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Asymptotic expansion and Padé approximants for gravity-driven flow of a heated granular gas:
Competition between inelasticity and forcing, up to Burnett order
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The gravity-driven planar channel flow of a heated granular gas is analyzed using a kinetic model with
stochastic forcing to understand the roles of inelasticity and forcing on its hydrodynamics and rheology. The
closed-form analytical solutions up to the fourth order in gravitational acceleration have been determined to
analyze the hydrodynamic and rheological fields as functions of the restitution coefficient (en) and the Froude
number Fr0. It is found that the excess temperature [�T = Tmax/T (0) − 1, i.e., the deviation of the maximum
temperature Tmax of the gas from its centerline value T (0)] increases monotonically with decreasing en above
a critical value of the Froude number (Fr0 > Frc

0), but has a “nonmonotonic” dependence with en [i.e., �T

decreases with decreasing en for en ∈ (1, 0.5), but increases for en < 0.5] at Fr0 < Frc
0. This changeover from

nonmonotonic to monotonic dependence of �T with en at Fr0 = Frc
0 also holds for both first (N1) and second

(N2) normal-stress differences as well as for tangential heat flux (qx). Phase diagrams are constructed in the
(Fr0, 1 − en) plane, demarcating two regions in which the dependencies of rarefaction effects (�T , N1, N2, and
qx) on en are monotonic and nonmonotonic. The inelasticity plays a “dual” role of decreasing (at Fr0 < Frc

0) and
increasing (at Fr0 > Frc

0) the rarefaction effects with decreasing restitution coefficient en from the elastic limit.
This finding, based on the fourth-order solution, is in variance with the leading-order solution that predicts only
a nonmonotonic dependence of the above quantities on en for all Fr0 [Tij and Santos, J. Stat. Phys. 117, 901
(2004)]. The role of inelasticity on the region of convergence of the asymptotic series solutions are subsequently
analyzed by determining the Padé approximants for rheological fields [Rongali and Alam, Phys. Rev. E 98,
012115 (2018)]; the present solution is shown to have a larger range of validity in terms of both inelasticity and
Froude number than its leading-order counterpart. Lastly, it is shown that the fourth-order solutions contain all
Burnett-order terms (i.e., second order in the gradients of hydrodynamic fields) that can be obtained from the
standard Chapman-Enskog expansion.
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I. INTRODUCTION

Kinetic theory ideas and the Boltzmann equation are com-
monly used to analyze various properties of dilute gases
[1–8]; the latter is a nonlinear integrodifferential equation for
the spatiotemporal evolution of the single-particle distribution
function, which admits an exact solution for the “rest” state
of a gas in the form of the Maxwell-Boltzmann distribution
function which serves to derive the equation of state of a gas.
For gaseous flows, satisfying the molecular chaos assumption
(Boltzmann’s stosszahlansatz [2]), the range of validity of the
Boltzmann equation spans all values of Knudsen numbers
(Kn = λ/L, the ratio between the mean-free path of gas
molecules to macroscopic length scale [9]), ranging from the
continuum regime (Kn ∼ 0) to rarefied regime (0.01 < Kn <

10, which includes both slip-flow and transition-flow regime
[6]) to the free molecular limit (Kn > 10). In the contin-
uum regime, various flow phenomena are well described by
the Euler and Navier-Stokes-type continuum equations [3];
the latter hydrodynamic equations are formally derived from
the Boltzmann equation via coarse graining over velocity
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space, with the related flux laws and transport coefficients
obtained by employing asymptotic expansion techniques
like the Chapman-Enskog expansion [3,4]. In the rarefied
regime, however, the higher-order equations in the form of (i)
Burnett or super-Burnett [4] equations and/or (ii) the moment
equations of Grad [5] are found to be appropriate to tackle
various noncontinuum effects [6,7]. For example, the well-
known Knudsen paradox [9] (i.e., the nonmonotonic variation
of the mass-flow rate of a pressure-driven gas, flowing through
a tube, with Knudsen number) has been explained from the
Boltzmann equation [10] as well as from “beyond” Navier-
Stokes equations [8]. The pressure-driven flow of a gas can
also be analyzed by replacing the pressure-gradient by an
external force, like gravitational acceleration [7,11–14]. An
overview of various noncontinuum or rarefaction effects in the
gravity-driven Poiseuille flow of a molecular gas can be found
in a recent work [15].

This paper deals with the gravity-driven flow of a granular
gas in the dilute regime; see Fig. 1 for typical profiles of
hydrodynamic velocity, temperature, and normal heat flux.
A picture of granular flows in the rapid flow regime [16],
a granular gas, is reminiscent of a molecular gas in many
aspects: (i) the collisions are assumed to be binary and in-
stantaneous, but (ii) the crucial difference is that the parti-
cles are dissipative; i.e., the particle-particle collisions are
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FIG. 1. Schematic of the flow of granular particles, representing
a gas, flowing through a plane channel; the flow is driven by gravita-
tional acceleration g acting along the −x direction (streamwise), and
y denotes the wall-normal (transverse) direction. Typical transverse
profiles of velocity ux (y ), temperature T (y ), and normal heat flux
qy (y ) are depicted for a rarefied molecular gas. The temperature
profile has a “bimodal” shape, with a local minimum at the channel
center and two symmetrically located maxima away from the center-
line. Interestingly, the heat flows [i.e., qy > 0, or, < 0 for y > 0, or,
y < 0, respectively] from the channel center towards the walls, even
though the temperature is minimum at y = 0, in contradiction to the
Fourier law [i.e., qy ∝ −(dT /dy )].

inelastic, characterized by a normal coefficient of restitution,
0 < en < 1, with en = 1 being identified with the molecular
gas. The inelasticity of particle collisions can be incorpo-
rated in the Boltzmann equation via its collision integral;
however, the time reversibility of the collision integral is
lost [16] due to the dissipative nature of collisions and the
rest state is no longer an equilibrium state, implying that
the Maxwellian is not an equilibrium distribution function
for a granular or dissipative gas. Indeed, the ideas of kinetic
theory have been extended to dissipative granular particles
[17–19] to develop a sound theoretical understanding of the
rapid granular flow over the last three decades [19–27]; the
readers are referred to a review article [16] and a textbook
[28] for various issues on the kinetic theory of granular
gases.

The bulk hydrodynamics and rheology for the gravity-
driven flow of a granular gas are analyzed in this paper using
the tools of kinetic theory and asymptotic expansion. Figure 1
shows the schematic of the planar channel flow in which the

granular gas is confined between two infinite parallel plates
normal to the y axis; the flow is driven by the gravitational
acceleration, i.e., a constant gravitational force per unit mass
g = −g x̂, along the direction x̂ parallel to the plates. One
motivation of the present work is to understand certain dif-
ferences between (i) the theoretical work of Tij and Santos
[29,30] and (ii) the molecular dynamics (MD) simulation
work of Alam et al. [31] and the DSMC (direct simulation
Monte Carlo) results of Gupta and Alam [32]; for example,
while both MD and DSMC simulations suggest a monotonic
increase of the excess temperature (i.e., �T = Tmax/T0 − 1;
see Fig. 1) with decreasing restitution coefficient, second-
order theory [29] predicts its “nonmonotonic” variation in
the same limit. Following the work of Tij and Santos [29],
the effect of gravity is incorporated perturbatively around a
“uniform” state of constant temperature and density which
is achieved by a balance between the collisional cooling due
to inelastic collisions and a bulk heating mechanism due to
white noise. The higher-order solutions are derived which
are then used to analyze various rarefaction effects [such
as the bimodal shape of the temperature profile (Fig. 1),
normal stress differences, and tangential heat flux] in this flow.
Three major goals of the present work are to (i) understand
how the predictions based on higher-order solutions differ
from its leading-order solution, (ii) analyze the convergence
properties of the underlying series solutions as done recently
by us [15] for a molecular gas, and (iii) verify the connection
(if any) between the gravity-based perturbation expansion
[12,15,29] with the well-known Kn-based Chapman-Enskog
expansion in which the gradients of hydrodynamic fields
(proportional to Kn) are treated as small parameters. Un-
like in the acceleration-driven Poiseuille flow of a molec-
ular gas for which both the leading- and higher-order so-
lutions give qualitatively similar results [15], the present
case of a granular gas yielded surprising results when the
higher-order terms are included. In particular we shall show
that the macroscopic properties of granular Poiseuille flow
are strongly influenced by a competition between inelastic
dissipation and external forcing: the inelastic dissipation com-
petes with white-noise forcing if the gravitational acceler-
ation is small enough, but the white-noise forcing plays a
passive role beyond a minimum value of the gravitational
acceleration.

A brief overview of the kinetic theory of a “heated”
granular gas is provided in Sec. II, along with a description
of the white-noise heating and a BGK-like kinetic model as
well as the reduced kinetic and hydrodynamics equations for
the gravity-driven channel flow. In Sec. III the perturbation
expansion is outlined, along with explicit solutions at leading
and higher orders. Based on present results, the temperature
bimodality is discussed in detail in Sec. IV and the rheology
in Sec. V. In Sec. VI A the Padé-approximated solution for
the rheological quantities are derived and compared with
respective leading- and higher-order solutions; the similarities
and differences of the present theoretical predictions with
respect to existing simulations are discussed in Sec. VI B.
The equivalence of the present fourth-order solutions with
the well-known Chapman-Enskog solution is discussed in
Sec. VII. A brief summary of all results and conclusions is
given in Sec. VIII.
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II. OVERVIEW ON A HEATED GRANULAR GAS:
BOLTZMANN EQUATION, KINETIC MODEL,

AND BALANCE LAWS

Referring to Fig. 1, we consider a collection of smooth
inelastic hard spheres of mass m and diameter σ that interact
via binary collisions, representing a model of a granular gas,
flowing down a planar channel under the action of gravity
[31–36]. The collisions in a granular gas are inelastic, unlike
in a molecular gas, and are characterized by the relation
(c01 · σ̂ ) = −en(c′

01 · σ̂ ), where c01 = c − c1 and c′
01 = c′ −

c′
1 denote the relative velocities of a colliding pair of particles

before and after a collision, respectively, and en ∈ [0, 1] is the
coefficient of normal restitution, with en = 1 and 0 represent-
ing perfectly elastic and sticky collisions, respectively. The
evolution of the single-particle distribution function f (x, c; t )
is governed by the inelastic Boltzmann equation [16,29](

∂

∂t
+ c · ∇ + g · ∂

∂c
+ F

)
f = J [f, f ], (1)

where g is the gravitational acceleration and J [f, f ] is the
Boltzmann collision integral which depends on the two-body
distribution function whose explicit form will be considered
in Sec. II B. In Eq. (1), the operator F is added so that a
nonequilibrium uniform or steady state can be achieved for
a granular gas by balancing its inherent collisional energy
loss with the addition of some heating mechanism; certain
properties of F are described below.

The velocity moments of zeroth, first, and second order,
respectively, of Eq. (1) yield(

∂

∂t
+ u · ∇

)
ρ + ρ∇ · u = 0, (2a)(

∂

∂t
+ u · ∇

)
u + 1

ρ
∇ · P = g, (2b)(

∂

∂t
+ u · ∇

)
T + 2

3n
(∇ · q + P : ∇u) = −(ζ − γ )T ,

(2c)

which represent the balance equations for mass density (ρ),
momentum density, and granular energy, defined via⎛⎜⎝ρ(x, t ) = mn(x, t )

n(x, t )u(x, t )

n(x, t )T (x, t )

⎞⎟⎠ =
∫

dc

⎛⎝ m

c
m
3 C2

⎞⎠f (x, c; t ), (3)

where C = c − u is the peculiar velocity, n(x, t ) is the
number density, u(x, t ) is the hydrodynamic velocity, and
T (x, t ) is the granular temperature. In Eq. (2), P (x, t ) and
q(x, t ) represent the pressure tensor and the heat flux vector,
respectively, defined via

Pαβ (x, t ) = m

∫
dc CαCβf (x, c; t ), (4)

qα (x, t ) = m

2

∫
dc C2Cαf (x, c; t ). (5)

The term ζ (x, t ) in the energy equation represents the rate
of cooling (per unit volume) due to inelastic collisions and

γ (x, t ) represents the heating rate associated with the external
driving F ; the integral expressions for these two quantities
are given by

ζ (x, t ) = − m

3n(x, t )T (x, t )

∫
dc C2J [f, f ], (6)

γ (x, t ) = − m

3n(x, t )T (x, t )

∫
dc C2Ff (x, c; t ). (7)

The choice of the external heating operator F is such that it
does not alter the mass and momentum balance laws; in other
words, the action of F must preserve the local number density
and momentum density, i.e.,∫

dcFf (x, c; t ) =
∫

dc cFf (x, c; t ) = 0. (8)

By approximating the actual velocity distribution function
by its local Maxwellian

fM (x, c; t ) = n(x, t )

[
m

2πT (x, t ))

]3/2

× exp

[
− m[c − u(x, t )]2

2T (x, t )

]
, (9)

the leading-order expression for the cooling rate [Eq. (6)] is
obtained as

ζM (x, t ) = 5
12

(
1 − e2

n

)
ν(x, t ), (10)

with ν being the collision frequency

ν = 16

5
nσ 2

√
πT

m
. (11)

For perfectly elastic collisions the cooling rate vanishes and
no external energy needs to be injected into the system, i.e.,
γ = 0.

