit clustering,
temporal intermittency has been studied for both molecular
transport through Golgi [11,12], and protein aggregation on
cell membranes [13].

Earlier studies of passive particles on fluctuating surfaces
have considered two limiting cases, (i) noninteracting passive
particles, in which case any number of particles is allowed
to reside at a site [8,14–21], and (ii) passive particles with
hard core interactions where at most one particle can reside
at a site [22–25]. The first case is the one of interest in this
paper. In the steady state of both systems, the correlation
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FIG. 1. Typical configurations of passive particle density over space in steady state for KPZ, EW, and KPZ-AA driving.

function is a scaling function which depends on the ratio of
separation to system size. But at small argument, the scaling
function has a cusp singularity in case (ii), while it shows
a divergence in case (i), pointing to strong clustering states
[15,16]. A consequence is that intermittency in space and time
is very pronounced in such states, and this is the primary
aspect studied in this paper. A brief account, primarily with
KPZ advection, appeared in Ref. [21], while in this work we
study several types of driving, and characterize the different
degrees of clustering and intermittency that result, often with
interesting differences. Another aspect we take up concerns
the approach to the steady state, including coarsening and
aging, which has been studied in detail in case (ii) [22–25],
but not in (i). Finally, as each particle moves independently in
our case with correlations arising only from shared histories
of the driving, the behavior of one and two particles has
important repurcussions for the statistical properties of the
noninteracting many-particle system. Consequently, we also
add to earlier studies of single-particle displacements as a
function of time [8,14,17–20], focusing on the occurrence
of multiplicative logarithms with power laws, and on the
time-dependence of two-particle correlations, focusing on
consequences of scaling [26].

Because of the stochastic element in passive particle mo-
tion, particles which start at the same point do not follow
identical trajectories. However, they have strong correlations,
as they are subject to the same history of driving by the
fluctuating surface. This leads ultimately to anomalously large
fluctuations of particle density, which are the central concern
of this work. To develop this theme, it is useful to ask a
number of questions.

(1) How far does a single particle move in time t? If the
typical distance moved is r ∼ t1/z, how is z related to the
dynamic exponent zs of surface fluctuations?

(2) How does the separation of two particles which start
together, vary with time? In the long time limit, what fraction

of the time would they be found within a specified finite
range?

(3) For the many-particle system, is there spatial inter-
mittency in steady state and does the density profile show
multiscaling? Do fluctuations in steady state exhibit temporal
intermittency?

(4) Starting from a random distribution, how do clustering
and intermittency build up during the coarsening regime de-
scribing the approach to steady state? Is there a growing length
scale, and if so how do scaling functions differ from those in
phase ordering systems, for both coarsening and aging?

In the remainder of this section, we attempt to provide
a coherent account of the answers to the questions posed
above. We refer to the results of earlier work as well as results
obtained in this paper, highlighting the differences brought in
by the three different drivings we have considered.

Our interest in single-particle motion stems from the fact
that it has strong implications for the many-particle system:
The displacement of a single particle in time t governs the
size of the basin L(t ) ∼ t1/z within which particles cluster
in the many-particle system, as explained in Sec. VII. Thus,
the exponent z enters a scaling description of coarsening
and aging. For KPZ advection, earlier work has shown that
the particle dynamics is slaved to the surface, implying z =
zs = 3/2 [14,17,18], whereas for KPZ-AA, z � 1.74 which
is distinct from zs [8,14]. For EW driving, the growth of
the mean squared displacement is proportional to the time,
with multiplicative logarithmic corrections [18,19]. In this
paper, we provide a numerical estimate of the power of the
logarithm.

To monitor correlations between two particles which start
at the same spot, it is useful to study the time evolution of
the probability distribution of the separation [27]. A scaling
approach [26] reveals an important distinction between KPZ
advection on the one hand, and EW and KPZ-AA dynamics
on the other. For KPZ driving, interestingly, the fraction of
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FIG. 2. Time series of particle number in a stretch l = L/8 for KPZ, EW, and KPZ-AA driving.
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FIG. 3. World lines of passive particles with KPZ, EW, and KPZ-
AA drivings are shown from left to right, respectively.

time of the trajectory pair would be within a finite range is
finite even in the t → ∞ limit, whereas the fraction goes to
zero for EW and KPZ-AA driving.

To study intermittency in steady state, we analyze the
high-order structure functions of particle number in a stretch
of l successive sites. We find evidence of spatial multiscaling
in all the cases; in the case of KPZ advection, it takes on a
particularly extreme but simple form while it leads to a whole
spectrum of exponents associated with EW and KPZ-AA
driving, revealing that both self-similarity and intermittency
coexist in the spatial structures. Further, temporal fluctuations
also exhibit intermittency, quantified by showing that the
flatness diverges as the scaled time t/τl approaches zero where
τl ∼ lz.

In the coarsening regime the two-point correlation is found
to be a scaling function of scaled separation r/L(t ), reminis-
cent of phase ordering dynamics [28]. As pointed out above,
L(t ) is determined by a single particle property. Moreover,
the flatness increases indefinitely, in proportion to L(t )/l,
showing how intermittency sets in. Physically, L(t ) is the size
of the basin from which particles are drawn and form clusters
near the bottom of a valley. In the aging regime, the flatness
shows an interesting nonmonotonicity as a function of time
provided that the waiting time t0 exceeds τl ; both left and right
branches of the aging curve for flatness then diverge, showing
distinct scaling functions, but both involve the same scaling
variable l/L(t ).

We also consider a simpler model of “sticky sliders,” which
do not dissociate once they meet, as it provides considerable
insight into the behavior in various regimes. In particular, it
predicts scaling forms which are found to hold also for the
passive particle systems, although exponents differ in the case
of KPZ-AA driving.

The paper is organized as follows. In Sec. II, we discuss
the model. In Sec. III, we study the motion of a single passive
particle for different fluctuating surfaces. Section IV presents
the probability distribution of the separation between two
particles for different drivings and the average fraction of the
time they are together. In Sec. V, we discuss static properties
in the steady state, including the two-point density-density
correlation function and structure functions which provide

evidence for multiscaling. Steady-state dynamics and charac-
terization of temporal intermittency are presented in Sec. VI.
Section VII is devoted to the study of scaling in the coarsening
regime, during the approach to steady state. In Sec. VIII,
we study aging, which involves studying correlations after a
certain waiting time. Finally, Sec. IX is the conclusion.

