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Overlaps between eigenvectors of correlated random matrices

Joël Bun,1 Jean-Philippe Bouchaud,2 and Marc Potters2

1Independent Researcher, France
2Capital Fund Management, 23–25 rue de l’Université, 75 007 Paris, France

(Received 31 March 2016; published 29 November 2018)

We obtain general, exact formulas for the overlaps between the eigenvectors of large correlated random
matrices, with additive or multiplicative noise. These results have potential applications in many different
contexts, from quantum thermalization to high-dimensional statistics. We find that the overlaps only depend
on measurable quantities, and do not require the knowledge of the underlying “true” (noiseless) matrices. We
apply our results to the case of empirical correlation matrices, that allow us to estimate reliably the width of the
spectrum of the true correlation matrix, even when the latter is very close to the identity. We illustrate our results
on the example of stock returns correlations, which clearly reveal a nontrivial structure for the bulk eigenvalues.
We also apply our results to the problem of matrix denoising in high dimensions.
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I. INTRODUCTION

The structure of the eigenvalues and eigenvectors of large
random matrices is of primary importance in many differ-
ent contexts, from quantum mechanics to high-dimensional
data analysis. Correspondingly, random matrix theory (RMT)
has established itself as a major discipline, at the frontier
between theoretical physics, mathematics, probability theory,
and applied statistics, with a somewhat intimidating corpus
of knowledge [1]. One of the most striking applications of
RMT concerns quantum chaos and quantum transport [2],
with renewed interest coming from problems of quantum
ergodicity (“eigenstate thermalization”) [3,4], entanglement,
and dissipation (for recent reviews, see Refs. [5,6]). In the
context of signal processing, RMT is of primary importance
in the analysis of high-dimensional statistics [7–9], wireless
communication channels [10,11], etc. Other examples cover
chemical physics [12] or the dynamics of complex systems—
from random ecologies [13] to glasses and spin glasses [14].

Whereas the spectral properties of random matrices have
been investigated at length, the interest has recently shifted
to the statistical properties of their eigenvectors—see, e.g.,
Refs. [3,15–22] for more recent papers. In particular, suppose
that we investigate a random system with N constituents
whose interactions are governed by a fixed matrix C, which
is often call population (or pure). However, we rarely ob-
served C directly in practice, but we rather collect realizations
(or samples) of the system from which we try to infer C.
By definition, the inferred matrix is subject to measurement
noise, which is why we shall call it the sample (or noisy)
matrix S. To make this setting more concrete, one can think
of C as a covariance matrix and S its empirical estimate.
The main question is how does the sample matrix resemble
those of the population one? As alluded to above, we have
been able answer this question for the eigenvalues since the
seminal work of Ref. [23], but for the eigenvectors the answer
is more recent. More precisely, we obtained in Ref. [24]

explicit formulas for the overlaps between these pure and
noisy eigenvectors for a wide class of random matrices, gener-
alizing results obtained for sample covariance and correlation
matrices of Ref. [16]—obtained as S = √

CW
√

C, where W
is a Wishart matrix (see Supplemental Material [25] for a
precise definition)—and for matrices of the form S = C + W,
where W is a symmetric Gaussian random matrix [19,26,27].
Even though these models are very specific, they captures true
physical systems such as dressed Hamiltonian [4], random
ecologies [13], large sensor networks [11], or financial cor-
relation matrices [28], for instance.

In the present paper, we want to generalize these results
to the overlaps between the eigenvectors of two different
realizations of such random matrices that remain correlated
through their common part C. For example, imagine one
measures the sample correlation matrix of the same process,
but on two nonoverlapping time intervals, characterized by
two independent realizations of the Wishart noises W and
W̃ . How close are the corresponding eigenvectors expected
to be? We provide exact, explicit formulas for these overlaps
in the high-dimensional regime. Precisely, we give a trans-
parent interpretation to our formulas and generalize them to
various cases, in particular, when the noises are correlated.
Perhaps surprisingly, these overlaps can be evaluated from
the empirical spectrum of S only, i.e., without any prior
knowledge of the pure matrix C itself. We emphasize here
that the noisy matrices W and W̃ are drawn from the same
distribution but do not necessarily share the same parameters.
So, for instance, the two independent Wishart noises can
come from independent sets of different sizes. These results
lead us to propose a statistical test based on these overlaps
that allows one to determine whether two realizations of the
random matrix S and S̃ indeed correspond to the very same
underlying “true” matrix C either in the multiplicative and
additive cases defined above. We shall also revisit the theory
of rotational invariant estimators (RIEs) [29] that encountered
much attention recently (see Refs. [16,28,30,31] to cite a few).

2470-0045/2018/98(5)/052145(12) 052145-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052145&domain=pdf&date_stamp=2018-11-29
https://doi.org/10.1103/PhysRevE.98.052145


JOËL BUN, JEAN-PHILIPPE BOUCHAUD, AND MARC POTTERS PHYSICAL REVIEW E 98, 052145 (2018)

II. THEORETICAL RESULTS

A. Inversion formula

Throughout the following, we consider N × N symmet-
ric random matrices and denote by λ1 � λ2 � · · · � λN the
eigenvalues of S and by u1, u2, . . . , uN the corresponding
eigenvectors. Similarly, we denote by λ̃1 � λ̃2 � · · · � λ̃N

the eigenvalues of S̃ and by ũ1, ũ2, . . . , ũN the associated
eigenvectors. Note that we will sometimes index the eigen-
vectors by their corresponding eigenvalues for convenience.
We emphasize that we allow the parameters that describe the
randomness of S and S̃ to be different. The central objects that
we focus on in this study are the asymptotic (N → ∞) scaled,
mean-squared overlaps [32],

�(λ, λ̃) := NE[〈uλ, ũλ̃〉2], (1)

that remain O(1) in the limit N → ∞. In the above equation,
the expectation E can be interpreted either as an average
over different realizations of the randomness or, for fixed
randomness, as an average over small “slices” of eigenvalues
of width η = dλ � N−1, such that the result becomes self-
averaging in the large N limit. We will study the asymptotic
behavior of (1) using the complex function

ψN (z, z̃) := E

[
1

N
Tr[(z − S)−1(z̃ − S̃)−1]

]
, (2)

where z, z̃ ∈ C. For large random matrices, we expect the
eigenvalues [λi]i∈[[1,N ]] and [λ̃i]i∈[[1,N ]] to stick to their clas-
sical locations, i.e., smoothly allocated with respect to the
quantile of the spectral density. Differently said, the sample
eigenvalues become deterministic in the large N limit. Hence,
we obtain after taking the continuous limit that ψN (z, z̃) ∼
ψ (z, z̃) where the limiting value is given by

ψ (z, z̃) :=
∫ ∫

�(λ)

z − λ

�̃(λ̃)

z̃ − λ̃
�(λ, λ̃)dλdλ̃, (3)

with � and �̃ are the spectral densities of S and S̃. Then, it
suffices to compute