A. Bulk heating mechanism and the gravity-driven
Poiseuille flow

Unlike in molecular gases for which the rest state serves as
an equilibrium state of constant density and temperature with
a Maxwellian distribution function, there is no equilibrium
state in a granular gas due to the continual energy loss.
However, a steady uniform state can be achieved in a granular
gas if it is continually heated via some external energy source
such that the energy input balances the collisional loss due to
the inelasticity of particles. From a theoretical perspective, the
most common type of bulk driving mechanism for inelastic
particles contains a stochastic force in the form of Gaussian
white noise; for more details on the Gaussian white noise, the
reader is referred to Refs. [22,29]. The operator F associated
with the Gaussian white noise appearing in the Boltzmann
equation (1) is given by [22,29]

F = −ξ 2

2

(
∂

∂c

)2

, (12)

where ξ 2 represents the strength of the white-noise correla-
tion and the term ξ 2/2 acts as a diffusion coefficient in the
velocity space. The external heating operator (12) satisfies
the properties listed in Eq. (8), and inserting Eq. (12) into
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Eq. (7) yields an expression for the heating rate γ = mξ 2/T .
Since the energy loss due to inelastic collisions is assumed to
balance the bulk heating due to white-noise forcing, we have
ξ = √

ζT /m at every point.
By considering the above white-noise forcing and in the

presence of gravitational acceleration (see Fig. 1), a steady
state can be expected in which the physical quantities depend
on the transverse coordinate y only and the flow velocity is
parallel to the x axis, i.e., u = ux (y)x̂. In this stationary state,
the Boltzmann equation (1) becomes(

− ζT

2m

∂2

∂c2
− g

∂

∂cx

+ cy

∂

∂y

)
f = J [f, f ]. (13)

Here we focus on determining the solution to Eq. (13) in the
bulk region of the channel which is sufficiently away from
two walls such that the wall effects can be neglected. Note
that the granular temperature (T ) and the cooling rate (ζ ,
and hence the dependence on inelasticity) appear explicitly
in Eq. (13) which must be simultaneously solved along with
the hydrodynamic equations. In the steady state the balance
equations for momentum and energy, Eq. (2), reduce to

dPyy

dy
= 0,

dPyx

dy
= −ρg, Pyx

dux

dy
+ dqy

dy
= 0. (14)

The first equation of Eq. (14) implies that the normal stress
Pyy is uniform throughout the system, and the second equation
implies a linear dependence of the shear stress, Pyx = −ρgy,
on transverse distance (y). Clearly, the shear stress is gener-
ated due to the imposed gravitational acceleration, and so is
the normal heat flux,

qy = g

∫
yρ(y)

dux

dy
dy. (15)

Since the local shear rate can be written as dux/dy =
−Pyx/η ∝ g, where η is the shear viscosity of the gas, it
follows from Eq. (15) that

qy ∝ g2. (16)

This implies that the normal heat flux is a quadratic order,
O(g2), effect in gravity-driven Poiseuille flow, but the shear
stress (or, the shear rate or velocity) is a linear order O(g)
effect.

B. BGK-like kinetic model for a heated granular gas

The mathematical difficulties with the Boltzmann equation
are embodied in the collision operator J [f, f ] whose explicit
form, with molecular chaos assumption, for a dilute granular
gas is

J [f, f ] = σ 2
∫

dc1

∫
dσ̂ H(c01 · σ̂ )(c01 · σ̂ )

× [
e−2
n f (c′′)f (c′′

1 ) − f (c)f (c1)
]
, (17)

where H(·) represents the Heaviside step function, and the
double-primed velocities (c′′, c′′

1 ) denote the precollisional
velocities for the restituting or inverse collision which leads
to (c, c1) following an inelastic binary collision. For the ease
of analysis as well as to obtain explicit analytical results,
researchers [24,29,37,38] have extended the well-studied

Bhatnagar-Gross-Krook (BGK) kinetic model of molecular
gases to inelastic or dissipative collisions. Following these
pioneering works, the collision operator J [f, f ] is approxi-
mated by a BGK-like kinetic model [24,29]:

J [f, f ] → −β(en)ν(f − fM ) + ζM

2

∂

∂c
· [(c − u)f ], (18)

where ν is the collision frequency [Eq. (11)], fM is the
local Maxwellian distribution [Eq. (9)], ζM is the cooling rate
[Eq. (10)], and β(en) is an unknown function of the restitution
coefficient which must be chosen appropriately as described
below. The first term on the right-hand side of Eq. (18) is
an analog of the BGK model that describes a single-time
collisional relaxation towards the local equilibrium with an
“effective” collision frequency βν, and the second term de-
scribes the collisional cooling effects, which can be treated
simply as an effective “drag” force that produces the same rate
of energy loss as that yielded by the inelastic collisions [29].
Note that the kinetic model in Eq. (18) is a simplified version
of the original formulation of Brey et al. [24] in that the exact
local homogeneous cooling state of the Boltzmann equation is
replaced by the local Maxwellian fM [Eq. (9)] and the exact
cooling rate ζ [Eq. (6)] is approximated by ζM [Eq. (10)].

The unknown function β(en) in Eq. (18) is generally
chosen to optimize the agreement between the kinetic-model
description and the Boltzmann description. With a proper
choice of β(en), excellent quantitative agreement between
the Boltzmann equation and the kinetic model (18) has been
noted in the literature [21,24,29,37,38] for a variety of flow
configurations. The Navier-Stokes (NS) transport coefficients
[i.e., shear viscosity (η), thermal conductivity (κ), and Dufour
coefficient (μ)] derived from the kinetic model (18) with
white-noise forcing are given by [39]

η = p

βν + ζM

, κ = 5p

2m
(
βν + 3

2ζM

) , μ = 0. (19)

Note that the above quantities also depend on the kurtosis
of the distribution function which is neglected in the present
analysis. The choice for the dimensionless function β(en),
which makes the shear viscosity η [Eq. (19)] agree with
its approximate Boltzmann result for a heated granular gas
(ηB = p/νη, with νη ≈ (1 + en)(3 − en)ν/4 [40]), is

β(en) = 1
6 (1 + en)(2 + en). (20)

Another choice for β(en) can be made by matching the ther-
mal conductivity κ with its Boltzmann value. For the present
analysis, we will take β(en) as given by Eq. (20).

With the aid of Eq. (18), the Boltzmann kinetic equation
(13) to describe the stationary gravity-driven flow of a heated
granular gas is modified to(

− g
∂

∂cx

+ cy

∂

∂y

)
f

= −βν(f − fM ) + ζM

2

∂

∂c
·
(

C + T

m

∂

∂c

)
f. (21)

Equation (21) must be solved in conjunction with related
hydrodynamic balance equations (14) to yield solutions for
hydrodynamic fields and fluxes for a heated granular gas
under gravity; the boundary conditions are redundant since
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we are interested in the bulk solution around the channel
centerline [12,15,29].

III. SOLUTION FOR GRAVITY-DRIVEN POISEUILLE
FLOW OF A HEATED GRANULAR GAS

Decomposing the nonequilibrium distribution function as

f = fM (1 + �), (22)

where � represents the deviation from the local Maxwellian
distribution fM , Eq. (21) becomes

(1 + �)

[
Cy∂̃y ln fM −

(
g + Cy

∂ux

∂y

)
∂

∂Cx

ln fM

]
=

(
g + Cy

∂ux

∂y

)
∂�

∂Cx

− Cy∂̃y� − (ν ′ − ζM )�

+ ζM

2

[(
T

m

∂

∂C
− C

)
· ∂�

∂C

]
, (23)

where the operator ∂̃y is defined via

∂̃y ≡ ∂

∂y
+

(
∂ux

∂y

)
∂

∂Cx

, (24)

and ν ′ is the modified collision frequency [29],

ν ′ = βν + ζM ≡ ν
[
β(en) + 5

12

(
1 − e2

n

)]
, (25)

which can be tied to the shear viscosity of a heated granular
gas via Eq. (19).

The state at the channel centerline, i.e, the midpoint y = 0,
is chosen as the reference state and the following dimension-
less quantities are introduced:

y∗ = yν ′
0

c0
, C∗ = C

c0
, u∗ = u

c0
, f ∗

M = fMc3
0

n0
,

(26)

T ∗ = T

T0
, ν ′∗ = ν ′

ν ′
0

, P∗ = P
p0

, q∗ = q
p0c0

,

where the subscript 0 denotes quantities evaluated at y = 0;
for example, c0 = √

2T0/m is the thermal velocity at the
channel centreline y = 0. In Eq. (26), y∗ measures distance
in units of a nominal mean-free path, while

g∗ = g

ν ′
0c0

(27)

measures the strength of the gravity field acting on a particle
that moves a distance of the mean-free path with the thermal
velocity. The dimensionless version of Eq. (23) is

(1 + �)

[
c∗
y ∂̃y∗ ln f ∗

M + 2(c∗
x − u∗

x )

T ∗

(
g∗ + c∗

y

∂u∗
x

∂y∗

)]
=

(
g∗ + c∗

y

∂u∗
x

∂y∗

)
∂�

∂c∗
x

− c∗
y ∂̃y∗� − ν ′∗(1 − ζ ∗

0 )�

+ ζ ∗
0
ν ′∗

2

[(
T ∗

2

∂

∂c∗ − C∗
)

· ∂�

∂c∗

]
, (28)

where

∂̃y∗ ln f ∗
M = ∂ ln p∗

∂y∗ +
(

C∗2

T ∗ − 5

2

)
∂ ln T ∗

∂y∗ . (29)

The cooling rate ζM in Eq. (28) has been rewritten in terms
of the effective collision frequency ν ′ via ζM = ζ ∗

0 ν ′ [see
Eqs. (10) and (25)], with

ζ ∗
0 =

5
12

(
1 − e2

n

)
β(en) + 5

12

(
1 − e2

n

) ≡ 5(1 − en)

2(2 + en) + 5(1 − en)
, (30)

and β(en) is given by Eq. (20). In the remainder of this paper,
the asterisks are omitted for convenience (e.g., ζ ∗

0 = ζ0 and
so on) and all quantities are understood to be expressed in
dimensionless units. Note that the master kinetic equation
[Eq. (28)] has been formulated in terms of particle velocity for
ease of algebraic manipulation, following our previous work
[15] on the gravity-driven Poiseuille flow of a molecular gas.

A. Perturbation expansion around channel centerline

Neglecting wall effects and focusing only on the bulk
region of the channel around the centerline (Fig. 1), Eq. (28)
is solved perturbatively by treating g∗ as a small parameter
[15,29]. The expansion of � in powers of gravitational accel-
eration g is

�(c; y, g) =
n∑

α=1

�(α)(c; y)gα + O(gn+1), (31)

and we will present results up to n = 4 (i.e., fourth order
in g).

In the absence of gravity, the solution of Eq. (21) is f =
fM and � = 0, with uniform density and temperature and zero
velocity. The spatial dependence of hydrodynamic fields in
the present problem of Poiseuille flow is a consequence of the
gravitational acceleration and the shear stress at lateral walls.
Due to the symmetry of the Poiseuille flow (Fig. 1), p and
T are even functions of g, while ux is an odd function of g.
Therefore, the expansions for the hydrodynamic fields can be
written as

p(y) = 1 +
[n/2]∑
α=1

p(2α)(y)g2α + O(g2[n/2]+2), (32a)

T (y) = 1 +
[n/2]∑
α=1

T (2α)(y)g2α + O(g2[n/2]+2), (32b)

ux (y) = u0 +
[(n+1)/2]∑

α=1

u(2α−1)(y)g2α−1 + O(g2[(n+1)/2]+1),

(32c)

with the spatial dependence appearing via the coefficient
functions p(2α)(y), T (2α)(y), and u(2α−1)(y). Further it is
assumed that u0 = 0, which is equivalent to performing a
Galilean transformation to a reference frame moving with
the fluid at y = 0. Using Eqs. 32(a) and 32(b), the effective
collision frequency for hard spheres, ν ′ = pT −1/2 [3,7], can
be expressed in terms of g:

ν ′ = 1 +
(

p(2) − 1

2
T (2)

)
g2 +

(
p(4) − p(2)T (2)

2

+ 3

8
T (2)2 − T (4)

2

)
g4 + O(g6). (33)
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It can be verified that only ν ′ = 1 is required in the evaluation
of first- and second-order deviations �(1) and �(2), while ν ′ =
1 + (p(2) − 1

2T (2) )g2 is needed in the evaluation of the higher-
order deviations �(3) and �(4) of the distribution function.

Substituting Eqs. (31), (32), and (33) into Eq. (28) and
equating terms of the same order in g, we obtain the master
kinetic equation at the kth order in O(gk ):

(1 − A )�(k) ≡ φ(k), (34)

where the operator A is defined as

A = ζ0

2(1 − ζ0)

[(
1

2

∂

∂c
− c

)
· ∂

∂c

]
− cy

1 − ζ0

∂

∂y
, (35)

and the explicit expressions for the source term φ(k), up to
fourth order (k = 4), are given in Appendix A.

The solution to Eq. (34) can be written in operator form

�(k)(c; y) = (1 − A )−1φ(k) =
∞∑

n=0

A nφ(k). (36)

Note that the source terms φ(k) are functions of hydrodynamic
fields at the same order which remain unknown. Based on
the symmetries of Poiseuille-type flow, the unknown hydro-
dynamic profiles are guessed which, in turn, determines the
functional form of the source term φ(k). The latter helps to
identify a trial form for the distribution function �(k)(c; y)
with undetermined coefficients. The validity of guessed so-
lutions and the unknown coefficients are then determined by
satisfying the consistency conditions:∫

dCfM� = 0,

∫
dCCyfM� = 0, (37a)∫

dCCxfM� = 0,

∫
dCC2fM� = 0, (37b)

which follow from the definition of hydrodynamic fields.

