
PHYSICAL REVIEW E 98, 052142 (2018)

Current reversal in interacting colloids under time-periodic drive
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Using molecular dynamics simulations, we study particle transport in a system of interacting colloidal particles
on a ring, where the system is driven by a time-dependent external potential, moving along the ring. We consider
two driving protocols: (i) the external potential barrier moves with a uniform velocity v along the ring, and
(ii) it moves in discrete jumps with jump length l and waiting time τ with an effective velocity v = l/τ . The
time-averaged (dc) particle current, which always remains positive in case (i), interestingly reverses its direction
in case (ii) upon tuning the particle-number density ρ0 and the effective barrier velocity v. We also find a scaling
form for the current in terms of number density, barrier velocity, barrier height, and temperature of the system.
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I. INTRODUCTION

Characterizing particle transport in driven interacting-
particle systems is an important problem in statistical physics
[1–4]. Over the past decades, there has been considerable
progress made in maneuvering colloidal particles using laser
field, leading to new avenues of research in exploring trans-
port in such systems [5–7]. Several experiments have been
performed using single colloidal particles, trapped in an ex-
ternal optical potential (optical tweezer), to investigate funda-
mental aspects of driven systems, such as fluctuation-response
relations [8–13]. Indeed, understanding transport in a system
of interacting colloids driven by a time-periodic external force
is important in the context of driven fluids in general and
can have applications in developing stochastic pumps [14,15],
thermal ratchets [1,3,16–19], and in controlling particle trans-
port through a confined geometry [20–26] like nanopores and
microfluidic devices, etc.

In the past, there have been several studies to explore
transport properties of simple model systems, such as simple
exclusion processes on a periodic lattice, where hard-core
particles diffuse on discrete lattice sites and are driven by
a time-dependent potential or force field [27–31], with total
particle number in the systems being conserved. The main
motivation behind these studies was to address an important
question whether a time-periodic force can generate a nonzero
time-averaged, or dc current even when the average (spatial
or temporal) force acting on the system is zero. Interest-
ingly, not only the answer has been in the affirmative, but,
in certain cases [27,29,30], it has also been observed that
the current, quite remarkably, can flow in both directions,
depending on the values of certain parameters in the systems.
Indeed, for two different time-periodic potentials used in
Refs. [27,29,30], the current reversal was obtained by tuning
particle density, periodicity of the potential, and other param-
eters of the system.

One particular advantage of the above-mentioned simple
lattice models is that the models are analytically tractable,
albeit on a perturbative or a mean-field level. However, one
may enquire whether the results derived from these models

would apply to more realistic systems, where particles move
in continuum, instead of discrete lattice. It should be noted
that lattice spacing, which introduces a length scale into the
problem, may be a relevant parameter in achieving current
reversal. Therefore, it is not clear if, without employing an
additional length scale, the results for a system on a discrete
lattice would survive in the corresponding system in contin-
uum, where the lattice spacing goes to zero. A recent study
in this direction, however without introduction of any such
length scale in the system, considers interacting Brownian
particles diffusing in the presence of a traveling-wave-like
external potential, which varies sinusoidally in space and time
[32]. It was reported that this system also supports a nonzero
current. But, unlike the lattice model, the direction of the
current does not get reversed. For all choices of driving fre-
quency and wavelength of the traveling-wave potential and for
all particle densities, the current always flows in a particular
direction, i.e., in the direction of the traveling wave [32].

In this paper, we show that, depending on the driving pro-
tocol, it is possible to have a current reversal even for particles
moving in continuum. In our system of interacting Brownian
particles, diffusing in continuum and on a ring geometry, we
consider an external drive in the form of a time-dependent, and
spatially localized, external potential barrier, which moves
with velocity v along the ring. We consider two driving
protocols: Case (i) - the potential barrier moves continuously
with a uniform velocity v and case (ii) - it moves discretely,
with its peak jumping from one position to the other with a
jump length l and a waiting time τ , thus having an effective
velocity v = l/τ in this case. Note that, in driving protocol
(ii), we have essentially introduced an additional length scale,
the jump length of the moving barrier, which plays a cru-
cial role here. Indeed, as we demonstrate, the time-averaged
dc particle current remains always positive in the first case, but
reverses its direction upon tuning the particle-number density
ρ0 and the effective velocity v, in the second case.