ψ (x − iη, y ± iη) =
∫ ∫

(x − λ + iη)

(x − λ)2 + η2

(y − λ̃ ∓ iη)

(y − λ̃)2 + η2

× �(λ)�̃(λ̃)�(λ, λ̃)dλdλ̃,

to deduce that

Re [ψ (x − iη, y + iη) − ψ (x − iη, y − iη)]

= 2
∫ ∫

η�(λ)

(x − λ)2 + η2

η�̃(λ̃)

(y − λ̃)2 + η2
�(λ, λ̃)dλdλ̃. (4)

We may now invoke the Sokhotski-Plemelj identity to obtain
the inversion formula

�(λ, λ̃) = Re[ψ0(z, z̃) − ψ0(z, z̃)]

2π2�(λ)�̃(λ̃)
, (5)

with z = λ − iη, z its complex conjugate, and ψ0 ≡
limη↓0+ ψ . The orthonormality of eigenbases implies the fol-
lowing normalization for �(λ, λ̃),∫

�(λ, λ̃)ρ(λ)dλ = 1. (6)

Equations (2) and (5) can be computed explicitly in two trivial
cases. First, if S and S̃ are free, then ψ (z, z̃) = g(z)g̃(z̃) with
g(z) is the Stieltjes transform of S defined as the limiting value
of N−1 Tr[(z − S)−1]. Equation (5) then gives �(λ, λ̃) = 1 as
expected since free matrices can be understood as matrices
with random eigenvectors relative to one another. The other
trivial case is when S̃ = S. In that case, we have ψ (z, z̃) =
[g(z) − g(z̃)]/(z̃ − z) and �(λ, λ̃) = δ(λ − λ̃)/ρ(λ), i.e., the
only overlap is the self-overlap.

Equation (5) tells us that in the high-dimensional regime,
we can study the mean-squared overlap (1) through the bivari-
ate function ψ (z, z̃) which is easier to handle using tools from
RMT (see below).

B. Multiplicative noise

The study of the asymptotic behavior of the function ψ

requires one to control the resolvent of S and S̃ entrywise. It
was shown recently that one can approximate these (random)
resolvents entrywise by deterministic equivalent quantities
[24,33,34]. We begin first with the Wishart multiplicative
noise W that we introduced in the Introduction. More pre-
cisely, let S := √

CW
√

C and S̃ := √
CW̃

√
C, where W

and W̃ are two independent Wishart matrices with possibly
two different observation ratios q := N/T and q̃ := N/T̃ . By
independence, we have

ψN (z, z̃) = 1

N

N∑
k,l

EP
[
(z − S)−1

kl

]
EP̃

[
(z̃ − S̃)−1

kl

]
, (7)

where EP [·] (EP̃ [·]) denotes the expectation value over the
probability measure P (P̃) associated with S (S̃). Then, we use
the deterministic estimate of the resolvent of S which yields
for N → ∞ [24,33,34]

EP
[
(z − S)−1

kl

] ∼ ζ (z)[zζ (z) − C]−1
kl + O(N−1/2), (8)

where we defined

ζ (z) := 1

1 − q + qzg(z)
. (9)

The estimate (8) holds as well for S̃ by replacing ζ , q, and
g with ζ̃ , q̃, and g̃. Note that we can deduce the fixed-point
equation associated with g(z) by taking the normalized trace
in (8), and this yields for N → ∞,

g(z) ∼ ζ (z)gC[zζ (z)], (10)

where gC is the Stieltjes transform associated with the pure
matrix C. Again, the value of g̃ is obtained from (10) by
replacing ζ with ζ̃ .

By plugging Eq. (9) into Eq. (7), we get

ψN (z, z̃) ∼ 1

N
Tr{ζ (z)[zζ (z) − C]−1ζ̃ (z̃)[z̃ζ̃ (z̃) − C]−1},

and then, using the identity

[zζ (z) − C]−1[z̃ζ̃ (z̃) − C]−1

= 1

z̃ζ̃ (z̃) − zζ (z)
{[zζ (z) − C]−1 − [z̃ζ̃ (z̃) − C]−1}, (11)
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we obtain

ψN (z, z̃) ∼ ζ (z)ζ̃ (z̃)

z̃ζ̃ (z̃) − zζ (z)

1

N
Tr{[zζ (z) − C]−1

− [z̃ζ̃ (z̃) − C]−1}.
From this last equation, we deduce

ψN (z, z̃) ∼ 1

z̃ζ̃ (z̃) − zζ (z)

(
ζ̃ (z̃)

N
Tr{ζ (z)[zζ (z) − C]−1}

− ζ (z)

N
Tr{ζ̃ (z̃)[ζ̃ (z̃) − C]−1}

)
.

One notices from (10) that the two normalized trace terms in
the latter equation are exactly given by g(z) and g̃(z̃) in the
large N limit. We therefore conclude that in the case of a
multiplicative Wishart perturbation, the asymptotic value of
(2) reads

ψ (z, z̃) ∼ ζ̃ (z̃)g(z) − ζ (z)g̃(z̃)

z̃ζ̃ (z̃) − zζ (z)
, (12)

which holds for any q = O(1) and q̃ = O(1). The striking
observation in Eq. (12) is that the result does not depend
explicitly on the population matrix C that we wish to estimate.
This feature is crucial since it indicates that we shall be
able to characterize the mean-squared overlap (1) in terms of
observable variables only.

Now that we have determined the asymptotic value
ψ (z, z̃), let us now compute the main quantity of interest,
i.e., Eq. (1). To that end, it is convenient to work with the
complex function m(z) := 1/[zζ (z)]. Indeed, by expressing
(12) in terms of the function m, we end up with

ψ (z, z̃) = 1

qq̃zz̃

[
(q̃z − qz̃)m̃2

m − m̃
+ (q − q̃ )m̃

m − m̃

]

+ m + m̃

qz̃
− 1 − q

qzz̃
.

Defining m0(λ) = limη↓0 m(λ − iη) ≡ mR (λ) + imI (λ), one
obtains after some elementary computations (see Supplemen-
tal Material [25] for details) the following general result,

�q,q̃ (λ, λ̃) = 2(q̃λ − qλ̃)α(λ, λ̃) + (q̃ − q )β(λ, λ̃)

λλ̃γ (λ, λ̃)
, (13)

where we defined

α(λ, λ̃) := mR (λ)|m̃0(λ̃)|2 − m̃R (λ̃)|m0(λ)|2,
β(λ, λ̃) := |m̃0(λ̃)|2 − |m0(λ)|2,
γ (λ, λ̃′) := {[mR (λ) − mR (λ̃)]2 + [mI (λ) + m̃I (λ̃)]2}

×{[mR (λ) − m̃R (λ̃)]2 + [mI (λ) − m̃I (λ̃)]2}.
(14)

The final result (13) is invariant under the exchange of (q, λ)
with (q̃, λ̃) and does not depend on C explicitly, as expected.
We will see in the next section that it is a crucial feature in
order to establish an observable stability test. This result holds
for independent samples and as long as the parameters q and
q̃ are of order O(1) [see Ref. [34] for a rigorous statement on
the applicability of Eq. (8)].