B. Leading-order solutions: O(g) and O(g2 )

The leading solution of this problem has been determined
by Tij and Santos [29] which is briefly summarized in this
section. At first order in g, Eq. (34) yields (1 − A )�(1) =
φ(1), with its source term being

φ(1) = − 2

1 − ζ0

(
cx + cxcy

∂u(1)

∂y

)
, (38)

whose spatial dependence occurs via that of du(1)/dy which
is unknown. From the Navier-Stokes solution for Poiseuille
flow, the first-order velocity profile is assumed to be of
parabolic shape:

u(1)(y) = u
(1)
2 y2. (39)

Putting Eqs. (38) and (39) into Eq. (36), it can be verified
that the first-order distribution function �(1) must have the
following form:

�(1)(c; y) = cx

(
a0 + a1c

2
y + a2cyy

)
. (40)

The unknown coefficients a0, a1, a2 are obtained by inserting
Eq. (40) into (1 − A )�(1) = φ(1), yielding

a0 = 4
(−2 − ζ0 + 2u

(1)
2 ζ0

)
(4 − ζ0

2)
, a1 = 8u

(1)
2

2 + ζ0
, a2 = −4u

(1)
2 ,

(41)

and the third consistency condition of Eqs. (37) gives u
(1)
2 =

1, and therefore both u(1)(y) and �(1)(c; y) are completely
determined. Inserting the explicit form of �(1) in Eqs. (4) and
(5), the nonzero components of the fluxes, to first order in g,
are found to be

P (1)
yx (y) = −2y and q (1)

x (y) = 2

2 + ζ0
. (42)

At second order O(g2), the source term φ(2) in Eq. (34)
[see Eq. (A1) in Appendix A] depends on two hydrodynamic
fields: pressure p(2) and temperature T (2), which are even
functions of y in a Poiseuille-type flow. The latter two un-
known quantities are assumed to be of the form

p(2)(y) = p
(2)
2 y2 and T (2)(y) =

∑
α=1,2

T
(2)

2α y2α. (43)

A trial solution for the second-order distribution function
�(2) is assumed [see Eq. (A4) in Appendix A], with its
unknown coefficients bi being expressed in terms of p

(2)
2 ,

T
(2)

2 , and T
(2)

4 ; Sec. I of the Supplemental Material [41]
contains the expressions of the coefficients bi as functions of
ζ0. At this order, the third consistency condition of Eq. (37)
holds due to symmetry, while the second consistency con-
dition is identically fulfilled irrespective of the values of
p

(2)
2 , T

(2)
2 , and T

(2)
4 ; the remaining two consistency conditions

yield

T
(2)

2 = 4
(
38 + 43ζ0 + 17ζ 2

0

)
25(1 + ζ0)(2 + ζ0)

, (44a)

T
(2)

4 = − 2

15
(2 + ζ0), p

(2)
2 = 24

5
, (44b)

and hence the second-order corrections to hydrodynamic pro-
files Eq. (43) as well as the explicit form of �(2)(c; y) are
determined. The latter is used to calculate the second-order
contributions to the fluxes:

P (2)
xx = 32

(
82 + 67ζ0 + 8ζ 2

0

)
25(1 + ζ0)(2 + ζ0)2

+ 56

5
y2, (45a)

P (2)
yy = −24

(
102 + 87ζ0 + 13ζ 2

0

)
25(1 + ζ0)(2 + ζ0)2

, (45b)

q (2)
y = 4

3
y3, P (2)

xy = 0 = q (2)
x . (45c)

The leading-order contributions to hydrodynamic
[Eqs. (39), (43), and (44)] and flux profiles [Eqs. (42)
and (45)] match those obtained by Tij and Santos [29]
up to second order, although there seems to be printing
mistakes in their Eqs. (3.24) and (3.31). In the limit of elastic
collisions (en = 1), these solutions boil down to those for
a molecular gas of elastic hard spheres [15] undergoing
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acceleration-driven Poiseuille flow. One interesting point to
note in Eqs. (42) and (45) is that while the normal heat flux
appears at quadratic order O(g2) as discussed previously in
Eq. (16), the tangential heat flux appears at linear order O(g)
which is known to be a Burnett-order effect in the standard
Chapman-Enskog expansion [3]. The latter finding makes the
connection of the g-based perturbation expansion with the
standard Chapman-Enskog expansion subtle; this issue will
be discussed in Sec. VII.

C. Higher-order solutions: O(g3) and O(g4)

To solve the third-order [O(g3)] equation (1 − A )�(3) =
φ(3), it is to be noted that its source term contains a third-order
quantity du(3)/dy [see Eq. (A2)] which is unknown at this
order. The third-order velocity profile is taken to be

u(3)(y) =
3∑

α=1

u
(3)
2α y2α (46)

and the structure of A nφ(3) [viz., Eq. (36)] suggests a trial
distribution function of the form

�(3)(y, c)

= cx

[
c0c

8
y + c1c

2
x + c2 + c6

y

(
c4c

2
x + c5

)
+ c2

z

(
c6c

6
y + c7c

2
y + c8c

4
y + c9

) + c2
y

(
c10c

2
x + c11

)
+ c4

y

(
c12c

2
x + c13

) + y
{
c24c

7
y + c3

y

(
c25c

2
x + c26

)
+ c2

z

(
c27c

5
y + c28cy + c29c

3
y

) + c5
y

(
c30c

2
x + c31

)
+ cy

(
c32c

2
x + c33

)} + y2
{
c14c

6
y + c15 + c16c

2
x

+ c4
y

(
c17c

2
x + c18

) + c2
z

(
c19c

4
y + c20c

2
y + c21

)
+ c2

y

(
c22c

2
x + c23

)} + y3{c34c
5
y + c2

z

(
c35cy + c36c

3
y

)
+ c3

y

(
c37c

2
x + c38

) + cy

(
c39c

2
x + c40

)}
+ y4

{
c41c

4
y + c42c

2
x + c43 + c2

y

(
c44c

2
x + c45

)
+ c2

z

(
c46c

2
y + c47

)} + c3cyy
5
]
. (47)

The above unknown coefficients ci can be expressed in terms
of u

(3)
2α by inserting Eq. (47) into (1 − A )�(3) = φ(3) as given

in Sec. II of the Supplemental Material [41].
Using consistency conditions Eq. (37), the coefficients u

(3)
2α

in Eq. (46) are found to be

u
(3)
2 = 16β1(ζ0)

25(1 + ζ0)2(2 + ζ0)3(2 + 3ζ0)
, (48a)

u
(3)
4 = 1

15

(
83 − 12

1 + ζ0
+ 116

2 + ζ0

)
, (48b)

u
(3)
6 = 7(2 + ζ0)

225
, (48c)

with the expression for β1(ζ0) being given in Appendix A 1,
and the third-order contribution to hydrodynamic profiles is
thus determined. By substituting these values into the ex-
pressions of the coefficients ci , we obtain the explicit ex-
pression for �(3)(c; y) which helps to determine third-order

contributions to the flux terms:

P (3)
yx = −4

[
44 + 94ζ0 + 26ζ 2

0 + y2(1 + ζ0)(2 + ζ0)2
]
y3

75(1 + ζ0)(2 + ζ0)
,

(49a)

P (3)
xx = 0 = P (3)

yy = q (3)
y , (49b)

q (3)
x = −2

(
114 + 257ζ0 + 58ζ 2

0

)
y4

15(2 + ζ0)(1 + 2ζ0)

− 4C1(ζ0)

25
[β3(ζ0)y2 + 2β2(ζ0)], (49c)

where C1(ζ0) = 1/(1 + ζ0)3(2 + ζ0)4(1 + 2ζ0)(2 + 3ζ0)2 and
the expressions for β2(ζ0) and β3(ζ0) are given in
Appendix A 1.

To solve Eq. (34) at fourth order O(g4), the pressure and
temperature profiles are taken to be

p(4)(y) =
3∑

α=1

p
(4)
2α y2α and T (4)(y) =

4∑
α=1

T
(4)

2α y2α. (50)

The structure of A nφ(4) suggests a trial distribution function
of the form �(4)(y, c) = d0c

12
y + d1c

4
x + · · · [see Eq. (A5)].

This along with Eq. (50) helps to solve (1 − A )�(4) = φ(4),
yielding expressions for unknown coefficients di of �(4) in
terms of p

(4)
2 , p

(4)
4 , p

(4)
6 , T

(4)
2 , T

(4)
4 , T

(4)
6 , and T

(4)
8 ; the detailed

expressions of di as functions of ζ0 are presented in Sec. III of
the Supplemental Material [41].

By satisfying Eq. (37), the expressions of p
(4)
j and T

(4)
j are

found as

p
(4)
2 = −96C1(ζ0)β4(ζ0)

625
, p

(4)
6 = 32(2 + ζ0)

125
, (51a)

p
(4)
4 = −32

(
1876 + 1704ζ0 + 127ζ 2

0 − 53ζ 3
0

)
125(1 + ζ0)(2 + ζ0)2

, (51b)

T
(4)

2 = −32C2(ζ0)β5(ζ0)

3125
, T

(4)
8 = −62(2 + ζ0)2

7875
, (51c)

T
(4)

4 = −8(2 + ζ0)C1(ζ0)β6(ζ0)

1875
, (51d)

T
(4)

6 = −8
(
8692 + 11868ζ0 + 5579ζ 2

0 + 759ζ 3
0

)
5625(1 + ζ0)(2 + ζ0)

, (51e)

where C2(ζ0) = C1(ζ0)/(1 + ζ0)(1 + 2ζ0)(2 + 3ζ0)(2 + 5ζ0).
Subsequently, the fourth-order contributions to the fluxes are
determined using the exact form of �(4):

P (4)
xx = 224

375
(2 + ζ0)y6 − 32β7(ζ0)y4

375

− 32β8(ζ0)C2(ζ0)

625(2 + ζ0)
y2 − 512β9(ζ0)C2(ζ0)

3125(2 + ζ0)
, (52a)

P (4)
yy = 384β10(ζ0)C2(ζ0)

3125(2 + ζ0)
, (52b)

q (4)
y = 12

175
(2 + ζ0)y7 + 8β11(ζ0)y5

375
+ 64β12(ζ0)y3

75
,

(52c)
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and the expressions for β4(ζ0) to β12(ζ0) are given in Ap-
pendix A 1. The remaining flux terms (P (4)

xy = 0 = q (4)
x ) are

zero at this order.

D. Structure of hydrodynamic and flux fields at each order in g

At each order O(gα ), it is straightforward to verify that
the spatial structures of the hydrodynamic profiles [Eqs. (39),
(43), (46), (50)] and the associated flux profiles [Eqs. (42),
(45), (49), (52)] have the following polynomial representa-
tions:

u(2i−1)(y) = y2P2i−2(y2), T (2i)(y) = y2P2i−1(y2),

p(2i)(y) = y2P2i−2(y2), P (2i−1)
yx (y) = y3P2i−3(y2),

P (2i)
yy (y) = const., P (2i)

xx (y) = P2i−1(y2),

q (2i−1)
x (y) = P2i−2(y2), q (2i)

y (y) = y3P2i−2(y2), (53)

where Pj (y2) denotes an arbitrary polynomial of degree j

in y2.
Combining solutions up to fourth order [Eqs. (39), (43),

(46), (50)], the expressions for each hydrodynamic field are
found which in real units read as

ux (y) = u0 +
(

ρ0g

2η0

)
y2 + u

(3)
2

(
m3η0g

3

4ρ0T
3

0

)
y2

+u
(3)
4

(
m2ρ0g

3

8η0T
2

0

)
y4 + u

(3)
6

(
mρ3

0g
3

16η3
0T0

)
y6 + O(g5),

(54)

T (y) = T0

[
1 + T

(2)
4

(
mρ2

0g2

8η2
0T0

)
y4 + T

(2)
2

(
mg

2T0

)2

y2

+ T
(4)

2

(
m5η2

0g
4

8ρ2
0T 5

0

)
y2 + T

(4)
4

(
mg

2T0

)4

y4

+ T
(4)

6

(
m3ρ2

0g4

32η2
0T

3
0

)
y6 + T

(4)
8

(
m2ρ4

0g4

64η4
0T

2
0

)
y8

]
+ O(g6),

(55)

p(y) = p0

[
1 + p

(2)
2

(
mg

2T0

)2

y2 + p
(4)
2

(
m5η2

0g
4

8ρ2
0T 5

0

)
y2

+p
(4)
4

(
mg

2T0

)4

y4 + p
(4)
6

(
m3ρ2

0g4

32η2
0T

3
0

)
y6

]
+ O(g6),

(56)

ρ(y) = mp(y)

T (y)
. (57)

The underlined terms in each expression correspond to re-
sults up to “second order” in the gravitational acceleration,
and the remaining terms are fourth order. Similarly, adding
Eqs. (42), (45), (49), and (52), the fourth-order solutions for
flux terms (Pαβ and qα) are obtained which are discussed in
Sec. V.

IV. HYDRODYNAMICS: RAREFACTION EFFECTS ON
TEMPERATURE AND THE ROLE OF INELASTICITY

In order to explore the temperature field in detail, we scale
the y coordinate in terms of the centerline mean-free path,
λ0 = (π

√
2n0σ

2)−1 ≡ (8/5
√

π )(c0/ν0), which is defined as
the average distance traveled by a molecule or particle be-
tween two successive collisions. Let us introduce the “local”
Froude number (Fr = gλ/c2), defined as the ratio of gravi-
tational and inertial forces, and it measures the influence of
gravity on the flow field. The Froude number at the channel
centerline is given by

Fr0 = gλ0

c2
0

≡ 8

5
√

π

(3 − en)(1 + en)

4
g∗, (58)

which depends on the restitution coefficient and the dimen-
sionless gravitational acceleration g∗ [Eq. (27)].

In terms of the centerline Froude number (58) and the
rescaled transverse coordinate y/λ0, the temperature profile
(55) can be rewritten as

T (y)

T0
= 1 + Fr2

0

2∑
α=1

A
(2α)
T (en)

(
y

λ0

)2α

+ Fr4
0

4∑
α=1

B
(2α)
T (en)

(
y

λ0

)2α

+ O
(
Fr6

0

)
, (59)

where the inelasticity-dependent coefficients are given by

A
(2)
T (en) = 4

(
2719 − 2741en + 706e2

n

)
25(7 − 4en)(23 − 11en)

> 0, (60a)

A
(4)
T (en) = −8(3 − en)(1 + en)2(23 − 11en)

1125π
< 0, (60b)

B
(2)
T (en) = 25π

4
(
3 + 2en − e2

n

)2

(
− 33267022075095579

46981321887500
+ 511377408

169(19 − 13en)2
− 497664000

14641(23 − 11en)4
+ 2189749248

73205(23 − 11en)2

− 15390720

49(11 − 7en)2
− 23085

(7 − 4en)4
− 50053887

100(7 − 4en)2
− 20977461

100(7 − 4en)3
− 2127452263

2500(7 − 4en)
− 3686400

49(11 − 7en)3

+ 928213632

875(11 − 7en)
+ 648843264

14641(23 − 11en)3
− 1566633408

1830125(23 − 11en)
+ 127918424064

21125(19 − 13en)
− 392000000

31(43 − 31en)

)
, (60c)
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B
(4)
T (en) = −247750795519

3179426250
− 1060608

1331(23 − 11en)2
+ 102400

49(11 − 7en)2
+ 96183

50(7 − 4en)2
+ 405

2(7 − 4en)3

+ 750619

250(7 − 4en)
− 776448

1225(11 − 7en)
+ 829440

1331(23 − 11en)3
− 635968

33275(23 − 11en)
− 700416

65(19 − 13en)
, (60d)

B
(6)
T (en) = −32(3 − en)(1 + en)2

(
2082193 − 2926828en + 1371221e2

n − 213674e3
n

)
140625

(
161 − 169en + 44e2

n

)
π

, (60e)

B
(8)
T (en) = −992(23 − 11en)2(3 − en)2(1 + en)4

44296875π2
. (60f)

In the remaining part of this section, we analyze the characteristics of the temperature profile and make a comparison between
the second-order solution [i.e., underlined terms in Eq. (59)] and its fourth-order counterpart.