The mechanism behind the current reversal, or rather the
appearance of a negative current in the system, could be
understood from diffusive relaxation of the density profile,
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Driving protocol (i)

Driving protocol (ii)

FIG. 1. Schematic diagram of density profiles (red thick solid
lines) for driving protocols (i) and (ii). In case (ii), the red line
represents the density profile at the instant when the barrier has just
moved to its new position (blue solid line) from its previous position
(blue dashed line). The black arrows depict the gradient along which
the dominant diffusive relaxation of the density profiles could occur.

which is created locally and is highly asymmetric around the
barrier position; see the schematic diagrams in Fig. 1. For
driving protocol (i), the barrier always stays behind the density
peak, which is formed just in front of it. Therefore, the particle
current is almost entirely generated by the diffusive relaxation
of the density peak to the bulk on the right side of the barrier.
In this case, the relaxation of the density peak to the density
trough on the left is prohibited due to the presence of the
barrier there. On the other hand, for driving protocol (ii), as the
barrier keeps on jumping to a new position after a waiting time
τ , the density peak can now relax into the density trough to the
left, giving rise to a significant negative current contribution
to the total particle current. Moreover, the presence of the
already shifted barrier in front of the density peak hinders
the relaxation of density peak to the right, contributing to
the reduction in the positive current. Therefore, the current
reversal essentially arises from the competition between the
above two (positive and negative) current contributions; for
a quantitative description of the mechanism, see Fig. 13.
Depending on the height(s) of the density peak(s), which
again depends on the parameters v and ρ0, the net current can
be either positive or negative. The results obtained here nicely
complement our earlier studies of a simple lattice model,
where a current reversal was observed and explained using
a similar mechanism described above [29,30].

The organization of the paper is as follows. In Sec. II, we
define the model. We present the results for continuous barrier
movement in Sec. III and for discrete barrier movement in
Sec. IV. We summarize and conclude in Sec. V.

II. THE MODEL

We consider N identical Brownian particles, diffusing
along a one-dimensional ring of length L. In the overdamped

V0
σ

FIG. 2. Schematic diagrams of the model. A Gaussian potential
barrier (shown in cyan color) moves along a one-dimensional ring
(represented as a pink dashed circle). The colloidal particles are
represented as red balls, which cannot cross each other due to the
divergence of the WCA potential VWCA(r ) as r approaches zero;
however, slight overlap between two particles, although unlikely at
low temperature, is dynamically allowed (soft core).

limit, we can neglect the inertial term; this assumption is quite
reasonable for micron-sized colloids in a viscous medium as,
in that case, the velocities of individual colloids would relax
very fast due to large viscous drag and therefore one could
ignore the acceleration, or the inertial term. Consequently, the
equation of motion of the ith particle in the system can be
written as

ẋi = −βD

⎡
⎣∑

j �=i

∂VWCA(rij )

∂xi

+ ∂V (xi, t )

∂xi

⎤
⎦ + ηi, (1)

where xi is position of the ith particle, and rij = |xj − xi | is
the relative distance between particles i and j . The interaction
potential VWCA(rij ) between the ith and j th particles is chosen
to be the Weeks-Chandler-Anderson (WCA) potential, which
has the following functional form:

VWCA(r ) = 4

[(a

r

)12
−

(a

r

)6
]

+ ε, (2)

for r < 21/6a with a being the particle diameter and
VWCA(r ) = 0 otherwise. The external potential V (x, t ) acting
at position xi and time t , has a Gaussian form with a moving
peak:

V (x, t ) = V0e
−[x−x0 (t )]2/2σ 2

, (3)

where x0(t ) is the position of the center or the peak of the
potential barrier at time t , σ is the width of the barrier, and
V0 is the strength (see Fig. 2). In Eq. (1), the fluctuating
force term ηi is considered to be a Gaussian white noise
with vanishing mean force 〈ηi〉 = 0 and delta correlations
〈ηi (t )ηj (t ′)〉 = 2Dδi,j δ(t − t ′), where diffusion constant D

and inverse temperature β = 1/kBT are related through
fluctuation-dissipation relation D = μkBT with Boltzmann
constant kB and mobility μ both being taken to be unity (thus
D = T ) throughout the paper.

We consider two driving protocols in the paper. (i) In the
first case, the potential barrier moves continuously along the
ring with a uniform speed v,

x0(t ) = vt.
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FIG. 3. Particle density profiles for continuous movement of the
barrier [driving protocol (i)]. (a) Local density profile ρ[x − x0(t )] as
a function of the distance from the barrier position x0(t ), for different
values of global density ρ0 = 0.05 (red continuous line), 0.2 (brown
dashed line), 0.5 (blue dotted line), 0.8 (magenta fine dotted line),
and 0.95 (black dash-dotted line). The topmost curve corresponds to
highest ρ0 and the lower curves correspond to decreasing ρ0 values
in succession. We have used v = 10, T = 1, and V0 = 10. (b) Local
density profile ρ[x − x0(t )] for different barrier speeds v = 0 (red
continuous line), 2 (blue dashed line), 20 (black dotted line), and
200 (magenta fine dotted line). At v = 0 (equilibrium), the density
profile has only one localized trough, and is otherwise homogeneous.
At very high velocity, the density profile tends to a homogeneous
one as any point in the system does not have sufficient time to feel
the barrier. The peak and the trough in the density profile become
more pronounced in an intermediate range of v. Here we have used
ρ0 = 0.5, T = 1, and V0 = 10.