It is easy to show that this formula reproduces the mean-
squared overlap between a given sample eigenvector and its
true value in the limit q̃ → 0 (see, e.g., Refs. [16,24]). To
prove our claim, let us consider q̃ → 0, for which λ̃ → μ,
where μ denotes the corresponding population eigenvalue
[35]. In that specific framework, we have m̃R = 1/μ and
m̃I = 0. Hence, we deduce from (13) that

�q,q̃→0(λ,μ) = qμ

λ|1 − μm0(λ)|2 , (15)

which is exactly the result of Ref. [16].
Next, we look at the case where we split our data sets in two

windows of the same size (q = q̃) which is relevant when ones
wishes to measure the stability of the eigenvectors associated
to the same eigenvalue. For q = q̃, the eigenvalues λ and λ̃

are now distributed according to the same density function
so that m̃(λ̃) = m(λ̃). Moreover, we infer from (14) that the
contribution of β(λ, λ̃) in (13) vanishes. The self-overlap
limit λ̃ → λ needs to be handled with care as the formula
(13) seems ill defined when q = q̃. Nevertheless, if we write
λ̃ = λ + ε with ε > 0, one has

α(λ, λ + ε) = ε2(|m0|2∂λmR − mR∂λ|m0|2) + O(ε3),

γ (λ, λ + ε) = 4ε2m2
I (λ)|∂λm0(λ)|2 + O(ε3).

As a consequence, we conclude by plugging these two expres-
sions into (13) and then setting ε = 0 that the self-overlap is
given by

�(λ, λ) = q

2λ2

|m0(λ)|4∂λ[mR (λ)/|m0(λ)|2]

m2
I (λ)|∂λm0(λ)|2 . (16)

We now explain how we can extend these results to more
general multiplicative noise. More specifically, let us consider
matrices of the form S = √

COBO∗√C, where O is a random
matrix chosen in the orthogonal group O(N ) according to
the Haar measure and B is a given random matrix indepen-
dent from C and O (see, e.g., Refs. [21,24,36] for similar
models). The framework investigated above corresponds to
the case where OBO∗ is a Wishart matrix. Using the results
of Ref. [24], we find for this general model that (12) still
holds with ζ (z) = SB(zg(z) − 1), where SB is the so-called
Voiculescu’s S-transform of the B matrix [37]. If B = W ,
then SB(ω) = 1/(1 + qω). However, it seems difficult at this
stage to obtain an explicit formula for the mean-squared
overlap (1) in this general case since the analytic structure of
the S-transform depends on the choice of B.

C. Additive noise

All the arguments that we use for the multiplicative noise
model can be repeated nearly verbatim for the additive noise.
In the case of additive real symmetric Gaussian noise, referred
to as the Gaussian orthogonal ensemble (GOE) in the litera-
ture, we have S = C + W and S̃ = C + W̃ with W and W̃
two independent GOE matrices with variance σ 2 and σ̃ 2. We
assume throughout the following that both variances are finite
and hence do not scale with the dimension N . Each entry of
the resolvent (z − S)−1 may also be approximated by a de-
terministic value in the high-dimensional regime [19,24,34],
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EP
[
(z − S)−1

kl

] ∼ [
ζ a (z) − C−1

kl

]
, (17)

where we defined [38]

ζ a (z) := z − σ 2g(z). (18)

Once again, the asymptotic limit (17) holds for S̃ by re-
placing ζ a , g, and σ by ζ̃ a , g̃, and σ̃ . By performing the
same computations as above, we obtain for the limiting value
of ψN ,

ψa (z, z̃) = g(z) − g̃(z̃)

ζ̃ a (z̃) − ζ a (z)
. (19)

As for Eq. (12), Eq. (19) depends only on a priori observable
quantities since it does not involve explicitly the unknown
population matrix C. Consequently, we will obtain an observ-
able expression for (1) using the inversion formula (5).

We can now turn on the computation of the mean-squared
overlap (1) in the additive Gaussian model. From (19), we find
that

lim
η→0

[ψa (λ − iη, λ̃ + iη) − ψa (λ − iη, λ̃ − iη)]

= g0(ζ̃ a − ζ̃ a ) + ζ a (g̃0 − g̃0) + g0ζ̃ a − g̃0ζ̃
a

(ζ̃ a − ζ a )(ζ̃ a − ζ a )
,

where we used the notation g0 ≡ limη↓0+ g. Defining ζ a
0 =

limη↓0+ ζ a (λ − iη) ≡ ζ a
R + iζ a

I and performing similar alge-
braic manipulations as above (see Supplemental Material [25]
for details), we eventually get

�a
σ,σ̃ (λ, λ̃) = 2(σ̃ 2λ − σ 2λ̃)

(
ζ a
R − ζ̃ a

R

) + (σ 2 − σ̃ 2)βa (λ, λ̃)

γ a (λ, λ̃)
,

(20)

with γ a (λ, λ̃) given by the same expression as γ (λ, λ̃) in
Eq. (14) with the substitutions mR → ζ a

R and mI → ζ a
I and

βa (λ, λ̃) := [
ζ a
R (λ) − ζ a

I (λ)
][

ζ a
R (λ) + ζ a

I (λ)
]

− [
ζ̃ a
R (λ̃) − ζ̃ a

I (λ̃)
][

ζ̃ a
R (λ̃) − ζ̃ a

I (λ̃)
]
. (21)

We notice that the contribution of the term βa again van-
ishes when we suppose that both Gaussian noises have the
same variance. As in the multiplicative case, the self-overlap
�a (λ, λ) is reached by expanding (20) in powers of ε with
λ̃ = λ + ε. This eventually yields, by taking ε = 0,

�a (λ, λ) = σ 2

2

∂λζ
a
R (λ)[

ζ a
I (λ)

]2∣∣∂λζ
a
0 (λ)

∣∣2 . (22)

Similarly to the multiplicative case, the additive model can
be generalized to S = C + OBO∗ with the same definitions
for B and O. In that case, the above result (19) holds but now
with ξ (z) = z − RB[g(z)], where RB(z) is the R-transform
of the B matrix [37]—which is simply equal to RB(z) = σ 2z

when B = W is a Gaussian random matrix, as considered
above.

Another interesting and important extension of the result
(20) is when the noises W, W̃ are correlated—while the above
calculations referred to independent noises. In the additive
case, the trick is to realize that one can always write (in law)

FIG. 1. Main figure: Evaluation of the self-overlap �a (λ, λ̃) for
a fixed λ̃ ≈ 0.95 as a function of λ for N = 500, σ = 1, and for
different values of ρ. The population matrix C is given by a (white)
Wishart matrix with parameter T = 2N . Inset: We compare the
theoretical prediction �a (λ, λ̃ ≈ 0.95) for a fixed ρ = 0.54 with
synthetic data. The empirical averages (blue points) are obtained
from 100 independent realizations of S.