A. Temperature bimodality: Competition between rarefaction and inelasticity

Figure 2 compares the temperature profiles [T/T0, Eq. (59)] for a molecular gas (en = 1) with those for dissipative gas
(en = 0.2 and en = 0.5) at Froude numbers of (a) Fr0 = 10−3 and (b) Fr0 = 5 × 10−3. It is seen that, for both molecular and
granular gases, the temperature profile is of bimodal shape, with a local minimum at the channel centerline (y = 0) and two
symmetric maxima (T = Tmax) away from the channel centerline (at y = ymax); the overall shape of the temperature profile
remains the same with the second-order solution too [i.e., retaining only the underlined terms in Eq. (59)]. It is evident from
panel (b) (Fr0 = 5 × 10−3) that while the value of Tmax increases with decreasing en, its transverse location ymax shifts away
from y = 0 in the same limit. On the other hand, at lower values of Fr0 = 10−3 [panel (a)], the dependencies of Tmax and ymax

on the restitution coefficient seem to be nonmonotonic as confirmed in the following analysis.
The transverse location ymax of two symmetric temperature maxima can be obtained by solving dT /dy = 0, yielding(
ymax

λ0

)2

= − A
(2)
T

2A
(4)
T

+
(−4A

(4)
T

3
B

(2)
T + 4A

(2)
T A

(4)
T

2
B

(4)
T − 3A

(2)
T

2
A

(4)
T B

(6)
T + 2A

(2)
T

3
B

(8)
T

)
Fr2

0

8A
(4)
T

4

+
(
2A

(4)
T

2
B

(4)
T − 3A

(2)
T A

(4)
T B

(6)
T + 3A

(2)
T

2
B

(8)
T

)(
4A

(4)
T

3
B

(2)
T − 4A

(2)
T A

(4)
T

2
B

(4)
T + 3A

(2)
T

2
A

(4)
T B

(6)
T − 2A

(2)
T

3
B

(8)
T

)
Fr4

0

16A
(4)
T

7

+ O
(
Fr6

0

)
. (61)

Substituting this into Eq. (59), the expression for Tmax can be obtained. To quantify the degree of temperature bi-
modality, we define the following quantity �T = (Tmax − T0)/T0, dubbed excess temperature, which measures the relative
value of the maximum temperature with respect to its centerline value. The expression for the excess temperature is
given by

�T = − A
(2)
T

2

4A
(4)
T

Fr2
0 + A

(2)
T

(−8A
(4)
T

3
B

(2)
T + 4A

(2)
T A

(4)
T

2
B

(4)
T − 2A

(2)
T

2
A

(4)
T B

(6)
T + A

(2)
T

3
B

(8)
T

)
16A

(4)
T

4 Fr4
0 + O

(
Fr6

0

)
. (62)

Typical variations of �T with restitution coefficient en are
displayed in Fig. 3(a) for two values of Fr0 = 10−3 (main
panel) and Fr0 = 5 × 10−3 (inset); it is seen that �T is
a nonmonotonic and monotonic function of en at smaller
and larger values of Froude number. The latter transition is
clearly evident in Fig. 3(b) which shows the variations of �T

with Fr0 for different en; in particular, there is a minimum
or critical value of Frc

0 = Fr0(en), above and below which
the excess temperature monotonically increases and becomes
nonmonotonic, respectively. The corresponding variations of
the transverse location ymax [Eq. (61)] with (c) restitution
coefficient en and (d) Froude number Fr0 are displayed in
Figs. 3(c) and 3(d). It is clear that the dependence of ymax on
en follows a nonmonotonic and monotonic trend, similar to
that of Tmax, at smaller and higher values of Froude number,
respectively.

B. Comparison with second-order solution
and the critical Froude number

All results presented in Fig. 3 are based on the fourth-
order solution in Froude number O(Fr4

0). The corresponding
second-order solutions [O(Fr2

0)] for �T and ymax can be
easily obtained by setting all third- and fourth-order terms to
zero (i.e., B (j )

T = 0) in Eqs. (61) and (62), yielding the solution
of Tij and Santos [29],(

ymax

λ0

)
II

= ±
√√√√− A

(2)
T (en)

2A
(4)
T (en)

, (63)

and the rescaled excess temperature(
�T

Fr2
0

)
II

= − A
(2)
T

2
(en)

4A
(4)
T (en)

. (64)

052144-9



RAMAKRISHNA RONGALI AND MEHEBOOB ALAM PHYSICAL REVIEW E 98, 052144 (2018)

FIG. 2. Temperature profiles for (a) Fr0 = 10−3 and (b) Fr0 =
5 × 10−3 with en = 1 (red solid line), en = 0.5 (black dashed line),
and en = 0.2 [blue dot-dashed (top) line], as predicted by the kinetic
model up to “fourth order” in g.

Both these quantities depend nonmonotonically on the resti-
tution coefficient at any value of the Froude number as con-
firmed in Fig. 4, which is in contrast to the corresponding
monotonic variations of their fourth-order solutions at larger
values of Fr0 > Frc

0. Moreover, the second-order solution for
the excess temperature in Eq. (64) has a quadratic dependence
on the Froude number, but its transverse location (ymax)II

is independent of Fr0. It must be noted that these second-
order results are in contrast to recent MD and DSMC results
[31,32] that confirmed a monotonic increase of the excess
temperature �T with decreasing en at any value of Fr0. The
latter simulations however do not contain the bulk heating via
white noise that makes a direct one-to-one comparison of the
present theoretical results with simulations [31,32] difficult;
this issue is further discussed in Sec. VI B.

Based on the present higher-order solution, the transition
from the “nonmonotonic” to “monotonic” dependence of the
excess temperature �T on the restitution coefficient as a
function of Froude number Fr0 is illustrated in Fig. 5: while
the panel (a) shows the contours of �T in the (Fr0, 1 − en)
plane, the panel (b) displays the corresponding contours of
d�T/den. The light yellow colored region around the lower
left corner of Fig. 5(b) corresponds to d�T/den > 0, imply-
ing that �T decreases with increasing dissipation in this re-
gion; in the remaining part of the phase diagram d�T/den <

0, indicating �T increases with increasing dissipation. The

FIG. 3. (a) Variations of �T [Eq. (62)] with en for Froude
numbers of Fr0 = 10−3 (main panel) and Fr0 = 5 × 10−3 (inset);
(b) variations of �T with Fr0 for different values of the restitution
coefficient: en = 1, bottom red line; en = 0.5, middle black line;
en = 0.2, top blue line. (c), (d) Variations of |ymax|/λ0 [Eq. (61)] with
(c) restitution coefficient en and (d) Froude number Fr0.

052144-10



ASYMPTOTIC EXPANSION AND PADÉ APPROXIMANTS … PHYSICAL REVIEW E 98, 052144 (2018)

FIG. 4. Second-order solution for (a) rescaled excess tempera-
ture (�T/Fr2

0)II [as given in Eq. (64)] and (b) its transverse location
(|ymax|/λ0 )II [Eq. (63)].

contour separating these two regions (d�T/den < 0 and
d�T/den > 0) is denoted by

Fr0(en) = Fr0

(
d�T

den

= 0

)
, (65)

which depends on the restitution coefficient. Overall, Fig. 5(b)
confirms that there is a critical Froude number

Frc
0[�T ] ≡ sup

en

Fr0(en), (66)

below which �T varies nonmonotonically with en but �T

increases monotonically with increasing dissipation at Fr0 >

Frc
0. In other words, the inelasticity plays a “dual” role of

increasing and decreasing �T at Fr0 > Frc
0 and Fr0 < Frc

0,
respectively. These conclusions hold also for the related vari-
ations of the transverse location ymax of temperature maxima
with inelasticity.

V. RHEOLOGY: PRESSURE TENSOR, HEAT FLUX,
AND TRANSPORT COEFFICIENTS

A. Pressure tensor: Normal-stress differences
and shear viscosity

The elements of the pressure tensor and the components of
the heat flux up to fourth order in g have been determined in
Secs. III B and III C. In real units, the diagonal components of

FIG. 5. Contour plots of (a) excess temperature �T [Eq. (62)]
and (b) its derivative d�T/den in the (Fr0, 1 − en) plane. Note that
d�T/den > 0 around the left corner (light yellow-shaded region) of
panel (b), and negative elsewhere.

the pressure tensor are given in terms of the centerline mean-
free path (λ0) and Froude number (Fr0) as follows:

Pxx (y)

p0
= 1 + Fr2

0

1∑
α=0

A
(2α)
Pxx

(
y

λ0

)2α

+ Fr4
0

3∑
α=0

B
(2α)
Pxx

(
y

λ0

)2α

+ O
(
Fr6

0

)
, (67)

Pyy (y)

p0
= 1 + Fr2

0 A
(0)
Pyy

+ Fr4
0 B

(0)
Pyy

+ O
(
Fr6

0

)
, (68)

Pzz = 3p − Pxx − Pyy, (69)

with the mean pressure having the following expression:

p(y)

p0
= 1 + Fr2

0A
(2)
p

(
y

λ0

)2

+ Fr4
0

3∑
α=1

B (2α)
p

(
y

λ0

)2α

+O
(
Fr6

0

)
, (70)
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FIG. 6. (a) Profiles of the first normal-stress difference N1(y ) for Fr0 = 5 × 10−3 for different values of en = 1 (bottom red curve), 0.5
(middle black curve), and 0.2 (top blue curve). (b) Variations of N1(0) with Fr0 for different en. (c) Variations of N1(0) against en for Fr0 = 10−3

(main panel) and Fr0 = 5 × 10−3 (inset). (d) Contours of dN1(0)/den in the (Fr0, 1 − en) plane; note that dN1(0)/den > 0 around the left
corner (lighter shaded region) of this panel, and negative elsewhere.

which is the same as Eq. (56). The expressions for the co-
efficients (A(2α)

Pxx
and B

(2α)
Pxx

), (A(0)
Pyy

and B
(0)
Pyy

), and (A(2)
p and

B (2α)
p ) are provided in Appendix B 1. The underlined terms in

the above equations represent the corresponding second-order
O(g2) solution. Although the normal pressure Pyy does not
vary along the transverse direction (since dPyy/dy = 0), the
mean pressure p(y) varies along the transverse direction; the
latter variation is tied to the corresponding variation of stream-
wise (Pxx) and spanwise (Pzz) components of the pressure
tensor. In fact, the mean pressure p(y) has a local minima
at the channel centerline, similar to that of the temperature
profile as discussed in Sec. IV; the related predictions based
on Navier-Stokes theory suggest a local centerline maxima of
both temperature and pressure. Therefore, both the temper-
ature dip and the pressure dip at the channel centerline are
tied to the rarefaction effects [12,15] in acceleration-driven
Poiseuille flow at finite Knudsen numbers.

1. Normal-stress differences: Roles of inelasticity
and rarefaction

It is easy to verify from Eqs. (67)–(69) that Pxx �= Pyy �=
Pzz, leading to “nonzero” normal-stress differences. The first
and second normal-stress differences N1 and N2 are defined

with respect to mean pressure:

N1(y) = Pxx − Pyy

p
, (71a)

N2(y) = Pyy − Pzz

p
≡ Pxx + 2Pyy

p
− 3. (71b)

Both normal-stress differences vanish at Navier-Stokes
order [42,43].

The transverse profiles of the first normal-stress difference
N1(y) for a Froude number Fr0 = 5 × 10−3 with three differ-
ent values of restitution coefficient en = 0.2 (top blue line),
0.5 (middle black line), and 1 (bottom red line) are displayed
in Fig. 6(a). It is seen that N1 increases with distance from
the channel centerline y = 0, with its minimum being located
at y = 0; the shape of the N1(y) profile remains similar
in the presence of inelastic dissipation, and the effect of
inelasticity is to increase the value of N1(y) at this value
of the Froude number. The effect of Froude number (i.e.,
increasing rarefaction) is illustrated in Fig. 6(b) which shows
the variation of the centerline N1(0) with Fr0 for three values
of restitution coefficient en. Overall, increasing Fr0 increases
the magnitude of N1, but the effect of en on N1(0) seems to
be nonmonotonic at smaller values of Fr0. The latter effect
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FIG. 7. Same as Fig. 6, but for the second normal-stress difference N2. In panels (a) and (b), different restitution coefficients refer to
en = 0.2 (bottom blue line), 0.5 (middle black line), and 1 (top red line). Note that dN2(0)/den < 0 around the left corner (dark blue shaded
region) of panel (d), and positive elsewhere.

is confirmed in Fig. 6(c): while the inset shows that N1(0)
increases monotonically with decreasing en at a Froude num-
ber of Fr0 = 5 × 10−3, the main panel (Fr0 = 10−3) shows
that N1(0) decreases from the elastic limit up to a value of
en ∼ 0.5 and thereafter increases with further decrease of en.
The above transition from “nonmonotonic” to “monotonic”
dependence of N1(0) with en can be understood from Fig. 6(d)
which displays the contour map of the derivative of N1(0)
with respect to en [i.e., dN1(0)/den] in the (Fr0, 1 − en)
plane. In the lower left corner of Fig. 6(d) the first normal-
stress difference decreases with increasing dissipation, and
increases elsewhere at any Fr0. The value of the corresponding
critical Froude number is Frc

0(N1) ≡ supen
Fr0(en) ≈ 0.0042,

with Fr0(en) denoting the zero contour [dN1(0)/den = 0] in
Fig. 6(d).

For the second normal-stress difference, the analog of
Figs. 6(a)–6(d) is shown in Figs. 7(a)–7(d). The overall fea-
tures remain the same as in the case of the first normal-stress
difference, except that N2 has the opposite sign (negative)
of N1 and is maximum at the channel centerline y = 0 and
decreases as one moves away from y = 0. The effect of
increasing Fr0 is to increase the magnitude of N2 at any en

[Fig. 7(b)], but the inelastic dissipation has a “dual” effect of
increasing, or, decreasing |N2| at larger and smaller values of
Fr0 [Fig. 7(c)], respectively. That there is a minimum value

of the Froude number, above or below which the variation of
N2(0) is monotonic or nonmonotonic with en, is quantified in
Fig. 7(d) which displays the contour map of dN2(0)/den in
the (Fr0, 1 − en) plane: Frc

0(N2) ≈ 0.004.
It is straightforward to verify from Eqs. (67)–(69) that

the “second-order” solution for both first and second normal-
stress differences

[N1(y)]II

Fr2
0

= [
A

(0)
Pxx

(en) − A
(0)
Pyy

(en)
] + A

(2)
Pxx

(en)

(
y

λ0

)2

> 0,

(72)

[N2(y)]II

Fr2
0

= [
A

(0)
Pxx

(en) + 2A
(0)
Pyy

(en)
] + A

(2)
Pxx

(en)

(
y

λ0

)2

< 0.