II. MODELS

In a continuum description, the surface evolution is taken
to follow the KPZ equation,

∂h

∂t
= ν0∇2h + λ0

2
(∇h)2 + η(x, t ), (1)

which describes a growing, fluctuating interface, where ν0 and
η(x, t ) are the surface tension and spatiotemporal uncorrelated
Gaussian noise, respectively. λ0 is the strength of the nonlin-
earity, which arises for a growing, fluctuating KPZ interface.
On setting λ0 = 0, Eq. (1) reduces to the Edwards-Wilkinson
(EW) equation, in which the average surface height does
not change in time. On substituting ∇h(x, t ) = −u(x, t ) and
setting λ0 = 1 in Eq. (1), one obtains the vorticity-free noisy
Burgers equation [7], where u(x, t ) is the velocity of Burgers
fluid.

The equation of motion of a passive particle is

dr (t )

dt
= −a

∂h

∂x

∣∣∣∣
x=r (t )

+ ηr (t ), (2)

where r (t ) is the position of the particle and the slope ∂h/∂x

of the surface is evaluated at r (t ). The noise ηr (t ) is Gaussian
with zero average and 〈ηr (t )ηr (t ′)〉 = 2Dδ(t − t ′) where D

is the strength of the noise. The particle stochastically moves
either along (when a is positive) or opposite to (when a is
negative) the growth direction of the surface.

A. Passive slider model on a lattice

In this work, we consider a discrete lattice model in one
dimension, with bonds inclined upward (/) or downward (\).
The two ends of a finite lattice of length L are connected
via periodic boundary conditions so that h(0) = h(L) and we
have an equal number of upward and downward slopes. The
dynamics involves local hills (/\) stochastically transforming
into local valleys (\/) at rate u1 and local valleys (\/) into
local hills (/\) at rate u2. This is the single-step model for a
discrete surface [29], which can be mapped to the asymmetric
simple exclusion process (ASEP) by associating an upward-
tilted bond (/) with a particle and a downward-tilted bond (\)
with a hole. On large enough scales of length and time, the
surface is described by the KPZ equation if u1 
= u2 and by
the EW equation if u1 = u2.

Initially, the passive particles are distributed randomly
over the surface sites between successive bonds. Particles are
labeled and move independently and there is no restriction
on the number of particles on each site. The total number of
particles N is taken to be equal to the total number of sites
L which makes the average particle density 〈ρi〉 = 1. Each
particle moves stochastically down the fluctuating surface,
one step at a time, following the local surface slope (Fig. 4). In
our numerical simulations, one Monte Carlo step comprises L
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FIG. 4. A schematic diagram to show the elementary moves of
the surface and particles for KPZ, EW, and KPZ-AA drivings, shown
from left to right, respectively.

microsteps for particles and L microsteps for slopes, with an
alternation between particle and surface microsteps. In each
particle microsteps, we choose a particle at random, while
in each slope micro step, we choose a bond at random. For
u1 
= u2, if the slope is positive (negative), we examine the
bonds on the right (left) of the selected bond. For u1 = u2, we
only examine the bond on the right of the selected bond. To
mimic Eq. (2), the rules for particle update are the following.
A randomly chosen particle slides down a bond; if atop a local
hill /\, it slides down one of the two bonds with equal like-
lihood, and if in a valley \/, it does not move. Antiadvection
corresponds to the case u1 < u2, in which case the surface
grows upwards, opposite to the direction of particle sliding.

Stochasticity, which is tantamount to the effect of noise,
enters into the dynamics of the particles in the following
ways. The random selection of a tagged particle implies that a
given particle may not be selected in a Monte Carlo time step
even if the particle resides on a downward slope. However,
if a selected particle resides on top of a hill, it moves either
towards left or right with the equal probability, which is also
a source of noise in the particle dynamics.

In short, particles stochastically slide down the surface
slopes, whereas the surface itself grows downward for KPZ
advection, fluctuates around the mean in the EW case, and
grows upwards for KPZ-AA. In Fig. 3, we show the world-
lines of passive particles with KPZ, EW, and KPZ-AA dynam-
ics to illustrate the typical evolution. Significant differences in
the amount of clustering are apparent in Fig. 2; the quantifi-
cation of this feature and how it develops in time is the major
concern of this paper.

B. Sticky slider model

We also introduce a simpler model, namely, a sticky slider
model (SSM): once the particles come to the same site, they
stick together and then move on the surface as a single entity.
Updation rules for the numerical simulation of the SSM are
the following. Instead of randomly choosing an individual
particle as in the passive slider model (PSM), for the SSM
a randomly chosen individual cluster slides on the surface and
eventually, in the steady state, they merge to form a single
cluster which then moves on the fluctuating surfaces.

III. SINGLE PARTICLE ON A FLUCTUATING SURFACE

Particle displacements are characterized by

R(t ) = 〈[r (t + t ′) − r (t ′)]2〉1/2, (3)

where r (t ) is the location of a single passive particle. R(t )
grows as t1/z, and the question is whether z = zs . For KPZ
advection, earlier work has established z = zs = 3/2 [14,18],
while for KPZ-AA, z was found to be very different from zs

[8,14,15]. With EW driving, there appears to be a marginal

difference, in that z = zs = 2, but there is a multiplicative log-
arithm R(t ) ∼ t1/2[ln(t/t0)]α/2. The numerical work reported
in this section suggests α is close to 1/2.

The single-particle displacement R(t ) is important for the
many-particle system, as the growing length scale L(t ), which
governs scaling during coarsening (Sec. VII) coincides with
R(t ).

A. KPZ driving

We summarize earlier predictions for the growth of R(t ).
Bohr and Pikovsky [18] studied the root mean-squared dis-

placement of passive particles advected by the noisy Burgers
fluid, within a mean-field approach to the scaling form of the
two-point velocity. They obtained a self-consistent asymptotic
solution R(t ) ∼ t1/z with z = 3/2.

Drossel and Kardar performed a numerical simulation of a
restricted solid-on-solid model belonging to the KPZ univer-
sality class, coupled with the passive particle dynamics; they
found z = 3/2 [14].

Later, the same value of the dynamic exponent was ob-
tained by modeling the surface dynamics through the Kim-
Kosterlitz model [17] and the single step model [15]. As
emphasized in Ref. [17], with KPZ driving the particle motion
becomes slaved to the fluctuations of the surface so that z =
zs . Our results from numerical simulations are consistent with
z = zs = 3/2.

B. EW driving

Let us turn to EW surface dynamics, in which case the
motion of the particle is less strongly coupled to the surface
fluctuations.