W = √
ρW0 + √

1 − ρW1 and W̃ = √
ρW0 + √

1 − ρW2,
where W1, W2 are now independent, as above. Since our
formulas do not rely on the common matrix C, it can therefore
be replaced by C + √

ρW0. Then, Eq. (22) trivially holds with
σ 2 replaced by σ 2

1 − σ1σ2ρ with σ1 and σ2 the width of the
noisy matrices W1 and W2 (see Supplemental Material [25]
for more details). Similarly, σ̃ 2 is replaced by σ 2

2 − σ1σ2ρ.
Note that in the case where the noise parameters are identical,
σ 2 is simply multiplied by 1 − ρ. The corresponding shape
of �a (λ, λ) for different values of ρ and σ = σ̃ is shown
in Fig. 1. We also provide in the inset a comparison with
synthetic data for a fixed ρ = 0.54, σ = 1. The empirical
average is taken over 200 realizations of the noise and, again,
the agreement is excellent.

Considering correlated noises in the multiplicative model
is of crucial importance since it describes the case of corre-
lation matrices measured on overlapping periods, such that
S = √

C[W0 + W]
√

C and S′ = √
C[W0 + W̃]

√
C (see

Sec. III B below). This case turns out to be more subtle and
is the subject of ongoing investigations.

D. A convolution formula

Before investigating some concrete applications of these
formulas, let us end this theoretical section with an interesting
interpretation of the above formalism. We first introduce
the set of eigenvectors vμ of the pure matrix C, labeled
by the eigenvalue μ. We define the overlaps between the u’s
and the v’s as

√
�0(μ, λ)/N × ε(μ, λ), where �0(μ, λ) were

explicitly computed in Ref. [24] for a wide class of problems,
and ε(μ, λ) are random variables of unit variance. Now, one
can always decompose the u’s as

uλ = 1√
N

∫
dμ�C (μ)

√
�0(μ, λ)ε(μ, λ)vμ, (23)
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where �C is the spectral density of C. Using the orthonormal-
ity of the v’s, one then finds

〈uλ, u′
λ′ 〉

= 1

N

∫
dμ�C (μ)

√
�0(μ, λ)�0(μ, λ′)ε(μ, λ)ε(μ, λ′).

If we square this last expression and average over the noise,
and make an “ergodic hypothesis” [3] according to which
all signs ε(μ, λ) are in fact independent from one another,
one finds the following, rather intuitive, convolution result for
squared overlaps,

�(λ, λ′) =
∫

dμ�C (μ)�0(μ, λ)�0(μ, λ′). (24)

It turns out that this expression is completely general and
exactly equivalent to Eqs. (13) and (20) in the corresponding
cases. However, whereas this expression still contains some
explicit dependence on the structure of the pure matrix C,
it has disappeared in Eqs. (13) and (20). Nevertheless, this
second interpretation will be useful in order to obtain an
efficient way to estimate C from large noisy matrices.

III. APPLICATION

Equations (13) and (20) are exact in the high-dimensional
limit (HDL). Note that from Ref. [34], we expect these results
to hold with fluctuations of order N−1/2 but a more rigorous
analysis of the subleading terms can be useful for practical
purposes. We leave this question for future work. Throughout
this section, we shall focus on the case of sample covariance
and correlation matrices but most of the results that will follow
can be easily transposed to the additive noise. We emphasize
that in the special case of sample correlation matrices, the
HDL is defined as

N, T , T̃ → ∞ with q = O(1), q̃ = O(1), (25)

where T is the sample size. We will assume throughout this
section that the variance of each variable can be estimated
independently with great accuracy in the HDL so that we will
not distinguish further covariances and correlations hence-
forth.

The first application concerns a stability test for the eigen-
vectors of large correlation matrices. More precisely, we
investigate whether or not the mean-squared overlap between
the eigenvectors of two correlation matrices measured with
nearby nonoverlapping samples is entirely explain by mea-
surement noise. Differently said, we test the hypothesis that
the dynamics of the eigenvectors is captured by the sample
correlation matrix model. The second application involves the
convolution formula. In particular, we link our results with
the theory of RIEs that provides significant improvement over
classical sample estimates in the HDL (see Ref. [28] for a
recent review).

A. Eigenvector stability

The first application deals with the stability of the eigen-
vectors in the case of two nonoverlapping adjacent samples.
In order to give more insight, we begin with a theoretical
example where the true correlation matrix C is an inverse

Wishart matrix of parameter κ ∈ (0,∞), that corresponds
to 1/q for Wishart matrices (see Ref. [24] for details). In
that case, the function m(z) can be explicitly computed. This
finally leads to

�(λ, λ) = υ(λ + 2qκ )2

2qκ (2λ(υ + κ ) − λ2κ + κ (2qυ − 1))
, (26)

with υ := 1 + qκ and λ is within the interval [λ−, λ+],
where the edges are given by λ± = κ−1[υ + κ ±√

(2κ + 1)(2qκ + 1)]. An interesting limit corresponds
to κ → ∞, where C tends to the identity matrix, and the
overlaps are expected to become all equal to 1/N . Indeed,
one finds, for a fixed q,

�(λ, λ′) ∼
κ→∞

[
1 + (λ − 1)(λ′ − 1)

2q2κ
+ O

(
1

κ2

)]
, (27)

which is in fact universal in this limit, provided the eigenvalue
spectrum of C has a variance given by (2κ )−1 → 0 [39]. This
formula is interesting insofar as it allows one to estimate the
width of the eigenvalue distribution of C, even when it is close
to the identity matrix, i.e., κ � 1. One could think of directly
using information on the empirical spectrum, for example,
the Marčenko-Pastur prediction Tr C−1 = (1 − q)Tr S−1, that
in principle allows one extract the parameter κ through 1 +
(2κ )−1 = (1 − q )Tr S−1/N . However, this second method is
numerically unstable and very imprecise when κ � 1 and
finite N (for one thing, the right-hand side can be negative,
which would lead to a negative variance). Our formula based
on overlaps avoids these difficulties. Note that we can gen-
eralize Eq. (27) to any two noise matrices. Indeed, provided
that SC(ω) = 1 − σ 2ω with σ 2 := N−1 Tr C2 − 1, one has for
σ 2 → 0,

�(λ, λ′) = 1 + σ 2[2gR (λ) − 1][2g̃R (λ̃)−1] + O(σ 4), (28)

where the subscript R has the same meaning as above.
As an illustration, we check the validity of Eq. (26) in

Fig. 2 with κ = 10, N = 500, and q = 0.5. More precisely,
we determine the empirical average overlap as follows: We
consider 50 independent realization of the Wishart noise W .
For each pair of samples we compute a smoothed overlap as

[〈ui , ũi〉2] = 1

Zi

N∑
j=1

〈ui , ũj 〉2

(λi − λ′
j )2 + η2

, (29)

with Zi = ∑N
k=1[(λi − λ′

k )2 + η2]−1 the normalization con-
stant and η the width of the Cauchy kernel, that we choose to
be N−1/2 in such a way that N−1 � η � 1. We then average
this quantity over all pairs for a given value of i to obtain
[〈ui , ũi〉2]e, and plot the resulting quantity as a function of
the average eigenvalue position [λi]e. We observe that the
agreement with Eq. (26) is excellent, even when the true
underlying matrix C is close to the identity matrix. Note that
the empirical estimate Eq. (29) is universal, i.e., independent
of the underlying structure of C.