(73)

The leading coefficients in the above expressions are non-
monotonic functions of en: the magnitudes of both decrease
with decreasing from en = 1, reach a minimum at en ∼ 0.5,
and increase thereafter with further decreasing en. There-
fore, the higher-order [B (0)

Pxx
(en) at O(Fr4

0)] contributions are
responsible for the observed “nonmonotonic to monotonic”
transition of both normal-stress differences with increasing
gravitational strength (Fr0).
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FIG. 8. Transverse profiles of (a) the shear stress (Pyx) and (b)
the shear rate [γ̇ (y ) = dux/dy] for Fr0 = 5 × 10−3. In panel (a),
different lines for en = 1, 0.5, and 0.2 overlap with each other and
hence are indistinguishable.

2. Shear stress and viscosity

The expression for the shear stress Pyx can be written as

Pyx (y)

p0
= Fr0A

(1)
Pyx

(
y

λ0

)
+ Fr3

0

2∑
α=1

B
(2α+1)
Pyx

(
y

λ0

)2α+1

+O
(
Fr5

0

)
, (74)

with its coefficients being given by

A
(1)
Pyx

= −2, B
(3)
Pyx

= −8
(
2111 − 2329en + 614e2

n

)
75

(
161 − 169en + 44e2

n

) , (75a)

B
(5)
Pyx

= −16(3 − en)(1 + en)2(23 − 11en)

5625π
. (75b)

Figure 8(a) shows the transverse profiles of shear stress across
the channel width for different values of the restitution coeffi-
cient (en) at a Froude number of Fr0 = 5 × 10−3; each profile
is nearly linear in y and the effect of en is not visible in this
scale.

To calculate shear viscosity, we need to determine the local
(dimensionless) shear rate which is given by

γ̇ (y) = dux

dy
= du(I)

x

dy
+ du(III)

x

dy
+ O

(
Fr5

0

)
, (76)

FIG. 9. (a) Transverse profiles of the shear viscosity [η(y ) =
−Pyx/(dux/dy )] for Fr0 = 5 × 10−3. (b) Shear viscosity evaluated
at y = 0 versus Froude number Fr0. In each panel, the top, middle,
and bottom curves refer to en = 0.2, 0.5, and 1, respectively.

where

u(I)
x = Fr0A

(2)
ux

(
y

λ0

)2

, u(III)
x = Fr3

0

3∑
α=1

B (2α)
ux

(
y

λ0

)2α

,

(77)

and the expressions for the coefficients [A(2)
ux

, B (2)
ux

, B (4)
ux

, and
B (6)

ux
] are given in Appendix B 2. Transverse profiles of the

shear rate are shown in Fig. 8(b), with parameter values as
in Fig. 8(a). It is seen that increasing dissipation decreases
the local shear rate away from the channel centerline, and
consequently the shear viscosity [η(y) = −Pxy/γ̇ (y)] would
increase with decreasing en as is evident from the viscosity
profiles in Fig. 9(a). The latter effect mimics a similar behav-
ior of shear viscosity with restitution coefficient in a heated
granular gas [40]. The Navier-Stokes order viscosity can be
calculated by retaining the leading-order terms in Eqs. (74)
and (76):

ηNS =
−A

(1)
Pyx

2A
(2)
ux

= 5
√

π

2(3 − en)(1 + en)
en=1= 5

√
π

8
. (78)

Figure 9(b) shows the variations of centerline shear viscosity,

η0 ≡ η(y = 0) = 1

A
(2)
ux

+ 2B
(2)
ux

Fr2
0

, (79)
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FIG. 10. (a) Profiles of dimensionless tangential heat flux (q∗
x = qx/p0c0) at Fr0 = 5 × 10−3 for different values of en (as marked next to

each profile). (b) Variations of qx (0) against Fr0 for different en (as marked). (c) Variations of qx (0) with en at Fr0 = 5 × 10−3 (main panel)
and Fr0 = 10−2 (inset). (d) Contour map of dqx (0)/den in the (Fr0, 1 − en) plane; note that dqx (0)/den > 0 around the left corner of this panel
(lighter shaded region), and negative elsewhere.

(where A(2)
ux

> 0 and B (2)
ux

> 0) with Froude number Fr0 for
different en. The shear viscosity decreases monotonically with
increasing driving strength at any en, confirming the shear-
thinning behavior of a driven heated granular gas.

B. Tangential and normal heat fluxes:
Roles of inelasticity and rarefaction

Retaining terms up to fourth order in gravitational acceler-
ation (g), the tangential or streamwise component of heat flux
(qx) can be rewritten in terms of the centerline mean-free path
(λ0) and Froude number (Fr0) as

qx (y)

p0c0
= Fr0A

(0)
qx

+ Fr3
0

3∑
α=1

B (2α−2)
qx

(
y

λ0

)2(α−1)

+ O
(
Fr5

0

)
,

(80)

and the normal component of heat flux (qy) is given by

qy (y)

p0c0
= Fr2

0A
(3)
qy

(
y

λ0

)3

+ Fr4
0

3∑
α=1

B (2α+1)
qy

(
y

λ0

)2α+1

+O
(
Fr6

0

)
. (81)

The expressions for the coefficients [A(α)
qx

, B (α)
qx

] and
[A(α)

qy
, B (α)

qy
] are provided in Appendix B 3. The underlined

terms in each equation above correspond to the “second-
order” solution of Tij and Santos [29].

Figure 10(a) displays the profiles of dimensionless tan-
gential heat flux qx (y) at a Froude number Fr0 = 5 × 10−3

for restitution coefficients of en = 0.2, 0.5, and 1. It is seen
that qx (y) is positive and has a maximum at the channel
centerline y = 0, and decreases away from the centerline.
Figure 10(b) clarifies the dependence of qx (0) on the Froude
number Fr0; qx (0) increases significantly with increasing
Froude number at any value of en. It is further seen that
the variation of qx (0) with en remains monotonic [inset of
Fig. 10(c)] and nonmonotonic [main panel of Fig. 10(c)]
at large and small values of Fr0, respectively; this result
mimics the corresponding variations of the excess tempera-
ture �T [Fig. 3(a)], the first normal-stress difference N1(0)
[Fig. 6(c)], and the second normal-stress difference N2(0)
[Fig. 7(c)]. The critical Froude number for the “nonmono-
tonic → monotonic” transition of qx (0) as a function of en

can be ascertained from Fig. 10(d) which shows the con-
tour map of dqx (0)/den in the (Fr0, 1 − en) plane. From
the phase diagrams in Figs. 5(b), 6(d), 7(d), and 10(d), we
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FIG. 11. Profiles of (a) the normal component of heat flux (q∗
y =

qy/p0c0) and (b) the temperature gradient (dT /dy) for Fr0 = 5 ×
10−3. In each panel, the profiles for different restitution coefficients
are marked by en = 1, 0.5, and 0.2 next to each curve.

find that

Frc
0[qx (0)] ≈ 0.008 > Frc

0[N1(0)] ≈ Frc
0[N2(0)]

≈ 0.004 > Frc
0[�T ] ≈ 0.003; (82)

i.e., the onset of the “nonmonotonic → monotonic” transition
for qx (0) occurs at a higher value of Fr0, compared to its value
for other rarefaction metrics (N1, N2, and �T ).

Returning to the normal component of the heat flux qy (y),
Fig. 11(a) shows its transverse profiles for three restitution
coefficients at Fr0 = 5 × 10−3. It is seen that qy (y) vanishes
at the channel centerline [Eq. (81)] and is positive or negative
for y > 0 or y < 0, respectively. The latter can partly be
understood from the corresponding profiles of the temperature
gradient dT /dy; see Fig. 11(b). According to Fourier’s law,
the normal heat flux obeys

qy = −κyy

dT

dy
⇒ κyy = − qy

dT /dy
, (83)

and the positivity of thermal conductivity (κyy) dictates that
qy and dT /dy must be of opposite signs which is satisfied far
away from the channel centerline at y > ymax [i.e., the loca-
tion at which T (y = ymax) = Tmax]. In fact, within the central
core of the channel, spanning −ymax � y � ymax, the heat
flows from the colder region [y = 0 at which T (0) = Tmin] to
the hotter region [|y| � ymax at which T (y = ymax) = Tmax].
This departure from Fourier’s law is tied to the rarefaction

or shearing effects which is also responsible for nonzero
tangential heat flux.

Inserting Eqs. (81) and (59) into Eq. (83), the expression
for normal thermal conductivity is found as

κyy (y) = − qy

(dT /dy)

≡ −
A(3)

qy

4A
(4)
T

[
1 − A

(2)
T

2A
(4)
T

(
y

λ0

)−2

+ · · ·
]

= κNS (en)

[
1 +

(
ymax

y

)2

+ · · ·
]
, (84)

where

κNS (en) = −
A(3)

qy

4A
(4)
T

= 75
√

π

4(1 + en)(23 − 11en)
en=1= 25

√
π

32

(85)

is the dimensionless thermal conductivity at Navier-Stokes
order. Note that κNS remains constant, expectedly, across the
channel width since ymax ∝ A

(2)
T → 0 at this order. Moreover,

κNS (en) increases with decreasing restitution coefficient as
expected in a heated granular gas [40].

For rarefied flows, the thermal conductivity is characterized
by a rank-2 tensor via the generalized Fourier law:(

qx

qy

)
= −

[
κxx κxy

κyx κyy

]( dT
dx

dT
dy

)
, (86)

where κyy is given by Eq. (84). For the present unidirectional
flow (dT /dy �= 0, but dT /dx = 0), an expression for the
cross thermal conductivity κxy can be obtained from the first
equation of Eq. (86):

κxy (y) = − qx

(dT /dy)
≈

(
−A(0)

qx

4A
(4)
T Fr0

)

×
[

1 +
(

ymax

y

)2

+ · · ·
](

λ0

y

)3

> 0, (87)

which agrees with its expression for a molecular gas with
en = 1 [15].

Rarefaction effect such as the anomalous normal heat flux
(Fig. 11) around the core of the channel where the temperature
gradient opposes the heat current may have an analog in
thermal conduction on harmonic chains that show gradients
of local temperature opposing the heat flow as discussed by
Riedler et al. [44]. While the latter is known to be due to the
long-range character of heat transport for harmonic chains,
the induced shear gradient drives (i) the anomalous normal
heat current as well as (ii) the tangential heat flux in the
present flow even in the absence of a temperature gradient
along the tangential direction. In any case, the simulation data
on both qx and qy for the gravity-driven Poiseuille flow of
a heated or unheated granular gas are currently lacking; the
present theoretical results can be compared when such data
are available. On the other hand, the DSMC results for a
molecular gas (en = 1) undergoing Poiseuille flow have been
carried out by Uribe and Garcia [14] along with solutions of
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Burnett-order equations; their heat-flux profiles look similar
to those in Fig. 10(a) and Fig. 11(a).

VI. PADÉ APPROXIMANTS AND DISCUSSION

A. Padé approximants and the range of validity
of present series solutions

Following our recent work [15], the Padé approximation
[45] method is employed to the present series solutions to
check their region of convergence. The main idea behind this
method is to replace a known “truncated” power series of
a function by a sequence of rational functions [46–48]; for
example,

P[M,N ]

(
f (x) =

∞∑
α=0

aαxα

)
def= AM (x)

BN (x)
(88)

is the Padé approximant of a known power series f (x) =∑∞
α=0 aαxα , which can be rewritten as

∞∑
α=0

aαxα = A0 + A1x + A2x
2 + · · · + AMxM

1 + B1x + B2x2 + · · · + BNxN

+O(xM+N+1), (89)

where we have chosen B0 = 1, with a total of (M + N +
1) unknown coefficients. To determine M + 1 independent
numerator coefficients (A0, . . . ,AM ) and N independent
denominator coefficients (B1, . . . ,BN ), the first (M + N +
1) terms of the power series

∑∞
α=0 aαxα are compared

with the respective terms in the Taylor series expansion of
P[M,N ](x). The emerging rational function P[M,N ](x),
given by Eq. (89), is called a Padé approximant of order
(M,N ) to the given power series; if M = N, then P[M,M]
is called a “diagonal” Padé approximant.

Let us consider the present series solutions for N1(0),
N2(0), and qx (0), with each quantity being evaluated at the
channel centerline,

N1(0) = Fr2
0

[
A

(0)
Pxx

(en) − A
(0)
Pyy

(en)
]

+ Fr4
0

[
B

(0)
Pxx

(en) − B
(0)
Pyy

(en)
]
, (90a)

N2(0) = Fr2
0

[
A

(0)
Pxx

(en) + 2A
(0)
Pyy

(en)
]

+ Fr4
0

[
B

(0)
Pxx

(en) + 2B
(0)
Pyy

(en)
]
, (90b)

qx (0)

p0c0
= Fr0A

(0)
qx

(en) + Fr3
0B

(0)
qx

(en), (90c)

with the first and second terms in each series representing its
leading- and higher-order contributions, respectively. These
solutions [Eq. (90)] are displayed in Figs. 12, 13, and 14;
the leading- and higher-order solutions have opposite signs
at large enough value of Fr0 for any en, which indicates
the asymptotic nature of the power series. This oscillatory
behavior can be understood by inspecting the signs of the
respective coefficients of leading- and higher-order terms:

A
(0)
Pxx

(en) − A
(0)
Pyy

(en) > 0, B
(0)
Pxx

(en) − B
(0)
Pyy

(en) < 0,

(91a)

FIG. 12. Comparison of second- (top red line) and fourth-order
(bottom blue line) results for the centerline first normal-stress dif-
ference N1(0) with its leading-order Padé approximant (middle line)
P[2, 2] for (a) en = 1 and (b) en = 0.2. In panel (a), the seventh-
order Padé approximant P[7, 7] for the elastic case [15] is also
superimposed.

A
(0)
Pxx

(en) + 2A
(0)
Pyy

(en) < 0, B
(0)
Pxx

(en) + 2B
(0)
Pyy

(en) > 0,

(91b)

A(0)
qx

(en) > 0, B (0)
qx

(en) < 0, (91c)

which hold at any en as confirmed from related expressions in
Appendix B.

