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Perturbing the shortest path on a critical directed square lattice
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We investigate the behavior of the shortest path on a directed two-dimensional square lattice for bond
percolation at the critical probability pc. We observe that flipping an edge lying on the shortest path has a
nonlocal effect in the form of power-law distributions for both the differences in shortest path lengths and for
the minimal enclosed areas. Using maximum likelihood estimation and extrapolation, we find the exponents
α = 1.36 ± 0.01 for the path length differences and β = 1.186 ± 0.001 for the enclosed areas.
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I. INTRODUCTION

The well established bond percolation model can be gen-
eralized on a directed lattice as was done by Redner with
the resistor-diode network, which was used implicitly much
earlier in the work of Broadbent and Hammersley [1–6].

For bond percolation, the shortest path l is defined as the
path connecting two opposite sides of a lattice with the least
amount of steps. The length l is also known as the chemical
distance [7]. On a randomly directed lattice, the path in addi-
tion has to respect the direction of each link. Shortest paths of
two-dimensional percolating systems have been investigated
extensively over the past 40 years and have been found to be
fractal at the percolation threshold [8–13].

We focus on directed networks where all the directions are
equiprobable, thus making the system critical on the square
lattice [1]. In this special case, the directed lattice falls into the
same universality class as standard bond percolation [5,14].
We consider a two-dimensional directed square lattice with
side length L and investigate how flipping an edge (i.e., invert-
ing the direction of an edge) affects the shortest path length l.
An example of such a situation is shown in Fig. 1. When the
shortest path is interrupted by inverting a randomly selected
bond on the path, a new distinct shortest path emerges. We use
numerical simulations to investigate the difference in length
between the new and old shortest path and the area enclosed
between them.

We investigate the properties of shortest paths on directed
lattices in the context of systems with well defined flow routes
such as biochemical pathways, cities with one-way streets,
circulatory systems, and porous media in general.

The directed lattice together with the shortest paths shares
a lot of similarities with the Lorentz lattice gas model (wind-
tree model) or even more so with the 8-vertex model (ice-
type model), which also allows for sources and sinks for the
paths. However, both models require that for each vertex there
are always two edges directed inwards and outwards (four
edges in some cases of the 8-vertex model) [15–18]. This is
where the analogy breaks down because in the resistor-diode

network, a vertex can have three incoming and one outgoing
edge or vice versa.

We use the burning method to determine the shortest path
that connects one side (top) of the lattice with the other (bot-
tom) [10]. The burning method starts by setting all vertices in
the topmost row on “fire.” Then, in the following time steps,
the fire is propagated along the permissible edges to neighbor-
ing sites that are not burnt. At each time step, the newly burnt
vertices are labeled with the current time. The procedure stops
as soon as the opposite side is reached or earlier in cases where
the system does not percolate. Assuming the fire reaches the
opposite side, the shortest path length is given by the last time
step to be registered. It should be noted that shortest paths on
square lattices are usually not unique.

We choose randomly one of the shortest paths determined
using the burning method. A randomly selected edge along
this path is then flipped and the burning method employed
again to find the new shortest path lnew. A path that encloses
the smallest area together with the original shortest path is
selected. In some cases there may arise a choice between
two different candidates, one to the left and one to the right
of the original shortest path. The choice, however, does not
affect the properties investigated. By flipping one of the
bonds that lie on the shortest path we introduce an external
perturbation with the goal of studying how the system, and
in particular, the shortest path responds to it. We want to
understand whether these local modifications can result in
much larger global changes.

As a first step, we have a look at the distribution of the
unperturbed shortest paths p(l, L). It turns out that also in
the case of directed networks, p(l, L) is compatible with the
same scaling law found for bond percolation [19–22]. From
our simulation results we find that

p(l, L) = g(l/Ldmin )/l, (1)

where L is the size of the square lattice and dmin = 1.13
the fractal dimension of the shortest path [13,21,23]. This
comes as no surprise since it has already been conjec-
tured that the model discussed in this paper is in the same
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FIG. 1. The original shortest path is in red. After inverting one of
the links on the path (green dotted arrow), the shortest path changes.
The new shortest path is shown in blue with stripes. It is chosen out
of all possible shortest paths such that it minimizes the area of the
shaded region.

universality class as standard percolation [5,14]. Using the
Leath-Alexandrowicz method, it can be shown that the clus-
ters of sites reached from a seed site in percolation of directed
bonds with p = 1

2 are identically distributed to the clusters
of standard percolation at criticality [6,24,25]. We therefore
expect the shortest path distribution to be the same. Fur-
thermore, we also confirm the analytical asymptotic results
obtained by Hovi and Aharony for the scaling function g(x)
(not shown) [22].