For a general and arbitrary population matrix C, evaluating
Eq. (13)—or Eq. (20)—is rather difficult because of finite-size
effects, especially for the multiplicative case. Indeed, when
we consider multiplicative noises, the eigenvalues of S are
confined to stay positive meaning the presence of a hard wall
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FIG. 2. Evaluation of the self-overlap for an inverse-Wishart
population matrix with N = 500 and κ = 10 using formula (27).
The blue plain line corresponds to the case where we know exactly
the true eigenvalues while the red dotted line is obtained from the
estimated population eigenvalues using the QuEST algorithm (see
Ref. [40]). The empirical average is plotted by the green points and
is obtained from (29) over 50 realizations of W .

at the origin [41]. Consequently, the use of local laws to
estimate the Stieltjes transform g(z), as in Ref. [34], often
leads to noisy results for very small eigenvalues. Hence, the
determination of Eq. (13) from real data is rather difficult and
one has to resort to numerical regularization schemes to do
so. In the specific case of the sample correlation matrix, one
possible solution is to invert the celebrated Marčenko-Pastur
equation [31,40] to infer the eigenvalues of the population
matrix C. Once this is done, one can evaluate the Stieltjes
transform g(z) with high precision even near the origin. In the
following, we shall use the so-called Quantized Eigenvalues
Sampling Transform (QuEST) numerical scheme of Ref. [40]
to obtain these pure eigenvalues. We plot in Fig. 2 the results
obtained when using the estimated population eigenvalues
from the QuEST algorithm (red dotted line) and note that the
agreement is quite remarkable.

Now that we have an estimate of the population eigen-
values, we can investigate an application to real data. Here,
we study the case of the U.S. stock market but the results
below can be extended to other regions [28]. The difficulty
when dealing with real data is to measure the empirical mean-
squared overlaps (29) between two nonoverlapping correla-
tion matrices S and S̃ as in Eq. (29) because we may not have
enough data points to evaluate accurately an average over the
noise as required in Eq. (1). To circumvent this problem, we
use a bootstrap procedure to increase the size of the data [42]:
We take a total period of 2400 business days from 2004 to
2013 for the N = 300 most liquid assets of the S&P 500 index
that we split into two nonoverlapping subsets of the same size
of 1200 days, corresponding to 2004 to 2008 and 2008 to
2013. We restrict to N = 300 stocks such that all of them are
present throughout the whole period from 2004 to 2013. Then,
for each subset and each bootstrap sample b ∈ {1, . . . , B},
we select randomly T = 600 distinct days to construct two
“independent” sample correlation matrices Sb and S̃b, with
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FIG. 3. Evaluation of the self-overlap �(λ, λ) as a function
of the sample eigenvalues λ using the N = 300 most liquid U.S.
equities from 2004 to 2013. We split the data into two nonover-
lapping periods with the same sample size of 1200 business days.
For each period, we randomly select T = 600 days and we repeat
B = 100 bootstraps of the original data. The empirical self-overlap is
computed using Eq. (29) over these 100 bootstraps (green points) and
the limiting formula (16) is estimated using the QuEST algorithm
with q = 0.5 (blue dashed line). We also provide the estimation
we get using the same effective observation ratio qeff = 0.55 that
accounts for correlation and heavy tail effects [28]. Inset: Focus in
the bulk of eigenvalues.

q = q̃ = N/T = 0.5. We then compute the empirical mean-
squared overlap (1) and also the theoretical limit (13)—using
the QuEST algorithm—from these B bootstrap data sets.

For our simulations, we set B = 100 and plot in Fig. 3 the
resulting estimation of Eq. (1) we get from the QuEST algo-
rithm (blue dashed line) and the empirical bootstrap estimate
(29) (green points) using U.S. stocks. We also perform the
estimation with an effective observation ratio qeff = 0.55 (red
plain line) as advocated in Ref. [28] for the S&P 500 index, to
account for correlation or heavy tail effects.

It is clear from Fig. 3 that the eigenvectors associated with
large eigenvalues are not well described by the theory: We
notice a discrepancy between the (estimated) theoretical curve
and the empirical one even after accounting for an effective ra-
tio qeff. The difference is even worse for the market mode (not
shown). This is presumably related to the fact that the largest
eigenvectors are expected to genuinely evolve with time, as
already argued in Ref. [17]. Note also the gap at the left edge
between the theoretical and empirical prediction in the inset of
Fig. 3 that is partly corrected with qeff. This suggests that one
can still improve the Marčenko-Pastur framework by adding,
e.g., autocorrelation or heavy tailed entries which allows one
to widen the spectral density of S (see, e.g., Refs. [36,43] for
autocorrelation and [44–47] for heavy tailed entries). Finally,
all these remarks hold for other markets as well [28].

B. Rotational invariant estimator

Aside from the statistics of eigenvectors, the theoret-
ical framework presented is actually very useful for the
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estimation of C from large noisy matrices in the specific
class of rotational invariant estimators (see Ref. [28] and
references therein for a recent review on this topic). For this
class of estimators, we keep the observed eigenvectors ui of
S := √

CW
√

C and replace the eigenvalues with the oracle
eigenvalues,

ξi ≡ ξi (q ) := 〈ui , Cui〉. (30)

There exist several ways to approximate this estimator in the
HDL: using the anisotropic local law [28], numerical inver-
sion of the Marčenko-Pastur equation [40], and the so-called
cross-validation (CV) estimator of Ref. [30]. The remarkable
feature of all these methods is that the resulting estimator only
depends on observable quantities, while it is clearly not the
case for (30). Even if the first two techniques are interesting
on their own, we will rather focus on the last one as it turns to
be related to the convolution formula derived in Sec. II D.

From now on, we consider the multiplicative but the fol-
lowing arguments can easily be generalized for the additive
case. If we have a second sample S̃, we can estimate the oracle
with the quantity

νi ≡ νi (q ) := 〈ui , S̃ui〉, (31)

where we recall that ui is independent from S̃ := √
CW̃

√
C.