For each power series in Eq. (90), we have calculated the
leading-order Padé approximations which are messy functions
of Fr0 and en, see Eqs. (C1)–(C3) in Appendix C, and their
expressions for a molecular gas (en = 1) are given by

N [2,2]
1 (0) ≡ P2

2 [N1(0)](Fr0, en)

en=1= 317Fr2
0π

16
(
1 + 17488781Fr2

0π

3170

) , (92)

N [2,2]
2 (0) ≡ P2

2 [N2(0)](Fr0, en)

en=1= − 71Fr2
0π

8
(
1 + 2492539Fr2

0π

355

) , (93)

q[2,2]
x (0) ≡ P2

2 [qx (0)](Fr0, en)

en=1= 5Fr0
√

π

8
(
1 + 21009Fr2

0π

32

) , (94)
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FIG. 13. Same as Fig. 12, but for the centerline second normal-
stress difference N2(0). In each panel, while the second-order and
fourth-order solutions refer to the bottom and top lines, respectively,
the middle line refers to its Padé approximant.

which agrees with the second-order Padé approximants de-
rived in our recent work [15]. Figures 12, 13, and 14 show
the comparisons of Padé approximants, Eq. (C1), Eq. (C2),
and Eq. (C3), respectively, with corresponding second- and
fourth-order solutions. In each figure, the panel (a) represents
results for a molecular gas (en = 1), while panel (b) represents
a granular gas with en = 0.2. It is seen that the fourth-order
solution for each rheological field closely follows its Padé
approximant P[2, 2] over a larger range of Fr0 compared
to its second-order counterpart. Comparing panels (a) and
(b) of Figs. 12, 13, and 14, we find that the range of Fr0

over which the fourth-order series solution is valid increases
when inelastic dissipation is switched on; for example, the
fourth-order solution for N1(0) follows its Padé approximant
up to Fr0 � 5 × 10−3 and Fr0 � 10−2 at en = 1 and en = 0.2,
respectively. Therefore, the inelasticity increases the range
of validity of present higher-order series solutions in terms
of Fr0.

The influence of restitution coefficient on rarefaction ef-
fects (N1, N2, and qx) can be understood by comparing the
leading Padé approximant P[2, 2] between panels (a) (en = 1)
and (b) (en = 0.2) in Figs. 12, 13, and 14. We find that the
magnitudes of N1(0), N2(0), and qx (0) increase significantly
with increasing inelasticity at Fr0 > 10−3.

In Figs. 12(a), 13(a), and 14(a), we have compared P[2, 2]
with respective seventh-order Padé approximant P[7, 7] that
has been recently derived by us [15] from the tenth-

FIG. 14. Comparison of first- (top red line) and third-order (bot-
tom blue line) results for the centerline tangential heat flux qx (0)
with its Padé approximant P[2, 2] (middle line) for (a) en = 1 and
(b) en = 0.2. In panel (a), the sixth-order Padé approximant P[6, 6]
for the elastic case [15] is also superimposed.

order perturbation solutions of a molecular gas undergoing
acceleration-driven Poiseuille flow. It is seen that the leading
Padé approximant P[2, 2] closely follows its higher-order
counterpart for N1(0) [Fig. 12(a)], N2(0) [Fig. 13(a)], and
qx (0) [Fig. 14(a)]; this also provides a check on the consis-
tency of our higher-order solutions. The agreement between
P[2, 2] and P[7, 7] suggests that a “global” Padé approximant
for each profile [N1(y), N2(y), qx (y), qy (y), T (y), ...], based
on the fourth-order solution, could be a good approximation
for each field; such Padé approximated solutions are likely to
be valid for larger values of Fr0 (> 0.01) than the original
fourth-order (asymptotic) series solution.

B. Qualitative comparison with simulation:
Heated and unheated granular gases

In the previous section, we have established the asymptotic
nature of our higher-order solutions via a comparative analysis
of Padé approximants of different orders based on present
series solutions. Here we discuss the similarities and differ-
ences of the present theoretical predictions of a gravity-driven
heated granular gas with recent DSMC (direct simulation
Monte Carlo) simulations of gravity-driven Poiseuille flow
[32] of a granular gas (en � 1) without white-noise forcing.
First we spell out the assumptions laid out in simulations

052144-18



ASYMPTOTIC EXPANSION AND PADÉ APPROXIMANTS … PHYSICAL REVIEW E 98, 052144 (2018)

which have been carried out in a channel of dimensionless
width W/σ = 1860, where σ is the particle diameter. The
average Knudsen number, defined as

Kn = λav

W
= (

√
2πρav )−1

(W/σ )
∈ (0.03, 10), (95)

has been varied by varying the reduced density ρav = navσ
3 ∈

(10−2, 10−6); for example, the equilibrium mean-free path is
λav = 186σ at a reduced density of ρav = 1.21 × 10−2. There
is another independent control parameter in simulations to
characterize the body force defined via

ĝ = gW
2kBTw

m

, (96)

where Tw is the wall temperature, m is the mass of a particle,
and kB is the Boltzmann constant (set to unity in simulations).
All reported simulations of Gupta and Alam [32] correspond
to ĝ = 0.5 and higher, since the DSMC data were found
to be noisy for ĝ < 0.5; this is a well-known problem of
the standard DSMC method [49]; see below. In contrast
to simulations of “wall-bounded” planar channel flows, we
have a single control parameter Fr0 = gλ0/c

2
0 (the Froude

number defined at the channel centerline y = 0) in the present
theoretical analysis. The latter can be tied to two simulation
control parameters via the following relation:

ĝ = gλ0

c2
0

W

λ0

T0

Tw

≡ Fr0

Kn0

(
T0

Tw

)
⇒ Fr0 = ĝKn0

(
Tw

T0

)
.

(97)

Assuming that Tw ≈ T0 and Kn0 ≈ Kn, we have Fr0 ≈
ĝKn0 = Kn0/2 with ĝ = 0.5 [32]. Recalling that the present
perturbation solutions hold only in the bulk region of the
channel (around its centerline) and the wall effects are likely
to influence the bulk at Kn ∼ O(1), it is reasonable to assume
that the present solutions are valid at Kn ∼ O(0.1) or less
which translates into an approximate upper bound of Fr0 <

0.025; this value falls within the range of validity of our
fourth-order solutions (Figs. 12–14).

Note that the particle simulations of Refs. [31,32] cor-
respond to Fr0 ∈ (3 × 10−3, 5). They established that the
excess temperature �T , the centerline values of the normal-
stress differences [N1(0), N2(0)], and the tangential heat flux
[qx (0)] increase with (i) decreasing en and (ii) increasing ĝ;
these observations are similar to our predictions beyond Frc

0 ∼
5 × 10−3 [Eq. (82)]. On the other hand, theoretical predictions
on the en dependence of the above quantities at Fr0 < Frc

0 are
qualitatively different from those found in simulations. We
may conclude that the macroscopic properties of the gravity-
driven Poiseuille flow of an “unheated” granular gas [31,32]
are similar to those of the present theoretical predictions for a
“heated” granular gas only at Fr0 > Frc

0.
Another finding of simulations [32] is the competition

between “dissipation-induced clustering” and “rarefaction-
induced declustering” which is implicated as a nonmono-
tonic dependence of �T on Kn in the quasielastic limit (see
Fig. 7(a) in Ref. [32]). Although it is not possible to isolate
the effects of Kn and ĝ in the framework of present theory,
we make use of the approximate relation (97) and substitute

FIG. 15. Contour plot of d�T/dKn0 in the (Kn0, 1 − en) plane
based on the fourth-order solution for ĝ = 0.5 and Kn0 ≈ 2Fr0; see
text in Sec. VI B for details.

it into Eq. (62) to obtain the Kn dependence of �T . With
the above approximations, the contour plot of “d�T/dKn0”
in the (Kn0, 1 − en) plane is displayed in Fig. 15 based on
our fourth-order solution; it is seen that the present predic-
tions are opposite to those found in simulations [32] for an
unheated granular Poiseuille flow. Clearly, certain features of
the Poiseuille flow of a “heated” granular gas (especially at
small Fr0) seem to be fundamentally different from those of
its unheated counterpart [31,32]. The reasons for observed dif-
ferences between the present theory and previous simulation
data at small values of Fr0 or Kn could be due to the presence
or absence of a bulk-heating mechanism as we discuss below.

While there is no bulk heating in the gravity-driven
Poiseuille flows studied in Refs. [31,32], the stochastic white-
noise term in our theoretical analysis has been added for the
convenience of generating a spatially homogeneous state (in
which the collisional cooling is compensated via this bulk-
heating mechanism) and the gravitational acceleration is then
added as a small perturbation to further analyze the dynamics
of the gravity-driven Poiseuille flow of a “heated” granular
gas. We speculate that for such a heated granular gas there is
a threshold value for Froude number below which the “bulk
heating” via white noise would dominate over gravitational
acceleration, leading to different results for the variations of
�T (and other quantities) compared to what is measured
in simulations [32] for a “purely” gravity-driven granular
Poiseuille flow. On the other hand, at large enough values of ĝ,
or, Fr0, the gravitational acceleration is expected to dominate
over stochastic heating and therefore the predicted results (at
large Fr0 > Frc

0) agree with both simulation results.
Notwithstanding the above arguments, the present theoret-

ical predictions on the nonmonotonic variation of transport
coefficients at Fr0 < Frc

0 [Eq. (82)] can be checked if the
simulations are carried out by incorporating the stochastic
white noise in gravity-driven granular Poiseuille flow below
the critical Froude number Frc

0. To this end, the standard
DSMC simulation technique, which is not suitable at small
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values of ĝ due to the presence of inherent noise, must
be refined by employing a different or modified simulation
technique (such as “variance-reduced” DSMC method [50]).
This, along with an extension of the present work to dense
granular gases, is left to a future work. The latter extension
would provide an appropriate avenue for future verifications
via experiments of gravity-driven flow of inelastic spheres,
for example, down an inclined channel; the bulk heating can
be imparted either via (i) small-amplitude mechanical shaking
of the bottom plate on which the particles are resting, or, via
(ii) electromagnetic driving [51,52], or, by employing (ii) an
upward flow of a gas to energize the particles as in a fluidized
bed [53]. These issues are beyond the scope of the present
paper, and clearly a lot of work remains to be done from the
perspectives of theory, simulation, and experiments for this
simple flow configuration.

VII. IS THE PRESENT PERTURBATION EXPANSION
EQUIVALENT TO CHAPMAN-ENSKOG EXPANSION?

It is interesting to find out how the series solutions based
on a “nonstandard” perturbation expansion [12,29] in terms
of gravitational strength (dubbed “g-based” expansion) differ
from the well-known “Kn-based” Chapman-Enskog expan-
sion [3,4,7] in terms of the gradients of hydrodynamic fields.
This connection is a priori unclear which can be understood
from the fact that (i) both the shear stress and tangential heat
flux appear at first order O(g) but (ii) the normal heat flux
and the normal stresses are found at second order O(g2) in
the present g-based expansion [see Eqs. (42) and (45)]. In
contrast, the tangential heat flux as well as the normal-stress
differences are known to be Burnett/second-order quantities
in a gradient expansion and both vanish in the Navier-Stokes
limit. It has been argued by Tij et al. [13] that these two
expansion techniques are not equivalent; we shall show that
such an equivalence can be established at the Burnett level if
we consider all fourth-order terms of g-based expansion. In
particular we ask, can the present series solutions for rheo-
logical fields be mapped to their Chapman-Enskog solutions?
If such a mapping exists, does the second- or fourth-order
solution contain all Burnett-order terms?

Recall that the closed-form analytical expressions for hy-
drodynamic and flux fields have been derived in terms of
(i) the centerline Froude number Fr0 and (ii) the rescaled
transverse coordinate y/λ0. Tying the Froude number with
Knudsen number (Fr0 ∝ ĝKn0, where ĝ = mgW/2kBTw and
Kn0 is the local centerline Knudsen number [15]), one may
conclude that the g-based second-order solution [O(Fr2

0) ∝
O(Kn2)] is equivalent to the Burnett-order solution of the
Chapman-Enskog method, which is incorrect as we demon-
strate below; rather one needs all fourth-order O(g4) terms
to establish the equivalence between the two methods. Below
we analyze (i) tangential heat flux qx and (ii) two normal-
stress differences (N1 and N2) which vanish identically at the
Navier-Stokes order; the goal is to express the present expres-
sions for flux fields in terms of the gradients of hydrodynamic
fields which would help to make a one-to-one comparison
with related Burnett-order expressions.

Let us consider the Burnett-order expression for tangential
heat flux which, for unidirectional flows [d/dy(·) �= 0, but

d/dx(·) = 0 = d/dz(·)], is given by [3,4]

qx (y) = 1

2

θ4η
2

ρ(y)

d2ux

dy2
+ 3

2

θ5η
2

p(y)

dux

dy

dT

dy

+ 1

2

θ3η
2

ρ(y)p(y)

dux

dy

dp

dy
, (98)

where the θi are constants. From Eq. (54), we have ux (y) ∝
gy2 + · · · , and therefore the first term of Eq. (98) yields qx ∝
g at leading order which tallies with that found in Eq. (42).
Now assuming that our expression for tangential heat flux qx ,
Eq. (80), can be put in a form as in Eq. (98), and employing
the hydrodynamic profiles in Eqs. (54)–(56) and after tedious
algebra, we obtain

qx (y) = α1(en)λ2
0p0

d2ux

dy2
+

[
α2(en)λ2

0n0
dux

dy

dT

dy

+α3(en)λ2
0
dux

dy

dp

dy
+α4(en) λ4

0p0
d4ux

dy4︸ ︷︷ ︸
]
+O

(
Fr5

0

)
,

(99)

where the subscript 0 refers to quantities being evaluated at
the channel centerline, with

α1(en) = 75π

4(1 + en)2(23 − 11en)(3 − en)
en=1= 25π

128
,

(100a)

α2(en) = 225(111 − 47en)π

8(23 − 11en)2(3 − en)(1 + en)2

en=1= 25π

16
,

(100b)

α3(en)
en=1= 12815π

198144
, (100c)

α4(en)
en=1= −3307625π2

2113536
, (100d)

and the expressions for α3(en) and α4(en) are given in
Sec. IV A of the Supplemental Material [41]. The underbraced
last term in Eq. (99) is of fourth order in spatial gradients and
hence represents a super-super-Burnett order term, and the
remaining terms are of second order in spatial gradients and
hence represent truly Burnett-order contributions. It has been
verified that the underlined term in Eq. (99) has contributions
from O(Fr0) and O(Fr3

0) [i.e., α1 ∼ O(g) + O(g3)], and the
remaining terms have contributions only from O(Fr3

0) [i.e.,
(α2, α3, α4) ∼ O(g3)] and hence are of purely third order
in gravity. Therefore, the tangential heat flux qx , Eq. (80),
with all terms up to third order O(g3), can be mapped to its
corresponding Burnett-order expression.