A numerical simulation of particles driven by an unbiased
single step model was carried out by Manoj [20]. He found
R(t ) ∼ t1/z where z shows an apparent dependence on the
ratio ω of update rates for the surface and particle evolution,
varying from 1/z � 0.67 for ω � 1 (rapid surface motion) to
1/z � 0.56 for ω = 1, and to 1/z � 0.50 for ω � 1 (rapid
particle motion) [20].

However, the apparent dependence on ω may result from
crossover effects, with the true form involving multiplicative
logarithms:

R2(t ) ∼ t f

(
t

t0

)
, (4)

where f (t/t0) indicates a multiplicative logarithmic correc-
tion. In fact, such logarithmic corrections have been proposed
earlier. Bohr and Pikovsky [18] studied a linear version of
the noisy Burgers equation (tantamount to EW dynamics)
for which the velocity-velocity correlation function is known.
Within a mean-field approach, they concluded f (t/t0) ∼
ln[1 + (t/t0)1/2], where t0 depends on the model parameters
of the system. This would imply R2(t ) ∼ t3/2 for t � t0,
and R2(t ) ∼ t ln(t ) as t → ∞. In recent work, Huveneers
suggests that f (t ) may follow ∼ [ln(t )]α with 0 � α < 1 but
raises the possibility that α > 0 may be a transient effect [19].

The results of our Monte Carlo simulations are shown in
Fig. 5. To distinguish between competing predictions [18–20],
we have plotted R2(t )/[tf (t/t0)] with (a) f (t/t0) ∼ t θeff with
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FIG. 5. Mean-squared displacement of a passive particle on an
EW surface driving where the system size L = 216. We chose t0 =
1.9 in f (t/t0).

θeff � 0.12 as in Ref. [20] for ω = 1 (b) f (t/t0) = ln(t/t0)
as in Ref. [18] (c) f (t/t0) = [ln(t/t0)]α with α = 1/2. The
results in Fig. 5 seem to indicate α = 1/2, but there is a degree
of uncertainty. In the remainder of this work, for convenience
we use an effective dynamic exponent 1/z � 0.56 for EW
driving as proposed by Manoj [20], recognizing that the dif-
ferent estimates of f (t ) do not lead to substantial differences
in the ranges to be considered.

C. Antiadvection

For the case of antiadvection (AA), the exponent z of the
particles was estimated numerically by Drossel and Kardar
[8] and found to be nonuniversal, changing continuously
with a [8,14]. For a = 1 they obtained z � 1.74 consistent
with the numerical findings in [15,21] as also in the current
work. As the coupling constant a decreases from 1 to 0,
the exponent z increases from approximately 1.74 to 2, with
a = 0 corresponding to a simple random walk.

Note that single-particle dynamics with different sorts of
driving also determines the dynamics of SSM in the steady
state, as in that case there is a single cluster. Evidently, the
motion of this cluster is exactly that of a single particle.

IV. TWO PARTICLES

The relative motion of two passive particles is studied
through the time evolution of the probability distribution of
their separation, and the overlap, that is the fraction of time in
which the separation falls within a certain range. A scaling
form for the probability distribution [26] is shown in this
section to hold for all three types of surface driving. Results
for EW and KPZ-AA driving are found to differ strongly from
those for KPZ advection. The average of the overlap function
is also shown to follow a scaling form by relating it to the
probability distribution of separation.

A. PDF of separation between two particles

The interplay of advection and independent noise cause a
pair of trajectories to overlap during one part of the evolution

10
-2

10
-1

10
0

r
s
/�(t)

10
-4

10
-2

10
0

10
2

P
(r

s,t)
 [�

(t
)]

(1
+

θ)

t=800
t=1600
t=3200
t=6400
t=12800

3/2
KPZ

2/3

1/3

EW

AA

KPZ  θ = 1/2
EW   θ = 0
AA   θ = 0

FIG. 6. Probability distribution of separation rs between two par-
ticles with KPZ, EW, and KPZ-AA driving. The PDFs for different
times collapse when the separation rs is scaled by the corresponding
L(t ) and P (rs, t ) with [L(t )]1+θ .

and deviate from each other during other parts. A measure of
the closeness of the trajectories is the PDF of the interparticle
separation

rs (t ) ≡ |x (1)(t ) − x (2)(t )|,
which has been studied in Ref. [27], where an interesting
coexistence of a high-overlap and low-overlap regimes in
space-time were found. We studied the PDF of rs for KPZ
[26], EW and KPZ-AA drivings and found power-law decays
with different exponents for different drivings. Interestingly,
the PDFs turn out to be scaling functions of rs and t . Data
for different times can be collapsed for each of the drivings,
as shown in Fig. 6, when rs is scaled by L(t ) and P (rs, t ) is
scaled with [L(t )]1+θ with θ � 1

2 for KPZ and θ � 0 for EW
and KPZ-AA drivings. The scaled PDF can then be expressed
as

P (rs, t ) ≈ 1

[L(t )](1+θ )
Y

[
rs

L(t )

]
, (5)

where the scaling function follows Y (y) ∼ y−ν as y → 0, and
falls exponentially as y → ∞. The exponent values corre-
sponding to the power-law decay are estimated as ν � 3

2 , � 2
3 ,

and � 1
3 for KPZ, EW and KPZ-AA drivings, respectively.

For KPZ driving, Ueda and Sasa [27] had numerically
found that the mean-squared separation follows〈

r2
s

〉 ∼ t, (6)

while at the same time the probability distribution of separa-
tion approaches a constant value for rs < r∗

s for fixed r∗
s . It

should be noted that, for KPZ driving, both these properties
are an immediate consequence of the scaling form of Eq. (5),
which is proposed in Ref. [26] and confirmed in Ref. [30].

However, in this work, for EW and KPZ-AA drivings, we
see that the time dependence of 〈r2

s 〉 follows R2(t ) which
is numerically verified as shown in Fig. 7. The scaling form
[given by Eq. (5)] leads to estimate qth moment of the
separation which grows as

〈
rq
s

〉 ∼ t
q−θ

z . (7)
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well, the growth of 〈r2

s 〉 is similar to that of R2(t ).

From the scaling form of Eq. (5), along with the corre-
sponding values of ν and θ , we conclude that there exists a
limiting form for the PDF for KPZ driving for large t , whereas
PDFs decay with time and eventually vanish for EW and
KPZ-AA drivings (Fig. 8). Thus, for KPZ driving, given any
value of separation rs , the distribution P (rs, t ) approaches a
time-independent value Pss (rs ) ∼ r

−3/2
s for times t � rz

s . For
instance, we consider PDFs P (rs = 0, t ), shown in Fig. 9,
which quickly approach a constant value for KPZ driving
and decay as a power with different exponents for EW and
KPZ-AA driving.