II. CHANGE IN SHORTEST PATH LENGTH

On square lattices the length difference between the old
shortest path and the new one is always an integer and it can
be zero, even, or odd. Two paths sharing the same starting and
ending points as shown in Fig. 1 can either have a zero or an
even difference in length. This is because the length of any
cycle on a square lattice is an even number and thus the dif-
ference between any two paths that agree on both ends will be
either zero or even. An odd value, on the other hand, implies
that at least one of the two end points does not coincide.

The change in length of the shortest path necessarily has to
be non-negative. For a new path to be shorter than the previous
path, it has to go through the flipped edge because otherwise
it would mean that the new path already existed before the
change. On the other hand, any new shortest path cannot
pass through the flipped edge as illustrated by the following
argument. Consider four paths A, B, C, and D. The paths
A and B start from the top and go each to one end of the
flipped edge e while C and D start each from one end of the
flipped edge e and go to the bottom. Let the path A + e + C

denote the previous shortest path. Before flipping, both paths
A + D and B + C must be as long or longer than A + e + C

by definition. In turn, this means that B is longer than A

and D is longer than C. When the edge e is now flipped,

FIG. 2. Ratio of the three possible outcomes for the difference
between the old and new shortest path: convergent paths with zero
difference in blue, divergent paths in green, and convergent paths
with nonzero difference in red.

we observe that B + e + D is longer than both A + D and
B + C. Therefore, the flipped edge will never be crossed in
any new shortest path.

We separate the data obtained from the simulations based
on whether the shortest paths coincide on both ends and
then further based on whether the difference between them
is zero or nonzero. If the two shortest paths do not agree
on both ends, we say that they are divergent and otherwise
we say that they are convergent. To summarize, the data are
classified into divergent paths, convergent paths with zero
differences, and convergent paths with nonzero, i.e., even,
differences. The ratio of these three categories obtained as a
function of system size is shown in Fig. 2. We extrapolate
the curves by fitting γ (L) = γ0 + γsL

γe using nonlinear least
squares as shown in Fig. 2. For L → ∞ we observe that the
samples with convergent paths with zero change in length
approach 26.9% ± 1.1%, those with divergent paths approach
0.0% ± 0.2%, and those with convergent paths with nonzero
change in length approach 72.8% ± 0.5%. In comparison, if
the divergent paths are ignored explicitly, the percentage for
zero-difference paths becomes 27.4% ± 0.4% and for even
differences 72.6% ± 0.4%.

Although one may conclude from the results above that the
percentage of divergent paths vanishes in the asymptotic limit
of infinite size, we want to point out that this is not the case.
The fact is that there exists a very small, albeit nonvanishing
probability of having more than one percolating cluster at
the critical point [26]. The exact value of this probability
has been calculated by Cardy for two-dimensional systems in
the limit of infinitely large system sizes [27]. According to
Cardy’s formula, it turns out that for L → ∞, the probability
of having two spanning clusters in two dimensions is P ∼
exp(−2π ) � 0.001 87, which is less than the error. In order
to show that that the percentage of divergent paths for infinite
system sizes coincides with the value calculated by Cardy, we
would have to make much more precise simulations, such as
the one proposed in Ref. [26].
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FIG. 3. Data collapse for the distribution of nonzero differences
in shortest path lengths p(�l) for convergent paths using data for
different lattice sizes L. The dashed line represents a power-law fit
to the data with exponent α = 1.36.