Moving onto normal-stress differences, the related
Burnett-order expressions for first (N1 = Pxx − Pyy) and sec-
ond (N2 = Pyy − Pzz) normal-stress differences are given by

N1(y) = A1nλ2 d2T

dy2
+ C1nλ2

(
dux

dy

)2

+ E1λ
2 d2p

dy2

+B1

(
nλ2

T

)(
dT

dy

)2

+ D1

(
λ2

p

)(
dp

dy

)2

+F1
λ2

T

dp

dy

dT

dy
, (101)
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N2(y) = A2nλ2 d2T

dy2
+ C2nλ2

(
dux

dy

)2

+ E2λ
2 d2p

dy2

+B2

(
nλ2

T

)(
dT

dy

)2

+ D2

(
λ2

p

)(
dp

dy

)2

+F2
λ2

T

dp

dy

dT

dy
, (102)

where the values of constants (Ai ,Bi , . . .) can be found in
Sela and Goldhirsch [23]. Following the same procedure
as that of qx , the present series solutions for normal-stress
differences can be put into

N1(y) =
[
A1n0λ

2
0
d2T

dy2
+ C1n0λ

2
0

(
dux

dy

)2

+ E1λ
2
0
d2p

dy2

]

+B1
n0λ

2
0

T0

(
dT

dy

)2

+ D1
λ2

0

p0

(
dp

dy

)2

+F1
λ2

0

T0

dp

dy

dT

dy
+ O

(
Fr6

0

)
, (103)

N2(y) =
[
A2n0λ

2
0
d2T

dy2
+ C2n0λ

2
0

(
dux

dy

)2

+ E2λ
2
0
d2p

dy2

]

+B2
n0λ

2
0

T0

(
dT

dy

)2

+ D2
λ2

0

p0

(
dp

dy

)2

+F2
λ2

0

T0

dp

dy

dT

dy
+ O

(
Fr6

0

)
, (104)

where the expressions for restitution-dependent coefficients
[Ai (en), Bi (en), . . .] are too cumbersome to be reproduced
here, but have been written down in Sec. IV of the Sup-
plemental Material [41]. Note that all terms in Eqs. (103)
and (104) are second order in spatial gradients, representing
true Burnett-order contributions as in Eqs. (101) and (102).
We have verified that the underlined terms in Eqs. (103) and
(104) have both second- and fourth-order [O(g2) + O(g4)]
contributions, but the remaining terms originate only from
fourth-order [O(g4)] terms. Therefore, all fourth-order terms
in the series solution of the pressure tensor are needed to
map the corresponding expressions of two normal-stress dif-
ferences to their Burnett-order counterparts.

Based on the above analysis we conclude that the present
g-based expansion [12,15,29] is equivalent to the well-known
Burnett-order Chapman-Enskog expansion if all terms up to
the fourth-order [O(g4)] are incorporated in the former.

VIII. SUMMARY AND CONCLUSION

The effect of inelastic dissipation on the bulk hydrody-
namics and rheology of the gravity-driven flow of a “heated”
dilute granular gas has been studied by solving a pertinent
kinetic model using the perturbation expansion technique.
A BGK-like kinetic model [24,29] with white-noise forcing,
which compensates for collisional cooling due to inelasticity,
has been employed to approximate the Boltzmann collision
operator. Neglecting wall effects and focusing only on the
bulk region around the channel centerline, the effect of gravity
was incorporated perturbatively around a “uniform” state of

constant temperature and density. The perturbation analysis
followed the previous work of Tij and Santos [29] on the same
problem, but we went on to calculate fourth-order solutions in
g that are found to have different dependencies on inelasticity
and forcing from the second-order solution of Ref. [29],
and the complexity of the problem has precluded us from
calculating further higher-order terms. Apart from gaining an
understanding of how the predictions based on higher-order
solutions differ from their leading-order solution, two other
goals of the present work were to (i) analyze the convergence
properties of the underlying series solutions as done recently
[15] for a molecular gas and (ii) check the equivalence of
the gravity-based perturbation expansion with the Chapman-
Enskog expansion.

The closed-form solutions for hydrodynamic (velocity and
temperature) and rheological (pressure tensor and heat flux
vector) fields have been used to analyze various rarefaction
effects in detail: (i) the temperature bimodality, or, the ex-
cess temperature [�T = (Tmax − T0)/T0, Eq. (62)], (ii) the
normal-stress differences, and (iii) the tangential heat flux as
functions of the restitution coefficient (en) and the Froude
number Fr0. It is shown that �T increases with increasing
dissipation for Fr0 � 5 × 10−3; for small enough values of
Fr0 (< 5 × 10−3), however, a “nonmonotonic” behavior of
�T with en [i.e., �T decreases with decreasing en for en ∈
(1, 0.5), but increases for en < 0.5] is observed [Fig. 3(a)].
In contrast to these predictions based on the fourth-order
solution, the leading (second-order) solution (Fig. 4) yielded
a nonmonotonic variation of �T with en for all Fr0 which is
at variance with DSMC results [32].

A similar “nonmonotonic → monotonic” transition beyond
a minimum value of Fr0 has been found also for (i) two
normal-stress differences (Figs. 6 and 7) and (ii) the tangential
heat flux (Fig. 10). The results presented as phase diagrams in
the (Fr0, 1 − en) plane in Figs. 5(b), 6(d), 7(d), and 10(d) can
be summarized as follows: there is a critical Froude number
Frc

0 ≡ Fr0(en) above and below which the excess temperature
�T , the first and second normal-stress differences (N1, N2),
and tangential heat flux qx vary monotonically and nonmono-
tonically, respectively, with restitution coefficient. Overall,
the inelastic dissipation plays a “dual” role of decreasing (at
Fr0 < Frc

0) and increasing (at Fr0 > Frc
0) the values of �T ,

N1, and N2 with decreasing restitution coefficient en from the
elastic limit. Therefore, we can conclude that the rarefaction
effects in gravity-driven Poiseuille flow of a heated granu-
lar gas depend crucially on a competition between inelastic
dissipation and external forcings: the inelastic dissipation
competes with white-noise forcing if the Froude number is
small enough (Fr0 < Frc

0), but it competes with gravitational
acceleration at Fr0 > Frc

0 with the white-noise forcing playing
a passive role. In contrast to our recent work [15] on the
Poiseuille flow of a molecular gas for which both the leading-
and higher-order solutions gave qualitatively similar results,
the present case of the granular gas yielded qualitatively
different results when the higher-order terms are included.

The convergence properties of the present series solutions
have been analyzed following our recent work [15] that dealt
with related issues for a molecular gas undergoing gravity-
driven Poiseuille flow. A comparison between the leading-
and higher-order solutions for the centerline values of N1(0),
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N2(0), and qx (0) clearly indicate that the present series
solutions are likely asymptotic. The leading Padé approxi-
mants for N1(0), N2(0), and qx (0) have been determined;
a comparative study between series solutions and Padé ap-
proximants confirmed that (i) the fourth-order solution has
a larger range of validity in terms of the Froude number
Fr0 than its leading-order counterpart and (ii) the role of
inelasticity is to increase this range of Fr0. It is recommended
that a global Padé approximant for each series solution be
determined from the present fourth-order solutions which is
likely to be applicable for larger values of Fr0. A qualitative
comparison of the present theory with related simulations
[31,32] indicates that the gravity-driven Poiseuille flow of a
heated granular gas could be fundamentally different from its
unheated counterpart. The reasons for observed differences
between theory and simulation data at small values of Fr0

may be due to the presence of bulk-heating mechanism as

discussed in Sec. VI B; this needs to be verified in a future
work.

We have demonstrated that the present gravity-based ex-
pansion for Poiseuille flow is equivalent to the well-known
Burnett-order Chapman-Enskog expansion [i.e., a perturba-
tion expansion in terms of the Knudsen number or the gra-
dients of hydrodynamic fields, up to O(Kn2)] if all terms up
to the fourth order in gravitational acceleration [O(g4)] are
retained in the former.

ACKNOWLEDGMENTS

We sincerely thank Professor A. Santos for useful com-
ments on the Ph.D. thesis of the first author, a chapter of
which forms the basis of the present paper. The research
work of M.A. is partly funded by the Department of Science
and Technology, Government of India (Ref. DST/INT/NL/P-
03/2016).

APPENDIX A: SOURCE TERMS IN EQ. (34), AND THE FORM OF DISTRIBUTION FUNCTION AT DIFFERENT ORDER

The source terms in the master equation Eq. (34) at second, third, and fourth order in g, respectively, are given by
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[(
1 + ζ0

2
u(1)

)
∂

∂cx

− 2cx
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p(2) − T (2)

2

)
ζ0

(
c · ∂

∂c

)
+ 2u(1)

(
1 + cy

∂u(1)

∂y

)
− cy

{
∂p(2)

∂y
+

(
c2 − 5

2

)
∂T (2)

∂y

}]
�(1)

+ 2cx

1 − ζ0

[
T (2) + u(1)cy

∂T (2)

∂y
+ cy

(
T (2) ∂u(1)

∂y
− ∂u(3)

∂y

)]
, (A2)

φ(4) = 1

1 − ζ0

[(
1 + ζ0

2
u(1)

)
∂

∂cx

− 2cx

(
1 + cy

∂u(1)

∂y

)]
�(3) + 1

1 − ζ0

[(
p(2) + T (2)

2

)
ζ0

4

∂2

∂c2
−

(
p(2) − T (2)

2

)
(1 − ζ0)

− 1

2

(
p(2) − T (2)

2

)
ζ0

(
c · ∂

∂c

)
+ 2u(1)

(
1 + cy

∂u(1)

∂y

)
− cy

{
∂p(2)

∂y
+

(
c2 − 5

2

)
∂T (2)

∂y

}]
�(2)

+ 1

1 − ζ0

[{(
p(2) − T (2)

2

)
u(1) + u(3)

}
ζ ∗

0

2

∂

∂cx

+ 2cx

{
T (2) + cy

(
u(1) ∂T (2)

∂y
+ ∂u(1)

∂y
T (2) − ∂u(3)

∂y

)}]
�(1)

+ 1

1 − ζ0

[(
2u(3) − 2T (2)u(1))(1 + cy

∂u(1)

∂y

)
+ 2cyu

(1) ∂u(3)

∂y
− cy

{
∂

∂y

(
p(4) − p(2)2

2

)
+

(
c2 − 5

2

)
∂

∂y

(
T (4) − T (2)2

2

)
+ ∂T (2)

∂y
(u(1)2 − T (2)c2)

}]
. (A3)

The structure of A kφ(2) suggests the following functional form of the second-order distribution function:

�(2)(c; y) = b0 + b1c
2
y + b2cyy + b3y

2 + b4c
4
y + b5c

3
yy + b6c

2
yy

2 + b7cyy
3 + c2

x

(
b8 + b9c

2
y + b10cyy + b11y

2 + b12c
4
y

+b13c
3
yy + b14c

2
yy

2
) + c2

(
b15 + b16c

2
y + b17cyy + b18y

2 + b19c
4
y + b20c

3
yy + b21c

2
yy

2 + b22cyy
3
)
. (A4)

The coefficients bi can be expressed in terms of p
(2)
2 , T

(2)
2 , and T

(2)
4 by inserting Eqs. (43), (A1), (A4) into Eq. (36). Section I of

the Supplemental Material [41] contains the expressions of the coefficients bi as a function of ζ0 [Eq. (30)].
The trial distribution function at fourth order O(g4) is given by

�(4)(y, c) = d0c
12
y + d1c

4
x + d2 + d3c

2
x + c2

y

(
d4c

4
x + d5 + d6c

2
x

) + c4
y

(
d7c

4
x + d8c

2
x + d9

) + c6
y

(
d15c

4
x + d16 + d17c

2
x

)
+ c4

z

(
d10c

8
y + d11c

4
y + d12 + d13c

2
y + d14c

6
y

) + c10
y

(
d18c

2
x + d19

) + c8
y

(
d20c

4
x + d21c

2
x + d22

) + y7
[
d23c

3
y + d24c

2
zcy
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+ cy

(
d25 + d26c

2
x

)] + c2
z

[
d27c

10
y + d28c

2
x + d29 + c4

y

(
d30c

2
x + d31

) + c2
y

(
d32c

2
x + d33

) + c6
y

(
d34c

2
x + d35

)
+ c8

y

(
d36c

2
x + d37

)] + y2
[
d38c

4
x + d39c

2
x + d40 + d41c

10
y + c2

y

(
d42c

4
x + d43 + d44c

2
x

) + c4
y

(
d45c

2
x + d46c

4
x + d47

)
+ c4

z

(
d48c

4
y + d49c

2
y + d50 + d51c

6
y

) + c8
y

(
d52c

2
x + d53

) + c6
y

(
d54c

4
x + d55c

2
x + d56

)
+ c2

z

{
d57c

2
x + d58 + d59c

8
y + c4

y

(
d60 + d61c

2
x

) + c2
y

(
d62c

2
x + d63

) + c6
y

(
d64c

2
x + d65

)}]
+ y3

[
d66c

9
y + cy

(
d67 + d68c

2
x + d69c

4
x

) + c4
z

(
d70cy + d71c

3
y + d72c

5
y

) + c5
y

(
d73c

4
x + d74c

2
x + d75

) + c7
y

(
d76 + d77c

2
x

)
+ c3

y

(
d78c

4
x + d79 + d80c

2
x

) + c2
z

{
d81c

7
y + cy

(
d82 + d83c

2
x

) + c5
y

(
d84c

2
x + d85

) + c3
y

(
d86c

2
x + d87

)}]
+ y5

[
d88c

7
y + c4

z

(
d89cy + d90c

3
y

) + c5
y

(
d91c

2
x + d92

) + c3
y

(
d93c

4
x + d94c

2
x + d95

) + cy

(
d96c

4
x + d97 + d98c

2
x

)
+ c2

z

{
d99c

5
y + c3

y

(
d100c

2
x + d101

) + cy

(
d102c

2
x + d103

)}] + y
[
d104c

11
y + cy

(
d105c

4
x + d106 + d107c

2
x

)
+ c4

z

(
d108c

7
y + d109cy + d110c

3
y + d111c

5
y

) + c5
y

(
d112c

4
x + d113c

2
x + d114

) + c7
y

(
d115c

4
x + d116 + d117c

2
x

)
+ c3

y

(
d118c

4
x + d119c

2
x + d120

) + c9
y

(
d121c

2
x + d122

) + c2
z

{
d123c

9
y + cy

(
d124c

2
x + d125

) + c5
y

(
d126c

2
x + d127

)
+ c3

y

(
d128c

2
x + d129

) + c7
y

(
d130c

2
x + d131

)}] + y6
[
d132c

2
x + d133c

4
x + d134 + d135c

6
y + c4

z

(
d136c

2
y + d137

)
+ c4

y

(
d138c

2
x + d139

) + c2
y

(
d140c

4
x + d141c

2
x + d142

) + c2
z

{
d143c

4
y + d144 + d145c

2
x + c2

y

(
d146c

2
x + d147

)}] + y4
[
d148

+ d149c
4
x + d150c

2
x + d151c

8
y + c4

z

(
d152c

4
y + d153c

2
y + d154

) + c6
y

(
d155c

2
x + d156

) + c4
y

(
d157c

4
x + d158 + d159c

2
x

)
+ c2

y

(
d160c

4
x + d161c

2
x + d162

) + c2
z

{
d163c

2
x + d164 + d165c

6
y + c4

y

(
d166c

2
x + d167

) + c2
y

(
d168c

2
x + d169

)}]
, (A5)

with unknown coefficients di . Section III of the Supplemental Material [41] contains the expressions of the coefficients di as a
function of ζ0.