We again assume that we are in the regime (25) and we thus
infer from (24) that

νi ∼
∫

�̃(λ̃)�(λ, λ̃)λ̃dλ̃

=
∫

�̃(λ̃)

[∫
�C(μ)�0(λ,μ)�0(λ̃, μ)dμ

]
λ̃dλ̃

=
∫

�C(μ)�0(λ,μ)

[∫
�̃(λ̃)�0(λ̃, μ)λ̃dλ̃

]
dμ. (32)

The term in the brackets can be simplified by using the very
definition of S̃,∫

�̃(λ̃)�0(λ̃, μj )λ̃dλ̃ ≈ 〈vj , S̃vj 〉

= 〈C1/2vj,W̃C1/2vj〉,
and we rewrite this last line owing to the eigenvalue equation
as ∫

�̃(λ̃)�0(λ̃, μj )λ̃dλ̃ ≈ μj 〈vj ,W̃vj 〉

= μj

N∑
k=1

ωkE[〈wk, vj 〉2],

with ωk the kth eigenvalue of the white Wishart matrix W̃
and wk the corresponding eigenvector. Finally, we invoke that
E[〈wk, vj 〉2] = N−1 for all j ∈ [[1, N ]] to conclude that in
the HDL,

N∑
k=1

ωk〈wk, vj 〉2 = 1, (33)

and we therefore have∫
�̃(λ̃)�0(λ̃, μj )λ̃dλ̃ ≈ μj . (34)
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FIG. 4. Main figure: Evaluation of Eq. (35) when C is a 500 ×
500 inverse-Wishart matrix with parameter κ = 0.5. The first noisy
matrix S, which is the one we wish to denoise, is drawn from a
Wishart distribution with a parameter q = 0.5. The second noisy
matrix S̃ is also a Wishart matrix but with a parameter q̃ = 5. The
x axis is given by the true asymptotic value, namely, the linear
shrinkage estimator with intensity α = 1/(1 + 2qκ ). The y axis are
the eigenvalues obtained from (35). The dotted star line is the result
obtained from one sample, the plain red line is the average results
from 20 independent realizations of S̃, and the dark dashed lines give
the confidence interval. Inset: Squared error as a function of q̃ where
we kept S fixed with the same N and T . The yellow crossed line
corresponds to the error over a single realization of S̃ for Eq. (35)
and the purple plain line to its sorted version. The dashed black line
corresponds to the average value of Eq. (35) over 20 realizations of
S̃. The red point gives the error for q̃ = 5, i.e., the sample shown in
the main figure.

Plugging this last equation into (32), we obtain for any
q̃ = O(1) the following result,

νi (q ) ∼
∫

�C(μ)�0(λ,μ)μdμ ≡ ξi (q ), (35)

where the last equivalence comes from the definition (30) of
the oracle estimator in the continuous limit.

This result is very interesting and indicates that one can
approximate the oracle estimator (30) by considering the
quadratic form between the eigenvectors of a given realization
of C—say, S—and another realization of C—say, S̃—even if
the latter is characterized by a different value of the quality
ratio q̃ �= q.

To illustrate this last point, let us consider an inverse-
Wishart matrix with parameter κ = 0.5 as the population
correlation matrix of size N = 500. Both noisy matrices are
drawn from a multivariate Gaussian distribution but with
different parameters: The first noisy matrix S is computed
using T = 1000 while the second one S̃ corresponds to T̃ =
100. With this prior, the oracle estimator is given in the HDL
by the linear shrinkage with intensity α = 1/(1 + 2qκ ) and
q = N/T . In Fig. 4, we plot the prediction obtained from
(35) with S fixed and a single realization of S̃ (dotted star
line) and we see that although noisy, the prediction is already
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fairly accurate. We also plot in the same figure the average
value of (35) over 20 independent realizations of S̃ (plain red
line) and we observe that the agreement with limiting value
(given by the line y = x in Fig. 4) is excellent, with only very
small fluctuations (see the confidence interval given by the
blue shaded area).

Quite surprisingly, we can significantly improve the accu-
racy of the estimation by applying an ad hoc regularization
even for a single realization of S̃. More specifically, we see
from Fig. 4 that the prediction (35) does not necessarily pre-
serve the order of the eigenvalues due to the finite size of the
sample. However, observing a nonmonotonic cleaning scheme
may be an unwanted feature within a rotational invariant
assumption. Indeed, there is no reason a priori to expect that
it is optimal to modify the order of the eigenvalues, that is to
say, the variance associated with the principal components.

There are several ways to regularize the estimation ob-
tained from (4). We can either sort the cleaned eigenvalues
[28] or perform an isotonic regression [30]. We provide an
illustration of the sorting regularization in the inset of Fig. 4
over a single realization of S̃ (purple plain line). The im-
provement over (35) (yellow crossed line) in terms of squared
error is significant. Moreover, even if the estimation becomes
quite noisy for large values of q̃, we notice that the quality
of estimation is still on par with the average value over 20
realizations of S̃ (red plain line), which is quite remarkable.
We also want to emphasize that in all cases, the error we
obtain is always less than 9, which is the error we get when
keeping the sample eigenvalues of S (see the inset of Fig. 4).

A takeaway from Fig. 4 is that we can indeed use the
result (35) even when q̃ � q. Hence, this gives a simple
way to check the quality of the estimation by comparing
the in-sample result (i.e., the estimator we obtain using the
information of S) and the out-of-sample result (obtained with
the information of S̃). It therefore demonstrates the validity of
the out-of-sample test of Ref. [28] for assessing the quality
of empirical optimal RIE using financial data. The second
finding is that it is possible to estimate quite accurately the
optimal oracle for a fixed value of q by using a relatively small
amount of independent data from a single realization.

C. Cross-validation estimator

We can now apply the analysis of the previous section to
the cross-validation (CV) estimator proposed in Ref. [30]. The
idea behind this estimator is to split a single data set into
two disjoint sets (potentially of unequal sizes) and build the
matrices S and S̃ and compute νi (q ) as above. We then average
over all possible choices of split. More precisely, suppose that
we want to estimate (30) out of T independent samples that we
split into K nonoverlapping sets whose indices are denoted by
{Iς }Kς=1. The CV estimator then reads

νcv
i (qς ) := 1

K

K∑
ς=1

∑
t∈Iς

〈
u(ς )

i ,
xtx∗

t∣∣Iς

∣∣ u(ς )
i

〉
, (36)

where each set Iς has an equal size such that K|Iς | = T ,
u(ς )

i is the eigenvector associated with the ith eigenvalue
obtained from the sample correlation matrix in which we
removed all the observations belonging to the set Iς for a fixed
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FIG. 5. Main figure: Evaluation of Eq. (36) using the same
experience than in Fig. 4. The x axis represents to the optimal
cleaning [with α = 1/(1 + 2qκ )] while the y axis are the eigenvalues
obtained from (36) for a single realization of S. The black dotted
line is the option solution, the blue plain line is the sorted tenfold
CV estimator (|Iς | = 100), and the red dashed line corresponds to
the sorted twofold case (|Iς | = 500). We also provide the linear
shrinkage with a wrong intensity α = 1/(1 + 2qςκ ), where qς = 1
corresponds to the case |Iς | = 500. Inset: We plot the squared error
of (36) for the same realization of S as a function of K . We see that
the minimum is attained at K = 10 (yellow point).