We conclude this subsection with a discussion of two-
particle correlations in finite systems of size L. We expect
to recover the correct scaling with rs on replacing L(t ) by
L in Eq. (5). We find Pss (rs, L) ∼ r

−3/2
s for KPZ driving, and

Pss (rs, L) ∼ 1
L1/3 r

−2/3
s and ∼ 1

L2/3 r
−1/3
s for EW and KPZ-AA

driving, respectively. This is confirmed on noting that the
two-point correlation function G(rs, L) is related to Pss (rs, L)
through L

N2 Gss (rs, L) = Pss (rs, L). The scaling form for the
steady-state correlations in Ref. [15] is fully consistent with
Eq. (5), if we make the replacement L(t ) = L.

In a similar vein, the problem of two passive particles on
a fluctuating KPZ surface is closely related to the problem
of two second-class particles in the ASEP. An exact solution
[31] shows that the probability of finding two second-class
particles at distance rs apart follows P (rs ) ∼ 1

r
3/2
s

for large rs

as L → ∞. There are similarities and differences in the two
cases. The rules of hopping of a single second-class particle
in the usual ASEP are the same as the rules of advection
of a passive particle on a KPZ surface (on mapping particle
and hole occupancies in the ASEP to uphills and downhills
in the KPZ dynamics). However, two second-class particles
cannot overlap unlike our noninteracting passive particles.
Nevertheless, the large distance behavior is similar in the two
cases.

B. Overlap function

A good way to quantify the closeness of the trajectories of
two particles is to follow the “overlap” of the trajectories up
to time t . To this end, we follow Ref. [27] and consider an
overlap function,

qo(t ) = 1

t

∫ t

0
dt ′ �(l − |rs (t ′)|), (8)

where �(x) is a θ function, rs (t ′) is the separation of two
particles at time t ′ [27], and l is a length which is used to
qualify whether or not the trajectories do overlap.

Evidently, qo(t ) measures the fraction of time during which
trajectories overlap.

Now consider the average overlap up to time t

〈qo(t )〉 = 1

t

∫ t

0
dt ′ 〈�(l − |rs (t ′)|)〉 (9)

where 〈�〉 indicates average over independent realizations.
Rewriting in terms of P (rs, t ), we obtain

〈qo(t )〉 = 1

t

∫ t

0
dt ′

∫ l

0
drs P (rs, t

′). (10)

Substituting the scaling form of Eqs. (5) into Eq. (10), we
obtain

〈qo(t )〉 ∼
(

t

lz

) ν−1
z

t−
θ
z . (11)

For KPZ driving, substituting ν � 3/2 and θ � 1/2 in
Eq. (11), we obtain

〈qo(t )〉 ≈ const., (12)

which is independent of time in the large-distance and long-
time limit.

For EW and KPZ-AA drivings, we have θ � 0. Therefore,
Eq. (11) reduces to

〈qo(t )〉 ∼
(

t

lz

) ν−1
z

(13)

in the asymptotic limit of time. For EW driving, on substitut-
ing ν = 0.67 and z = 2 [omitting the logarithmic correction
to z given by Eq. (4)], we obtain 〈qo(t )〉 ∼ (t/ lz)−φEW with
φEW � 0.17. Similarly, for KPZ-AA driving, on substituting
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FIG. 8. Variation of the probability P (rs, t ) as a function of time. For KPZ driving, for every value of rs , the probability P (rs, t ) approaches
a nonzero value as t → ∞. For EW and KPZ-AA driving, however, P (rs, t ) approaches zero as t → ∞.

ν = 0.33 and z = 1.75 in Eq. (13), we obtain 〈qo(t )〉 ∼
(t/ lz)−φAA with φAA � 0.38.

To verify the dependence of time and localization length
l on 〈qo(t )〉, we carried out a numerical simulation and find
fair agreement with Eq. (11) for all three drivings, as shown
in Fig. 10.

V. STEADY STATE: STATICS

To study spatial fluctuations, we focus on the higher-order
structure functions of the particle number in a given stretch
of sites. We find a nontrivial spectrum of exponents which
implies multiscaling. We also study the flatness, a measure of
spatial intermittency, for the three types of drivings.

A. Static correlation function

The steady states obtained for the three types of driving
show interesting similarities and differences as illustrated in
Fig. 1. These are reflected in the two-point density-density
correlation function

Gss (r, L) = 〈ni ni+r〉, (14)

where ni denotes the total number of particles at ith site.
Numerical simulations [15,16] reveal

Gss (r, L) = 1

Lθ
Yss (r/L), (15)

10
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t
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P
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-0.38

-0.21

FIG. 9. Probability that both particles are at the same site at
time t . As t → ∞, it approaches a constant value for KPZ driving,
whereas it falls as a power law for EW and KPZ-AA driving.

i.e., Gss is a scaling function of separation r scaled by
system size L. This unusual behavior is reminiscent of phase
ordering, but the new point is that the scaling function Yss (y)
is divergent in this case. In Eq. (15), Yss (y) ∼ y−ν as y → 0,
where the exponent ν is estimated to be � 3

2 , � 2
3 , and � 1

3 for
KPZ, EW, and KPZ-AA drivings, respectively. The exponent
θ is � 1

2 for KPZ driving ensuring normalizability, while θ � 0
for EW and KPZ-AA drivings.

B. Static structure functions and flatness

As is evident from the density profiles shown in Fig. 1,
there is a good deal of clustering for all three types of surface
driving, though the degree of surface clustering seems to vary
substantially from one case to the other. To quantify this, we
study the moments of particle numbers Nl in a stretch of l

successive sites in steady state. A good idea of clustering is
obtained by studying the dependence of the qth order moment
on the stretch length l:

Rss
q (l) = 〈

N
q

l

〉 ∼ lζ (q ), (16)

where 〈...〉 indicates the average over steady-state configura-
tions. We choose the stretch length to be a finite fraction of
system size with l/L = 1/27, 1/26, 1/25, 1/24 for L = 4096
and 8192.

In Fig. 11, we plot Rss
q versus l/L for q = 1

5 , 1
4

1
2 , 3

4 , 2, and
4 for PSMs with KPZ, EW, and KPZ-AA drivings. Measuring
the slope of Rss

q (l) with l/L, we numerically determine ζ (q )
for PSMs.