Expressions for βi (ζ0 ) in Eqs. (48)–(52)

The expressions for βi (ζ0), with i = 1, 2, . . . , 12 appearing in Eqs. (48)–(52), are given by

β1(ζ0) = 10904 + 30784ζ0 + 29442ζ 2
0 + 10706ζ 3

0 + 799ζ 4
0 − 165ζ 5

0 , (A6)

β2(ζ0) = 336144 + 1690880ζ0 + 3427496ζ 2
0 + 3545632ζ 3

0 + 1930569ζ 4
0 + 495020ζ 5

0 + 35069ζ 6
0 − 942ζ 7

0 + 1152ζ 8
0 , (A7)

β3(ζ0) = 50528 + 367408ζ0 + 1102144ζ 2
0 + 1768792ζ 3

0 + 1631470ζ 4
0 + 839947ζ 5

0

+ 186671ζ 6
0 − 22797ζ 7

0 − 20613ζ 8
0 − 3150ζ 9

0 , (A8)

β4(ζ0) = 8412320 + 55869712ζ0 + 151604336ζ 2
0 + 217466256ζ 3

0 + 177155550ζ 4
0 + 80683559ζ 5

0 + 17862719ζ 6
0

+ 760059ζ 7
0 − 284625ζ 8

0 − 22086ζ 9
0 , (A9)

β5(ζ0) = 1599319168 + 16962443840ζ0 + 80336432416ζ 2
0 + 224669350416ζ 3

0 + 412962839352ζ 4
0 + 524178620364ζ 5

0

+467685587414ζ 6
0 + 290769190027ζ 7

0 + 120744935798ζ 8
0 + 29912882466ζ 9

0 + 2824796520ζ 10
0

−459960093ζ 11
0 − 127318068ζ 12

0 − 6481620ζ 13
0 , (A10)

β6(ζ0) = 5148064 + 32818512ζ0 + 89374032ζ 2
0 + 136566880ζ 3

0 + 128589078ζ 4
0 + 75796543ζ 5

0 + 26372423ζ 6
0

+4378435ζ 7
0 + 27903ζ 8

0 − 56070ζ 9
0 , (A11)

β7(ζ0) =
(
21144 + 70636ζ0 + 43978ζ 2

0 − 2137ζ 3
0 − 2455ζ 4

0

)
(1 + ζ0)(2 + ζ0)2(2 + 5ζ0)

, (A12)

β8(ζ0) = 393880320 + 5561605632ζ0 + 34942366336ζ 2
0 + 129006012416ζ 3

0 + 311212453440ζ 4
0

+515641881312ζ 5
0 + 599613703128ζ 6

0 + 490133164848ζ 7
0 + 276196369025ζ 8

0 + 101648368600ζ 9
0

+21034331946ζ 10
0 + 954252636ζ 11

0 − 548620335ζ 12
0 − 105666444ζ 13

0 − 4864860ζ 14
0 , (A13)

β9(ζ0) = 1066982656 + 11957194240ζ0 + 58644859232ζ 2
0 + 165729887792ζ 3

0 + 298651532384ζ 4
0 + 358002977288ζ 5

0

+287936971998ζ 6
0 + 151710315739ζ 7

0 + 48209843396ζ 8
0 + 6708938562ζ 9

0 − 779555905ζ 10
0

−433209456ζ 11
0 − 57182436ζ 12

0 − 2568240ζ 13
0 , (A14)

052144-23



RAMAKRISHNA RONGALI AND MEHEBOOB ALAM PHYSICAL REVIEW E 98, 052144 (2018)

β10(ζ0) = 1562108416 + 17537832640ζ0 + 86542601952ζ 2
0 + 247386118112ζ 3

0 + 454210757024ζ 4
0

+560679708268ζ 5
0 + 472406095078ζ 6

0 + 269146497804ζ 7
0 + 99542188931ζ 8

0 + 21415804832ζ 9
0

+1710159795ζ 10
0 − 250281216ζ 11

0 − 61806996ζ 12
0 − 3518640ζ 13

0 , (A15)

β11(ζ0) =
(
2668 + 10388ζ0 + 14179ζ 2

0 + 7782ζ 3
0 + 1323ζ 4

0

)
(1 + ζ0)2(2 + ζ0)(2 + 3ζ0)

,

β12(ζ0) =
(
10904 + 30784ζ0 + 29442ζ 2

0 + 10706ζ 3
0 + 799ζ 4

0 − 165ζ 5
0

)
(1 + ζ0)2(2 + ζ0)3(2 + 3ζ0)

. (A16)

APPENDIX B: COEFFICIENTS FOR COMPONENTS OF PRESSURE TENSOR AND HEAT FLUX PROFILES

1. Coefficients for the profiles of Pxx , Pyy, and p

The coefficients in Eq. (67) for the profile of the streamwise component of the pressure tensor, Pxx (y), are given by

A
(0)
Pxx

= 12
(
9857 − 8848en + 1943e2

n

)
π

(23 − 11en)2(3 − en)(1 + en)2(7 − 4en)
, A

(2)
Pxx

= 56

5
, (B1a)

B
(0)
Pxx

= −36π2
[
5320754896044755779981 − 35877011084597009391976en + 111115985314990042130202e2

n

= −209260794755553159211808e3
n + 267308195315857706173715e4

n − 244522198035548263661904e5
n

+ 164753189736281348488524e6
n − 82762935701338832923008e7

n + 30987888908467886051427e8
n

− 8538024661047139191880e9
n + 1682007130713849816634e10

n − 224255541997835773344e12
n

+ 7(2589577455921188219 − 95785574361432896en)e13
n

]
× [

5(43 − 31en)(23 − 11en)5(19 − 13en)2(11 − 7en)3(7 − 4en)4(3 − en)2(1 + en)4
]−1

, (B1b)

B
(2)
Pxx

= −72π
[
297764390618121 − 1336319970806724en + 2645757943208795e2

n − 3031908723889304e3
n

+ 2215160257764909e4
n − 1069496529175192e5

n + 341011922140153e6
n + 2

(−34596914007360e7
n

+ 4050199731259e8
n − 208219651654e9

n

)]/[
5(23 − 11en)4(19 − 13en)(11 − 7en)2(7 − 4en)3(3 − en)(1 + en)2

]
,

(B1c)

B
(4)
Pxx

= −32
(
5596639 − 6700494en + 2548983e2

n − 303352e3
n

)
375(23 − 11en)2(7 − 4en)

, (B1d)

B
(6)
Pxx

= 896(3 − en)(1 + en)2(23 − 11en)

28125π
. (B1e)

The coefficients in Eq. (68) for the profile of the normal component of the pressure tensor, Pyy (y), are given by

A
(0)
Pyy

= − 18
(
6251 − 5689en + 1274e2

n

)
π

(23 − 11en)2(3 − en)(1 + en)2(7 − 4en)
, (B2a)

B
(0)
Pyy

= 162π2
(
1354691680544184238686 − 9187336735256904042281en + 28636088167766335738937e2

n

− 54308753351026710931123e3
n + 69911218399217725196165e4

n − 64497676836474350854374e5
n

+ 43865675308547505987594e6
n − 22264211953507998060198e7

n + 8431549531175073291912e8
n

− 2352541510274823678405e9
n + 469959819894931083629e10

n − 63635525402694635639e11
n

+ 5233325118637887973e12
n − 197350505969264732e13

n

)
× [

5(43 − 31en)(23 − 11en)5(19 − 13en)2(11 − 7en)3(7 − 4en)4(3 − en)2(1 + en)4
]−1

. (B2b)
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The coefficients in Eq. (70) for the profile of pressure p(y) are given by

A(2)
p = 24

5
, (B3a)

B (2)
p = 216π

(−52090704728123 + 234845857387702en − 467424166402175e2
n + 538907611421082e3

n

− 396500364588437e4
n + 192986974641646e5

n − 62112762801669e6
n + 12740801991190e7

n − 1510564387244e8
n

+ 78820425644e9
n

)[
5(23 − 11en)4(19 − 13en)(11 − 7en)2(7 − 4en)3(3 − en)(1 + en)2]−1

, (B3b)

B (4)
p = −32

(
1039837 − 1282302en + 510189e2

n − 65116e3
n

)
125(23 − 11en)2(7 − 4en)

, (B3c)

B (6)
p = 128(3 − en)(1 + en)2(23 − 11en)

9375π
. (B3d)

2. Coefficients for velocity profile

The coefficients in Eq. (77) are given by

A(2)
ux

= 2(1 + en)(3 − en)
(
4347 − 4563en + 1188e2

n

)
125(23 − 11en)(7 − 4en)

√
π

, (B4a)

B (2)
ux

= −12
√

π
(−383782811 + 908929590en − 850931530e2

n + 393106400e3
n − 89456115e4

n + 8002882e5
n

)
5(23 − 11en)3(11 − 7en)(7 − 4en)2(1 + en)

, (B4b)

B (4)
ux

= 2(1 + en)(3 − en)
(
174861 − 176679en + 43614e2

n

)
675(23 − 11en)(7 − 4en)

√
π

, (B4c)

B (6)
ux

= 56(23 − 11en)(1 + en)3(3 − en)2

84375π3/2
. (B4d)

3. Coefficients for heat-flux (qx and qy) profiles

The coefficients in Eq. (80) for the profile of tangential heat flux are given by

A(0)
qx

= 15
√

π

23 + 12en − 11e2
n

, (B5a)

B (0)
qx

= −45π3/2
(
3769555817759 − 14637241462374en + 24691376445453e2

n − 23623690330552e3
n

+ 14015159421105e4
n − 5277353757678e5

n + 1231242375563e6
n − 162685459956e7

n + 9320085144e8
n

)
× [2(23 − 11en)4(19 − 13en)(11 − 7en)2(7 − 4en)3(3 − en)(1 + en)3]−1, (B5b)

B (2)
qx

= 6
√

π
( − 176362594 + 395375060en − 348605095e2

n + 150358525e3
n − 31474235e4

n + 2522803e5
n

)
5(23 − 11en)3(11 − 7en)(7 − 4en)2(1 + en)

, (B5c)

B (4)
qx

= −4(3 − en)(1 + en)(1171 − 487en)

75(23 − 11en)
√

π
. (B5d)

The coefficients in Eq. (81) for the profile of normal heat flux are given by

A(3)
qy

= 8(3 − en)(1 + en)

15
√

π
, (B6a)

B (3)
qy

= −16
√

π
(−383782811 + 908929590en − 850931530e2

n + 393106400e3
n − 89456115e4

n + 8002882e5
n

)
5(23 − 11en)3(11 − 7en)(7 − 4en)2(1 + en)

, (B6b)

B (5)
qy

= 16(3 − en)(1 + en)
(
33789 − 34271en + 8486e2

n

)
625(23 − 11en)(7 − 4en)

√
π

, (B6c)

B (7)
qy

= 32(23 − 11en)(3 − en)2(1 + en)3

21875π3/2
. (B6d)
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APPENDIX C: PADÉ APPROXIMANTS FOR N1(0), N2(0), AND qx (0)

For each power series for N1(0), N2(0), and qx (0) in Eq. (90), we have calculated the leading-order Padé approximants which
are complicated functions of the Froude number Fr0 and the restitution coefficient en as given by

N [2,2]
1 (0) ≡ P2

2 [N1(0)] = 6
(
38467 − 34763en + 7708e2

n

)
Fr2

0π

(3 − en)(23 − 11en)

[
1 + 3Fr2

0π
(−22833734916987169708136

+ 154440052786506155164481en − 479956764139877105910837e2
n + 907300369670346716803723e3

n

− 1163817356224674939112915e4
n + 1069523487599365685013174e5

n − 724297457249490250865394e6
n

+ 365903778984249648387798e7
n − 137859723597511431730062e8

n + 38248922914567691489405e9
n

− 7593652640482079385929e10
n + 1021230812619923267439e11

n − 83354010450637626823e12
n

+ 3117152594783443132e13
n ){5(19 − 13en)2(11 − 7en)(7 − 4en)2

× (−4962243 + 9715939en − 6914577e2
n + 2125941e3

n − 238948e4
n

)}−1]−1

en=1= 317Fr2
0π

16
(
1 + 17488781Fr2

0π

3170

) , (C1)

N [2,2]
2 (0) ≡ P2

2 [N2(0)] = −12
(
8896 − 8219en + 1879e2

n

)
Fr2

0π

(3 − en)(23 − 11en)

[
1 + 3Fr2

0π
(−6871470228852902368193

+46809019532715126988553en − 146608808194906979520231e2
n + 279517985403687239168299e3

n

−361892770277101820591770e4
n + 335956893492720894027462e5

n − 230037888040646205399822e6
n

+117614971880233149618774e7
n − 44896056872107773575781e8

n + 12634848931426273913765e9
n

−2547631248340529936027e10
n + 348464186626415947407e11

n − 28972883876292674224e12
n

+1105655533193352316e13
n

){
5(19 − 13en)2(11 − 7en)(7 − 4en)2

× (−1147584 + 2270107en − 1635951e2
n + 510333e3

n − 58249e4
n

)}−1]−1

en=1= − 71Fr2
0π

8
(
1 + 2492539Fr2

0π

355

) , (C2)

q[2,2]
x (0) ≡ P2

2 [qx (0)] = 15Fr0
√

π(
23 + 12en − 11e2

n

) [1 + 3Fr2
0π

(
3769555817759 − 14637241462374en + 24691376445453e2

n

− 23623690330552e3
n + 14015159421105e4

n − 5277353757678e5
n + 1231242375563e6

n − 162685459956e7
n

+ 9320085144e8
n

){
2(1 + en)2(11 − 7en)2

(
57 − 58en + 13e2

n

)(
161 − 169en + 44e2

n

)3}−1]−1

en=1= 5Fr0
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π

8
(
1 + 21009Fr2

0π

32

) . (C3)

The corresponding expressions for a molecular gas (en = 1) are also displayed above for each Padé approximant; this agrees
with the second-order Padé approximant derived in our recent work [15].
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