ς ∈ [[1,K]], and qς := N/(T − |Iς |) is the corresponding
observation ratio. If we denote by S̃ς the sample correlation
matrix associated with the observations of the set Iς , then we
can rewrite (36) as

νcv
i = 1

K

K∑
ς=1

〈
u(ς )

i , S̃ς u(ς )
i

〉
, (37)

which can be thought as an average version of the
estimator (35).

The crucial difference resides in the observation ratios
qς associated with the eigenvector u(ς )

i and q̃ς := N/|Iς |
associated with the matrix S̃ς . Hence, we clearly have a trade-
off in the choice of the cardinality of the Iς : Choosing |Iς |
too large implies that qς deviates strongly from q := N/T

while a too small cardinality leads to the noisy limit q̃ς ∼ N

in which the convergence (35) becomes dubious. We therefore
understand from this rewriting why the leave-one-out case,
i.e., |Iς | = 1, will not return a reliable estimate of the optimal
value (30) even after averaging since q̃ς = N . For a suitable
value of the cardinality |Iς |, one can expect that q̃ς is small
enough in order to be in the regime of Eq. (35) and, more
importantly, that u(ς )

i is not too far from ui (q ). In that case,
provided that the samples are independent of each other, we
shall have

νcv
i (qς ) ∼ νi (q ). (38)

We provide a numerical check of this result in Fig. 5 in the
case of a sorted tenfold CV estimate (blue plain line) where
we reconsider the same configuration of Fig. 4. Note that a
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tenfold CV leads to a “test” set of size |Iς | = 100 meaning
that qς ≈ 0.55, which is not that far from the true value of q.
We see that the agreement with the optimal value (black dotted
line) is excellent, showing that for this specific choice of |Iς |,
the convergence (38) holds. In order to illustrate the trade-
off discussed above, we also plot the twofold CV estimator
for which qς = 1. In that case, the result we obtain from (36)
rather coincides with the linear shrinkage with an intensity of
α = 1/(1 + 2qςκ ). This demonstrates that the choice of K in
(36) is crucial in order to obtain a consistent estimation of (30)
(see the inset of Fig. 5).

From a practical viewpoint, the estimator (37) is quite
appealing since it can be generalized to more general classes
of random processes. It provides a simple tool to approximate
the oracle estimator (30) with great accuracy in the high-
dimensional regime beyond the sample correlation matrix
model. From a theoretical perspective, we see that there is still
some work to be done in order to understand the convergence
expressed by (38). Indeed, the relationship between u(ς )

i and
ui , which corresponds to the overlapping and correlated case
discussed above in the additive case, should provide insights
to establish the convergence result as a function of the car-
dinality of |Iς |. Moreover, the study of subleading terms in
Eq. (35) can be of particular interest to understand the phase
transition that occurs depending on the value of qς and q̃ς .

IV. CONCLUSION

In summary, we have provided general, exact formulas for
the overlaps between the eigenvectors of large correlated ran-
dom matrices, with additive or multiplicative noise. Remark-
ably, these results do not require the knowledge of the under-
lying “pure” matrix and have a broad range of applications
in different contexts. We showed that the cross-sample eigen-
vector overlaps provide unprecedented information about the
structure of the true eigenvalue spectrum, much beyond that
contained in the empirical spectrum itself. For example, the
width of the bulk of the spectrum of the true underlying
correlation matrix can be reliably estimated, even when the
latter is very close to the identity matrix. We have illustrated
our results on the example of stock returns correlations, that
clearly reveal a nontrivial structure for the bulk eigenvalues.
We have also discussed the application to matrix denoising
and we saw in particular that it is possible to make use of
these overlaps between independent samples to approximate
the so-called oracle estimator with great accuracy.

ACKNOWLEDGMENTS

We thank R. Allez, D. Bartz, R. Bénichou, R. Chichep-
ortiche, B. Collins, A. Rej, E. Sérié, and D. Ullmo for very
useful discussions.

APPENDIX A: WISHART MATRICES

While GOE (or Wigner) matrices are now well known in
physics with several applications, it is not the case for Wishart
matrices. We provide in this Appendix exact definitions of
the model and discuss briefly its asymptotic behavior. It is
believed that the first random matrix model comes from the

statistician Wishart in Ref. [49], which considers the sample
covariance matrix of N random variables. More precisely,
let X be an N × T random matrix where each column is a
realization of a multivariate Gaussian with zero mean and
population covariance matrix C. The Wishart matrix W is
then defined by

W := 1

T
XX∗. (A1)

We see that E[W] = C and this is why this matrix is very
useful in practice. The asymptotic behavior of W is uni-
versal and depends only on the parameter q := N/T . The
universality means that the statistics of the eigenvalues and
the mean-squared overlaps of W do not depend on the exact
realization of X. More precisely, the entries of the resolvent
(zIN − W )−1 are self-averaging and statistics about the spec-
trum of W are derived from it. Furthermore, we stress that
the Gaussian assumption is not important but simplifies the
computation. We refer the reader to Ref. [34] for a rigorous
presentation of the universality of Wishart matrices.

A Wishart matrix with covariance matrix C can be written
as W = √

CW I
√

C, where W I is a white Wishart, i.e., a
Wishart with the identity as its covariance matrix. In this
article, all the Wishart matrices are white Wishart so we drop
the term white and denote them W .

APPENDIX B: MEAN-SQUARED OVERLAP FOR
INDEPENDENT SAMPLE COVARIANCE MATRICES

We keep the notations of Sec. II B and shall often omit the
arguments z and z̃ in m and m̃ in the following when there
is no confusion. Using the definition m(z) = 1/[zζ (z)], we
rewrite (12) as

ψ (z, z̃) ∼ 1

1/m̃ − 1/m

[
g

z̃m̃
− g̃

zm

]
, (B1)

which is equivalent to

ψ (z, z̃) ∼ 1

zz̃

1

m − m̃
[zgm − z̃g̃m̃]. (B2)

We can then express the function ψ as a function of m and m̃

only,

ψ (z, z̃) ∼ 1

qq̃zz̃

[
(q̃z − qz̃)m̃2

m − m̃
+ (q − q̃ )m̃

m − m̃

]

+ m + m̃

qz̃
− 1 − q

qzz̃
. (B3)

To use the inversion formula Eq. (5), we need to evaluate
ψ (λ − iη, λ̃ ± iη). Using the shorthanded notation m0(λ) =
limη→0 m(λ − iη), we find

lim
η→0

[ψ (λ − iη, λ̃ + iη) − ψ (λ − iη, λ̃ − iη)]

∼ q̃λ − qλ̃

qq̃λλ̃

m0
[
m̃2

0 − m̃2
0

] + m̃0m̃0[m̃0 − m̃0]