(ii) In the second case, the potential barrier moves along the
ring, by discrete jumps, from one position to another, by a
jump length l and then it waits at the new position for a
residence time τ , and so on, such that

x0(t ) = δ(x − nvτ )

with n = 0, 1, 2, . . . ,∞ and the effective velocity of the
barrier is v = l/τ . Clearly, in the limit of small jump length
and waiting time l, τ → 0 with velocity v = l/τ fixed, we
recover case (i) of continuous movement of the barrier.

Due to the periodic boundary condition, the system, in
both the cases, eventually settles into a time-periodic steady
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FIG. 4. Driving protocol (i). Particle current J is plotted vs
global density ρ0 for three different barrier velocities v = 5 (red
pluses), 10 (green crosses), and 20 (blue asterisks) while V0 = 10
and T = 1.0 are kept fixed.

state with time period τc = L/v, the time over which the
barrier completes one cycle by circling around the ring once.
Note that there is another time scale, a microscopic diffusive
time τ0 = a2/D over which a particle diffuses across a length
scale of the particle diameter a. The global number density is
defined as ρ0 = N/L. We measure length in the unit of a and,
therefore, put a = 1 throughout. We also take the width of the
potential barrier σ = 1 and use system size L = 200 in our
study.

To integrate Eq. (1) numerically, we use Heun’s method
[33], where we discretize time in steps of δt = 10−4τ0 and
calculate the position xi (t + δt ) of the ith particle at time t +
δt from its velocities ẋi (t ) and ẋe

i (t + δt ), where xe
i (t + δt )

is estimated using Euler’s method. This integration technique
yields second-order accuracy O[(δt )2].

III. CONTINUOUS MOVEMENT OF THE BARRIER

In this section, we study case (i) where the external po-
tential barrier moves along the ring continuously. Expectedly,
in equilibrium when v = 0, there is a trough (rarefied region
with lower particle density compared to the bulk) in the
density profile, with density value being minimum exactly
at the position of the barrier peak [see Fig. 3(b)]. When the
barrier moves with a nonzero velocity v, the system eventually
reaches a time-periodic state with a density traveling wave
moving along a ring with the same velocity v and having
a hump (compressed region with higher particle density)
followed by a trough. In this case of continuous movement
of the barrier with velocity v, the density trough slightly lags
behind the barrier peak. In Fig. 3(a), we plot local density as
a function of the distance from the barrier position x0(t ), for
a fixed v and various values of global density ρ0. Due to the
barrier movement, particles get accumulated in front of the
barrier and get depleted at the back. This structure is very
similar to that observed in the lattice version of the model
previously studied in Ref. [29]. In Fig. 3(b) we plot the density
profile for different values of the barrier speed v. Our data
show that, for smaller values of v, the trough and peaks in
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FIG. 5. Driving protocol (i). (a) Current J is plotted as a func-
tion of the barrier velocity v for different temperatures T = 1 (red
pluses), 1.5 (green crosses), and 2.0 (blue asterisks) with strength
of the barrier V0 = 20 kept fixed. (b) Current J is plotted as a
function of v for V0 = 10 (red pluses), 15 (green crosses), and 20
(blue asterisks) with temperature T = 1 kept fixed. Here we have
taken global density ρ0 = 0.5.

the density profile are more prominent and, as v increases, the
height (depth) of the peak (trough) becomes smaller.

We also measure the particle current, which is defined as
the average number of particles flowing across a particular
point on the ring per unit time. In Fig. 4, we plot current
J as a function of global density ρ0 for various values of
the barrier velocity v. Here we find that, unlike in the lattice
model of Ref. [29], there is no current reversal, i.e., current
J remains always positive. However, current J is still a non-
monotonic function of density ρ0. Initially, as ρ0 increases,
J first increases, reaches its peak, and then decreases as ρ0

increases further. Notably, there is no particle-hole symmetry
and therefore the particle current is not symmetric around
ρ0 = 1/2.