Figure 12 shows the q-dependence of the exponents ζ (q )
for several values of q starting from q = 1/5 up to q = 6. For
reference, we have included the curve for random placement
of particles (no clustering) and SSM defined in Sec. II, which
shows intense clustering. Large values (>1) of q amplify
clustering, while the small values of q (<1) bring out the
background small signals. A nonlinear dependence of ζ (q )
on q indicates multiscaling. The marked difference between
the curves for KPZ, EW, and KPZ-AA driving quantifies the
degree of clustering in the three cases, evident in a qualitative
sense in Fig. 1.

KPZ driving. As L increases, ζ (q ) seems to approach the
SSM value unity for all q 
= 0, indicating extremely strong
clustering.

EW and KPZ-AA driving. For q < 1, ζ (q ) varies linearly
with q which implies that the smaller signals are self-similar
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FIG. 10. Average overlap as a function of scaled time for KPZ, EW, and KPZ-AA driving.

while ζ (q ) for q > 1 is not linear with q indicating
multiscaling.

It is interesting that though the ζ (q ) versus q plot shows
a significant difference between KPZ and EW drivings, the
flatness varies in a similar way for both. If we define the
exponent σ through

κ4 = Rss
4

/(
Rss

2

)2 ∼ (l/L)−σ , (17)

the value of σ is �1 for KPZ and EW driving, whereas σ �
0.75 in the KPZ-AA case (Fig. 13).

VI. STEADY STATE: DYNAMICS

In this section, we compare results for temporal intermit-
tency, with KPZ advection, EW and KPZ-AA driving. The
flatness has a scaling form which shows a divergence as
the scaled time approaches zero; the exponent characterizing
the divergence gives a useful quantification of the degree of
intermittency.

We also study the problem in the adiabatic limit for the
three drivings and find that while the flatness diverges, indi-
cating intermittency, the scaling exponents do not agree with
those found for the particle model.

Finally, we show that numerical results for sticky slider
models verify the scaling form of flatness predicted by ana-
lytical arguments.

A. Dynamic correlation functions

The time-dependent density-density auto-correlation func-
tion

Gs (t, L) = 〈ni (0)ni (t )〉 (18)

has been studied [16] and found to follow the scaling form

Gs (t, L) ∼ Ỹ (t/Lz), (19)

where Ỹ (y) ∼ ỹ−ν̃ as ỹ → 0. The estimated values of the
exponent ν̃ are � 2

3 , � 1
3 , and �0.19 for KPZ, EW, and KPZ-

AA drivings, respectively [16].

B. Dynamic structure functions and intermittency

We now present numerical results for particle number
fluctuations in a stretch of the lattice for PSMs and SSMs. We
show that a scaling description holds for structure functions
and support this through analytical arguments for the SSM.
We also compare our numerical results for PSMs with KPZ,
EW, and KPZ-AA dynamics with analytical and numerical
results for the corresponding SSMs.

The time-dependent qth order structure function of particle
number fluctuations in steady state is given by

Sss
q (t0, t, l) = 〈[Nl (t0 + t ) − Nl (t0)]q〉, (20)

where the condition t0 � Lz is imposed to guarantee for
steady state. Here Nl (t ) is the total number of particles at time
t in a stretch length l, which we take to be a finite fraction of
the system size. We consider a large value of l as clusters may
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FIG. 11. Variation of qth-order structure functions Rss
q (l) with stretch length l. For the purpose of presentation, we rescaled Rss

q (l) by a
factor of (8192)1/2, (8192)2, and (8192)4 for q = 1/2, 2, and 4, respectively.
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growth of structure functions. Particles show a larger degree of clus-
tering with KPZ driving than in the EW case. The two dashed lines
depict the limits of no clustering (random) and extreme clustering
(sticky slider model). Error bars are smaller than the size of the
symbols.

be spread out, both in the steady state [16] and coarsening
regime (which is discussed in the next section). Associated
with the stretch length l, there is a timescale τl beyond which
particle number fluctuations are uncorrelated. Consequently,
the structure function Sss

q (t0, t, l) saturates for t > τl .
Representative time series of particle number Nl for the

three types of dynamics are shown in Fig. 2. We monitor
the ratio of fourth (S4) and square of second moment (S2),
namely, flatness κss

4 ≡ Sss
4 /(Sss

2 )2. Intermittency is indicated
by the divergence of κss

4 in the limit t/ lz → 0 [10].
Passive slider model. We study the flatness for different

values of system size L and stretch length l, i.e., l/L = 1/8,
1/16, and 1/32 for L = 1024 and 2048 for the PSM with
KPZ, EW, and KPZ-AA dynamics. In the scaling limit, the
flatness diverges with a power law t/τl → 0 and saturates as
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FIG. 13. Flatness κ4 in steady state as a function of l/L. κ4

diverges as a power law with exponent σ � 1 for KPZ and EW
driving, and σ � 0.75 for KPZ-AA driving.
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FIG. 14. The divergence of flatness indicates temporal intermit-
tency in steady state for both PSM and SSM. For ease of display,
κss

4 is multiplied by constant factors, namely 1.5, 2.5, 2, and 3 for
PSM-EW, PSM-KPZ, SSM-EW, and SSM-KPZ, respectively.

t/τl → ∞. The saturation values depend on L/l but collapse
when time t is scaled by τl and κss

4 is scaled by (L/l)φ . Since
particles are noninteracting, the timescale τl is determined by
the time taken by a single particle to cover a distance l, i.e.,
τl ∼ lz, where the dynamic exponent z depends on the surface
driving as we have seen in Sec. II.

This results in the compact scaling form

κss
4 ∼ (L/l)φFPSM

(
t

τl

)
, (21)

where FPSM(y) ∼ y−γ as y → 0 and FPSM(y) → const. as
y → ∞. As seen in Fig. 14, our numerical simulations es-
timate φ � 1 for both KPZ and EW driving, and φ � 0.75
for KPZ-AA. Similarly, exponents corresponding to FPSM(y)
have the values γ � 0.67, �0.50, and �0.40 for KPZ, EW,
and KPZ-AA driving, respectively (see Table I).

Sticky slider model. To get some insight into the occurrence
of scaling, we study the SSM [21], defined by the rule that
particles which find themselves on the same site undergo
irreversible aggregation and do not separate once they are
together. Starting from a configuration with random place-
ment of particles, the number of clusters decreases in time
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TABLE I. Values of the exponents of κ4 for PSMs and SSMsa in
different regimes.