If we consider only the convergent paths with nonzero
differences, the distribution p(�l) of the differences in length
between old and new shortest paths shows scale-free behavior
with an exponent estimated to be α = 1.36 ± 0.01. Figure 3
shows an excellent data collapse for the distribution p(�l)
that obeys scaling of the form p(�l) = L−αf (�l/L). With-
out showing the results, we mention here that we obtained
the same scaling exponent (within error bars) for the path
difference distribution in the case of standard bond percolation
at pc = 1

2 . In the case of divergent paths, again only with
nonzero differences, the results are quite different as can be
seen in Fig. 4. A truncated power law is observed, but with an

FIG. 4. Data collapse for the distribution of nonzero differences
in shortest path lengths p(�l) for divergent paths using data for
different lattice sizes L. The dashed line represents a power-law
curve with exponent α = 0.5.

FIG. 5. Data collapse for the distribution of enclosed areas p(A)
using data for different lattice sizes L. The dashed line represents a
power-law fit to the data with exponent β = 1.186.

exponent of approximately α � 0.5, which is different from
the scaling exponent of unity used to obtain the data collapse.

III. AREA BETWEEN SHORTEST PATHS

The distribution p(A) of the size of the minimal area A

enclosed between the old and new shortest paths also shows
scale-free behavior with an exponent estimated to be β =
1.186 ± 0.001. Figure 5 shows an excellent data collapse for
the distribution p(A) that obeys scaling in the form p(A) =
L−2βf (A/L2). The samples used only contain convergent
paths. Again, without showing the results, we mention here
that we obtained the same scaling exponent (within error bars)
for the area distribution in the case of standard bond percola-
tion at pc = 1

2 . The exponent β agrees within error bars with
the exponent β = 1.16 ± 0.03 for the size distribution of the
areas enclosed by watersheds from landscapes that only differ
slightly at one location reported in Ref. [28] in the case of
uncorrelated landscapes with Hurst exponent H = −1.

IV. EXPONENT ESTIMATION

The exponents have been estimated using maximum like-
lihood estimation together with a discrete exponentially trun-
cated power-law based on the method used in Ref. [29]. The
use of maximum likelihood estimation is motivated by the
fact that we look at probability distributions. The estimated
exponents for different lattice sizes L have been observed to
converge algebraically to some limit value γ0 as L → ∞. This
limit is extrapolated by fitting the estimated exponents γ (L)
against γ (L) = γ0 + γsL

γe using nonlinear least squares.

V. CONCLUSION

We have investigated the effect of flipping one edge in
planar directed networks (diode networks) at the critical
probability pc and found power-law behaviors for, both, the
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probability distribution of the differences in shortest path
lengths and for the minimal enclosed areas between the old
and new shortest paths. This implies that very small pertur-
bations made to the shortest path can cause nonlocal changes
in the system. We found that the number of divergent paths
almost vanishes in the thermodynamic limit, in accordance
with the existence of multiple percolation clusters. The dif-
ferences in shortest path lengths are thus expected to be
overwhelmingly even valued (or zero) in the thermodynamic
limit. We also give estimates for the exponents of the observed
power laws using maximum likelihood estimates based on a
truncated power law and extrapolation. The exponents are α =
1.36 ± 0.01 for the differences in shortest path lengths and
β = 1.186 ± 0.001 for the minimal enclosed areas. It would
be interesting also to study the shape of the enclosed areas and
see if it scales with the exponents of directed percolation.

Finally, we found that the value we obtain for the expo-
nent β agrees within the error bars with the exponent β =
1.16 ± 0.03 reported for the case of perturbed watersheds in

Ref. [28]. Watersheds are fractal nonintersecting lines that
separate adjacent drainage basins on random landscapes. Al-
though we cannot make a direct connection between shortest
paths of percolating clusters and watersheds, we can offer a
few arguments. First of all, water flow routes and drainage sys-
tems on random surfaces can be mapped to the resistor-diode
network model considered in this paper. Moreover, both cases
deal with a distribution that is the result of a small perturbation
of a fractal path. In both cases, a new path emerges after
the perturbation, creating an enclosed area that is distributed
according to the same power law. This suggests that the
resistor-diode network and watersheds might be related to
each other through some general properties of landscapes.
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