(m0 − m̃0)(m0 − m̃0)

+ q̃ − q

qq̃λλ̃

m0[m̃0 − m̃0]

(m0 − m̃0)(m0 − m̃0)
+ Im, (B4)

where we omitted the explicit expressions of the imaginary
part since this is not important for Eq. (5). Then, using the
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representation m0 = mR + imI and m̃0 = m̃R + im̃I , one finds

m0
[
m̃2

0 − m̃2
0

] + m̃0m̃0[m̃0 − m̃0] = 2m̃I

[
2mIm̃R + i

(
m̃2

R + m̃2
R − 2mRm̃R

)]
,

m0[m̃0 − m̃0] = 2m̃I [mI − imR], (B5)

and

(m0 − m̃0)(m0 − m̃0) = (mR − m̃R )2 − (
m2

I − m̃2
I

) + 2imI (mR − m̃R ). (B6)

Straightforward computations yields

|(m0 − m̃0
)
(m0 − m̃0)|2 = [

(mR − m̃R )2 − (
m2

I − m̃2
I

)]2 + 4m2
I (mR − m̃R )2,

= [
(mR − m̃R )2 + (

m2
I + m̃2

I

)2][
(mR − m̃R )2 + (

m2
I − m̃2

I

)2]
, (B7)

which is exactly the denominator in (13). For the numerator, the elementary complex analysis in Eq. (B4) yields(
m0

[
m̃2

0 − m̃2
0

] + m̃0m̃0[m̃0 − m̃0]
) × (m0 − m̃0)(m0 − m̃0) = 4mIm̃I [mR|m̃0|2 − m̃R|m0|2], (B8)

and

m0[m̃0 − m̃0] × (m0 − m̃0)(m0 − m̃0) = 2mIm̃I [|m̃0|2 − |m0|2]. (B9)

By regrouping these last three equations with the prefactors in (B4), and recalling that mI (λ) = πq�(λ) and m̃I (λ̃) = πq̃�̃(λ̃),
we obtain by using the inversion formula (5) the following result,

�q,q̃ (λ, λ̃) = 2(q̃λ − qλ̃)[mR|m̃0|2 − m̃R|m0|2] + (q̃ − q )[|m̃0|2 − |m0|2]

λλ̃[(mR − m̃R )2 + (mI + m̃I )2][(mR − m̃R )2 + (mI − m̃I )2]
, (B10)

which is exactly Eq. (13).

APPENDIX C: MEAN-SQUARED OVERLAP FOR DEFORMED GOE MATRICES

The derivation of the overlaps (20) for two independent deformed GOEs is very similar to sample covariance matrices. Hence,
we shall omit most details that can be obtained by following the arguments of the above Appendix. Again, we shall skip the
arguments λ and λ̃ where there is no confusion.

In Sec. II C, we obtained

lim
η→0

[ψ (λ − iη, λ̃ + iη) − ψ (λ − iη, λ̃ − iη)] = g0(ζ̃ a − ζ̃ a ) + ζ a (g̃0 − g̃0) + g0ζ̃ a − g̃0ζ̃
a

(ζ̃ a − ζ a )(ζ̃ a − ζ a )
. (C1)

By proceeding as above [see Eq. (B4) and thereafter], we find

g0(ζ̃ a − ζ̃ a ) + ζ a (g̃0 − g̃0) + g0ζ̃ a − g̃0ζ̃
a = 2

[(
ζ a
I g̃I − gI ζ̃

a
I

) + i
(
ζ̃ a
I

(
gR − g̃R

) − g̃I (ζ a
R − ζ̃ a

R )
)]

(C2)

and

(ζ̃ a − ζ a )(ζ̃ a − ζ a ) = (
ζ a
R − ζ̃ a

R

)2 + [(
ζ̃ a
I

)2 − (
ζ a
I

)2] + 2iζ a
I

(
ζ̃ a
R − ζ a

R

)
. (C3)

Hence, by putting these last two equations into (C1) and then using (5), we get after some straightforward computations

�a (λ, λ̃) = (σ 2 + σ̃ 2)
(
ζ a
R − ζ̃ a

R

)2 + 2σ 2σ̃ 2(gR − g̃R )
(
ζ a
R − ζ̃ a

R

) − (σ 2 − σ̃ 2)
[(

ζ a
I

)2 − (
ζ̃ a
I

)2][(
ζ a
R − ζ̃ a

R

)2 + (
ζ a
I + ζ̃ a

I

)2][(
ζ a
R − ζ̃ a

R

)2 + (
ζ a
I − ζ̃ a

I

)2] , (C4)

which is exactly (20) after some manipulations. When the common matrix C is itself GOE, then all matrices are GOEs and more
explicit results can be given. We specialize here in the case where the variance of the two noises are the same σ 2 = σ̃ 2, and we
get

�a (λ, λ̃) = (σC2 + σ 2)(1 − f 2)

f 2(λ2 + λ̃2) − f (1 + f 2)λλ̃ + (1 − f 2)2(σC2 + σ 2)
, (C5)

where σC2 the variance of C and f = σ 2
C/(σ 2

C + σ 2).
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APPENDIX D: THE CASE OF CORRELATED GAUSSIAN
ADDITIVE NOISES

In this Appendix, we give the exact derivation of Eq. (20)
with correlated noises. Let

S = C + W1, S̃ = C + W2, (D1)

where W1, W2 are two correlated GOE matrices (independent
from C) satisfying

〈W1〉N = 0, 〈W2〉N = 0, Cov(W1, W2) =
(

σ 2
1 ρ12

ρ12 σ 2
2

)
,

(D2)

where we denoted by N the Gaussian measure and used the
abbreviation ρ12 = ρσ1σ2. Using the stability of GOE under
addition, let us rewrite the noise terms as

W1 = A + B1, W2 = A + B2, (D3)

where A that satisfies

〈A〉N = 0, 〈A2〉N = ρ12, (D4)

and B1 and B2 are two GOEs matrices independent from A
with ⎧⎪⎨

⎪⎩
〈B1〉N = 0, 〈B2〉N = 0,〈
B2

1

〉
N = σ 2

1 − ρ12,
〈
B2

2

〉
N = σ 2

2 − ρ12,

〈B1B2〉N = 0.

(D5)

One can check that this parametrization yields exactly the
correlation structure of Eq. (D2). Therefore, using (D3) into
(D1), we have the equivalence (in law)

S1 = D + B1, S̃ = D + B2, (D6)

where we defined

D := C + A law= C + √
ρW0, (D7)

with W0 a GOE matrix with variance σ1σ2. Since the noises
are now independent and that the mean-squared overlap �a ,
given in Eq. (20), is “independent” from the exact structure of
C, we can therefore replace C by D. Hence, we deduce that
the overlaps for this model will again be given by Eq. (20)
with σ 2 = σ 2

1 − ρ12, and σ̃ 2 = σ 2
2 − ρ12, as announced.
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