System Steady-state Steady-state Coarsening
statics dynamics

Exponents α [Eq. (17)] φ γ [Eq. (21)] ψ [Eq. (29)]
PSM-KPZ 1.00 ± 0.02 1 0.70 ± 0.01 1.02 ± 0.01
PSM-EW 0.98 ± 0.01 1 0.43 ± 0.03 0.94 ± 0.01
PSM-KPZ-AA 0.75 ± 0.01 0.75 0.41 ± 0.02 0.75 ± 0.02
SSM-KPZ 1 1 0.67 1
SSM-EW 1 1 0.56 1
SSM-KPZ-AA 1 1 0.57 1

aFor SSM drivings, we have analytical arguments to obtain the
exponents in different regimes.

in the coarsening regime, finally reaching a single cluster
which moves all over the system in steady state. By design,
the SSM is a model of extreme clustering which is simple
enough that one can understand the origin of scaling through
analytic arguments. On the quantitative front, the SSM for
KPZ driving resembles the corresponding PSM fairly closely,
whereas the SSM and PSM for both EW and KPZ-AA cases
differ substantially from each other. This is borne out by the
results shown in Table I.

In the steady state of the SSM, a single aggregate AN

with N particles slides stochastically on a 1D stochastically
evolving surface of size L. Its motion is identical to that of
a single walker, so in time t , its typical displacement R(t ) ∼
t1/z implying that AN takes time τl ∼ lz to traverse the stretch
length l. To estimate Sss

q given in Eq. (20) for SSMs, let us
consider the location R0 and R of AN at times t0 and (t0 + t ),
respectively. The probability that R0 is inside the stretch l is
l/L in which case the probability of R falling outside l is of
the order of p1 = R(t )

L
. Likewise, when R0 is outside l, the

probability of R falling inside l is p2 = (1 − l
L

)R(t )
L

. Hence,
the qth order structure function is given by

Sss
q = p1N

q + p2N
q. (22)

Hence, by considering N = L (which guarantees unit global
density), we find that the flatness κss

4 (t ) = Sss
4 /(Sss

2 )2 is given
by

κss
4 � L

R(t )
∼ L

t1/z
. (23)

Thus, for the SSM, the distinction between different surface
drivings enters only through the values of z for the different
models. Similarly, the higher order normalized cumulants can
be calculated straightforwardly.

Figure 14(b) shows that the flatness for the SSM for
different surface drivings is given by

κss
4 ∼ (L/l)φFSSM

(
t

τl

)
(24)

as for the PSM, but with different exponents (Table I). The
scaling function FSSM(y) ∼ y−1/z as y → 0 and FSSM(y) →
const. as y → ∞ where the exponent 1/z � 0.67, �0.56
and �0.57 in the KPZ, EW and KPZ-AA cases respectively.
Further, the scaling functions for κss

4 are different for different
drivings.

For KPZ driving, the decay exponent γ of FPSM(y) in
Eq. (21) is the same as 1/z of FSSM(y), but it is substantially
different for PSMs with EW and KPZ-AA drivings. Exponent
values for PSMs and SSMs for the three types of driving are
given in Table I.

C. Adiabatic approximation

It is often a good strategy to examine the extreme limits of a
process to get a qualitative understanding. The adiabatic limit
corresponds to the situation in which particles move infinitely
faster than the surface [32]. The problem then reduces to the
Sinai model of random walkers in a random potential [33]. By
using a path-integral method, the two-point density-density
correlation function and single-site probability distributions
were calculated analytically in steady state [34]. Surprisingly,
static results agree very well with the numerical simulations
[15]. Therefore, it is natural to ask how well the adiabatic
approximation would work for the dynamics of the passive
particles.

To check this, we study second- and fourth-order struc-
ture functions Sss

q (t0, t, l) and the corresponding flatness
κad

4 (t0, t, l) in the adiabatic limit for the three drivings. In this
limit, the particles reach thermal equilibrium, with the particle
number density ni (t ) given by the Boltzmann-Gibbs form

ni (t ) = N
e−βhi (t )

Z
, (25)

where hi (t ) is the effective potential, Z = ∑L
i=1 e−βhi (t ) is

the partition function, and β is proportional to the inverse
temperature. For simplicity, we consider the limit β → ∞, in
which case particles occupy only the sites where the height
is minimum [hi (t ) = hmin(t )]. Thus, we numerically study
the dynamics of global deepest valley and monitor its visit to
stretch l. To compare with the PSMs, we present the variation
of κad

4 (t, l) in the adiabatic limit along with their correspond-
ing PSMs in Fig. 15. We choose ω = 1, i.e., equally fast
surface and particle updates, for all the numerical simulations
for PSMs. Figure 15 shows that κad

4 shows a divergence,
∼ (t/τl )−γad with γad � 0.33, �0.30, and �0.33 for KPZ,
EW, and KPZ-AA driving, respectively. These values are far
from the numerically determined values for the PSMs, and we
conclude that the adiabatic approximation does not work well
for the dynamics.

VII. COARSENING REGIME

In this section, we study the growth of the two-point
density-density correlation function and show that it diverges
in the limit of scaled separation going to zero. A comparison
of the flatness with the three different drivings shows the
difference in the degree of intermittency. Finally, numerical
results for the sticky slider model are found to agree fairly
well with those for passive scalars, for KPZ advection and
EW driving but not for KPZ-AA.

A. Correlation function

Initially, particles tend to move to the closest local minima
of the coevolving surface. As time t passes, each passive
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FIG. 15. Time-dependent flatness in the adiabatic limit with β = ∞, corresponding to the particles being at the deepest valley. The
divergence of κad

4 indicates intermittency. However, the corresponding exponents differ from those of the corresponding PSMs.

particle typically move to a deeper valley a distance R(t ) ∼
t1/z from its starting point, as discussed in Sec. II. Therefore,
in time t , particles from a catchment region [of length L(t ),
say] collect near the valley bottom. Evidently, L(t ) is of order
of R(t ), and since we start with random placement of the
particles, the typical number of particles in the catchment
region is ρL(t ). With unit density, this reduces to L(t ).

The typical number of particles in a cluster increases with
time, reminiscent of phase-ordering dynamics, where ordered
domains grow in time. We study the two-point density-density
correlation Gc(r, t ) = 〈ni (t )ni+r (t )〉, where ni (t ) denotes the
number of particles at ith site at time t . Numerical simulations
of Gc(r, t ) for KPZ, EW, and KPZ-AA drivings (Fig. 16) show
that data for different times exhibit a scaling collapse when
the separation r is scaled by the growing length scale L(t )
and Gc(r, t ) is scaled with Lθ (t ). Our numerical simulations
indicate θ � 0.50 for KPZ and �0 for both EW and KPZ-AA
drivings.

The scaling form of the correlation can be written as

Gc(r, t ) ∼ 1

Lθ (t )
Yc

[
r

L(t )

]
, (26)

where Yc(y) ∼ y−ν as y → 0, which indicates the divergence
of Gc(r, t ), with ν � 1.50, �0.67, and �0.33 for the PSM
with KPZ, EW, and KPZ-AA drivings, respectively; the differ-
ent exponent values quantify the spreading of the clusters for
different drivings. KPZ-AA driving leads to a relatively large
spread while KPZ shows the least and EW lies in between.

The scaling form for two-point density correlation func-
tion in Eq. (26) is consistent with the steady-state two-point
density-density correlation given in Eq. (15) of Ref. [15] when
the system size L in Ref. [15] is replaced by L(t ). As for the
steady state, we find Gc(0, t ) ∼ Lδ (t ) with δ/z � 0.67, 0.33,
and 0.17 for KPZ, EW, and KPZ-AA, respectively, as shown
in Fig. 17. In Table II we present the exponent values asso-
ciated with Gc(r, t ). On comparing the values of steady-state
δ with our estimated δ/z (in the coarsening regime), we find
good agreement for KPZ and for KPZ-AA cases, while δ for
EW is smaller than its corresponding value in the steady state.

B. Structure functions and intermittency

To track the intermittent signal as the system evolves from
an initially random state towards the clustered steady state,

we monitor the flatness of the distribution of particle number
fluctuation [Nl (t ) − Nl (0)] in a stretch length l. We study
the qth order structure function Sc

q (t, l) = 〈[Nl (t ) − Nl (0)]q〉
for q = 2 and q = 4, and the corresponding flatness κc

4 for
both the PSM and SSM models with KPZ, EW, and KPZ-AA
driving.

For the SSM, we argue that Sc
q (t, l) obeys scaling and

compare with numerical simulations. Recalling that particles
are drawn into basins of typical size L(t ), let us assume
that there is a single SSM cluster with L(t ) particles in each
such basin. At early time, when L(t ) � l, particle movements
within l do not affect Nl and number fluctuations arise from
random motion of particles in and out of the edges. Thus,
the statistics of the number fluctuations are Gaussian (and the
value of the flatness κc

4 = 3). This ceases to hold once t is
large enough that L(t ) ∼ l. Once L(t ) � l, the probability
that the SSM cluster falls within the l-stretch is l

L(t ) , which
implies

Sc
q ∼ l

L(t )
L(t )q for L(t ) � l (27)

and leads to the estimate

κc
4 (t, l) ∼ L(t )

l
. (28)

Thus, in the “coarsening” regime, in contrast to the steady
state, the flatness diverges in the limit t/τl → ∞. These two
limits are captured by the scaling form

κc
4 ∼ h[l/L(t )], (29)

with h(y) ∼ y−ψ as y → 0 and h(y) → const. as y → ∞. In
view of Eq. (28), we expect ψ = 1. This analytical prediction
is well confirmed by numerical simulations of κc(t, l) for
SSMs with all three drivings (see Fig. 18 and Table II).

TABLE II. Exponents values corresponding to the correlation
function.

System θ ν δ/z

PSM-KPZ 0.50 1.50 0.67
PSM-EW 0 0.67 0.32
PSM-AA 0 0.33 0.17
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FIG. 16. Correlation function in the coarsening regime. G(r, t ) diverges in the limit r/L(t ) → 0 in all cases.

Motivated by the success of scaling for the SSM, we
performed simulations for the PSMs and SSMs for the three
types of surface driving and have plotted the scaled data in
Fig. 18. We see that scaling holds in all three cases. However,
the exponent ψ coincides with the corresponding SSM value
only for KPZ and EW driving. It differs substantially from the
SSM prediction for KPZ-AA driving, reflecting the smaller
degree of clustering. Results are summarized in Table II.

VIII. AGING

During the process of coarsening, the system exhibits
aging, namely changes in the pattern of dynamic evolution
as time passes. Traditionally, these changes are studied by
monitoring a two-time correlation function between an initial
time t0 and a final time t0 + t . This approach has been used
in diverse contexts, e.g., phase ordering kinetics [28], and
interface evolution [24,35–37].

In this section, we consider the effect of aging on the
flatness and show that it is a monotonic function of time if
t0 < τl for all three drivings. For the case t0 > τl , we find that
a striking nonmonotonic behavior noted earlier for advection
and EW driving, holds for KPZ-AA as well.

10
2

10
3

10
4

10
5

t

10
1

10
2

10
3

G
(r

=
0,

 t
)

KPZ
EW 
AA

0.67

0.32

0.17

FIG. 17. Time evolution of the density-density autocorrelation
function in the coarsening regime.

A. τl < t0

If τl � t0, the flatness shows two distinct wings (left and
right) separated by an intermediate plateau regime shown in
Fig. 19 as will be discussed below. The left wings of the curves
in Fig. 19 corresponds to a quasi-steady-state (QSS) regime,
while the right wings correspond to long-time aging (LTA).
To understand the nonmonotonicity of flatness, we first study
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FIG. 18. In the coarsening regime, flatness diverges as t in-
creases. For ease of display, κ4 is multiplied by 1.5 for PSM-EW
and SSM-EW, and 2.5 for PSM-KPZ and SSM-KPZ.
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FIG. 19. In the aging regime, κ4 is a nonmonotonic function of
time.

κ4(t0, t, l) for SSMs via a probabilistic argument. Within the
SSM, when t � τl � t0, a typical catchment of size L(t0)
typically contains a single aggregate with L(t0) particles. The
position of the single aggregate can be anywhere within L(t0)
(reminiscent of the steady state where a single aggregate
moves over the system size L) which implies that within
L(t0), a local steady state is reached. Therefore, the structure
functions and corresponding flatness in QSS can be estimated
by replacing L by L(t0) in Eqs. (22) and (23). The flatness for
SSM in QSS is thus

κ4 ∼ (t0/t )1/z. (30)

However, when t � t0, the right wing of the nonmonotonic
flatness where a typical catchment L(t0 + t ) increases with t

and accordingly, number of particles in an aggregate increases
because of the increasing basin size. This process continues
until the difference time t � Lz. The qth order structure
function, defined by Eq. (20), is estimated as

Sq (t0, t, l) � l

L(t )
[L(t0 + t )]q, (31)

where t � t0. Therefore, Eq. (31) can be approximated and
the corresponding flatness is obtained as

κ4(t0, t, l) �
(

t

τl

)1/z

, (32)

which diverges as t increases. The extent of the plateau regime
is ∼ (t0 − τl ). Substituting t = τl in Eq. (30), we get κ4 ∼
(t0/τl )1/z, which smoothly matches with the LTA regime by
setting t = t0 in Eq. (32).

Using the SSM results as a guide, we now discuss the
numerical simulations of the PSMs. Figure 20 shows results
of the numerical simulation of PSMs for different values of
τl and t0. In the QSS, the data for several values of τl and t0
collapse in the limit t/t0 → 0 when t is scaled by t0 shown in
Fig. 20(a). The flatness then can be estimated by replacing L
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FIG. 20. Scaling forms describe the two branches of the non-
monotonic flatness in the aging regime. (a) Quasi-steady state (QSS):
κ4 versus time for PSM with KPZ, EW, and KPZ-AA driving.
(b) Long-time aging (LTA): κ4 versus time for PSM with KPZ,
EW, and KPZ-AA driving. For ease of display, flatness shown in
Fig. 20(a) is multiplied by 1.5 for PSM-EW and PSM-KPZ.

by L(t0) in Eq. (21), leading to

κ4(t, t0, τl ) ∼
(L(t0)

l

)φ

g

(
t

τl

)
. (33)

For the LTA regime (corresponding to the right-hand
branch) numerical results for different values of τl and t0
collapse when separation time t is scaled by τl shown in
Fig. 20(b). The flatness diverges in the limit t/τl → ∞ for an
infinite system. The numerical results for PSM-KPZ follow
the scaling form predicted by the SSM, whereas results for
the PSM in the EW and KPZ-AA cases deviate from the
corresponding SSMs.

B. τl > t0

In the less interesting case τl > t0, the number fluctuations
in l increase with t and consequently, κ4 increases monotoni-
cally with t as shown in Fig. 21. This monotonic behavior of
κ4 can be identified with the LTA regime in Fig. 20(b).
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IX. CONCLUSION

In this work, we have characterized the intermittent steady
state of passive particles driven by fluctuating surfaces and the
manner in which such a steady state is approached. We have
given strong evidence that a scaling description holds for the
three types of surface driving considered (KPZ advection, EW,
and KPZ antiadvection), although the scaling functions differ
considerably in the three cases, reflecting the different degree
of clustering in both space and time.

It was known earlier that the single particle dynamic
exponent z, defined through R(t ) ∼ t1/z, coincides with the
surface dynamic exponent for KPZ advection [14,15,17,18],
and differs from it for antiadvection [8,14,15], indicating that
particles are slaved to the surface dynamics in the former
case. For EW driving, logarithmic corrections to z = zs were
indicated earlier [18,19]. Our study corroborates this finding
and provides an estimate of the power of the logarithm. The
exponent z is significant for our study of the many-particle
system, as it enters in scaling descriptions of correlations, both
in the steady state and in the coarsening and aging regimes.

To understand the correlation between two passive parti-
cles, we studied the evolution of the probability distribution
P (rs, t ) of their separation for the three different drivings.
In Ref. [27] it was found numerically that with KPZ driving,
P (0, t ) approaches a nonzero constant as t → ∞ even though
〈r2

s 〉 ∼ t for large t . We showed that these features follow from
the fact that P (rs, t ) is a function of rs/L(t ) with L(t ) ∼ t1/z.
Interestingly, we found that the time evolution of the average
overlap of trajectory pairs, which enters into the discussion
of replica symmetry breaking in trajectory space [27], is also
obtained from the scaling form of P (rs, t ).

In the many-particle system, clustering of particles leads
to intermittency in space and time. Our numerical study of
the phenomenon was supplemented by analytic arguments
for a simplified sticky slider model, which suggested scaling
forms for the passive particle model with all three drivings.
Spatial multiscaling was demonstrated numerically in the
steady state for all three drivings, with KPZ advection show-
ing the strongest effect, EW driving being intermediate, and

antiadvection displaying the weakest effect of the three, but
still quite different from the usual scaling. Further, intermit-
tency was also quantified by monitoring the divergence of
flatness as a function of scaled distance or time, confirming
the sequence of relative strengths.

We studied the approach to the steady state through the
time evolution of the two-point density-density correlation
function. It is a function of the separation r scaled by L(t ) ∼
t1/z where the growing length scale L(t ) describes the spatial
extent of the basin from which particles are drawn to form
clusters. It also enters in the scaling properties of the time-
dependent flatness. We also investigated aging by monitoring
the flatness with different waiting times t0 within the coars-
ening regime, and we found that in a broad region, it is a
nonmonotonic function, with two separate scaling regimes.

An interesting point that emerges from our study is that the
intense clustering induced by KPZ advection differs qualita-
tively from that induced by EW or KPZ-AA driving. There
are several pointers. For instance, single particle motion is
slaved to the surface with KPZ advection, and not in the other
cases. The probability that the separation of two particles lies
within a specified finite range approaches a nonzero value
for KPZ driving, but decays to zero as a power in the other
two cases. This can be traced to the values of the critical
exponents θ and ν, which satisfies the relation ν − θ = 1 in
the KPZ case. However, θ = 0 for EW and KPZ-AA driving,
and the relation fails to hold. In the many-particle system, the
feature that stands out is the close similarity of KPZ advection
and the SSM. This is apparent in spatial multiscaling plots
(Fig. 12), which indicate that, for KPZ driving, a single
exponent determines the structure functions for all orders,
whereas a range of exponents is found for EW and KPZ-AA
drivings. Both in the steady state and during the approach
to it, temporal intermittency is characterized by exponents of
the diverging flatness; it is strongest for KPZ advection and
weakest for KPZ-AA.

We conclude by pointing out some open problems. For
antiadvection, the variation of a, the coupling of the driving
surface to the passive particles, seems to induce nonuniver-
sality, in that the dynamic exponent z was found to depend
on a [14]. It would be interesting to see how this variation
affects the measures of intermittency studied here. Likewise,
changing ω, the ratio of particle to surface updates, may
generate interesting effects, in view of the strong variation
of the effective value of z found for a single particle with
EW driving [20]. Finally, we note that the scaling analysis is
presented in this paper, is expected to be applicable to a broad
set of problems. Thus, it would be interesting to attempt such
analyses for theoretical models which incorporate long-range
correlated noise [3], as also for models which display real
space condensation [38]. The studies in Refs. [11–13] of
intermittency due to clustering at the cellular level suggest
that these methods may work well in the biological context
as well.
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