Next we plot particle current J as a function of barrier
velocity v in Fig. 5, for different values of T and V0. The
current shows a peak at an intermediate velocity regime.
From Fig. 5(a), we find that, as temperature increases with
the barrier height V0 kept fixed, the current decreases. On
the other hand, if the barrier height V0 decreases with the
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FIG. 6. Driving protocol (i). (a) Scaled particle current J/T is
plotted as a function of scaled barrier velocity, or Péclet number,
Pe = v/T where V0/T = 10 is kept fixed. (b) J/T is plotted as a
function of V0/T for v/T = 3.

temperature kept fixed, the particle current starts decreasing,
as shown in Fig. 5(b).

The particle current can be written as a function of the
following variables: global density ρ0, barrier velocity v,
barrier strength V0, and temperature T ,

J = J (ρ0, v, V0, T ). (4)

Note that the arguments inside the above function must
be dimensionless. Now, considering instantaneous local cur-
rent j (x, t ) � D∂ρ(x)/∂x being essentially diffusive, with
∂ρ(x)/∂x being local density gradient, the total time-averaged
current J � ∫ τc

0 dt
∫ L

0 dx j (x, t )/τc would be proportional to
diffusivity D = T and we have the functional form J/T =
f (ρ0, vτ0/a, V0/T ) for current, where the dimensionless
variable Pe = vτ0/a is known as Péclet number. In other
words, we have a scaling form,

J

T
= f1

(
ρ0,

v

T
,
V0

T

)
, (5)

which we verify from our data in Fig. 6(a), where we plot
scaled current J/T as a function of scaled velocity, or Péclet
number, Pe = v/T (using a = 1) with the scaled barrier
height V0/T kept fixed and observe a good scaling collapse.
Similarly, in Fig. 6(b) we plot the scaled current J/T as
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a function of scaled potential V0/T for fixed Pe and find
a good collapse. In the above scaling calculation, we have
neglected the possible dependence of the diffusivity D on
local density. However, even when it depends on the local
density, the diffusivity is expected to be still proportional to
the temperature. The good scaling collapse shown by our data
is consistent with this assumption.

Note that the particle current always remains positive for
all ranges of the scaling variables. This is in line with the con-
clusion drawn for sinusoidally varying space-time-dependent
external potential studied in Ref. [32]. This observation brings
us to the main question of this paper: Is it possible to find a
driving protocol for a system in continuum such that there is
current reversal upon tuning certain parameters of the system?
In the next section, we answer this question in the affirmative.

IV. DISCRETE JUMP OF THE BARRIER

In this section, we consider an external potential barrier,
which is moving around the system in discrete steps with
jump length l and waiting time τ . The waiting time τ is
the residence time during which the barrier stays put at a
particular position and then jumps instantaneously to another
position, l distance away, along a particular direction (say,
counterclockwise). Therefore, the barrier moves with an ef-
fective velocity v = l/τ along the ring with a time period
τc = L/v. One could vary both l and τ , but in most of the
cases we study here, we fix the jump length at l = 4 (where,
as discussed later, negative current contribution is significant)
and vary waiting time τ to obtain data for different barrier
velocities v.

The system reaches a time-periodic steady state with pe-
riod τc and there appears a traveling density wave moving
along the ring with a velocity v. In Fig. 7(a), we have plotted,
for different values of global density ρ0, the local particle
density of the system as a function of distance from the barrier
position, measured at a particular time when the center of
the barrier is about to jump to the next location. The spatial
structure of traveling wave is quite similar to that in Fig. 3
and in the previously studied lattice version of the model [29],
except that now there are oscillations behind the center of
the barrier over large length scales. The wavelength of these
oscillations is determined by the jump length l. The magnitude
of the oscillations is small when ρ0 is too low or too high. For
intermediate ρ0 values, the oscillations are most pronounced.
Unless stated otherwise, we work with ρ0 = 0.5 from now on.
To the right of the barrier position, there is a density peak,
which is followed by a density trough at the center of the
barrier. In Fig. 7(b) we plot the density profile for different
values of barrier speed v and find that, as v increases, the peak
and trough become less prominent since the barrier spends
less time at a particular position for large v. Even after the
barrier has jumped to a new position, the peak and trough
created around its old positions, persist for some time before
diffusion homogenizes them. This gives rise to a trail of peak
and trough pairs of varying magnitudes along the path of the
barrier. This explains why the above-mentioned oscillations
in the density profile are observed only behind the barrier and
not in front of it.
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FIG. 7. Driving protocol (ii). (a) Local particle density
ρ[x − x0(t )] as a function of distance from the barrier position x0(t ),
at a particular time when the center of the barrier is about to jump to
the new location. The different global density ρ0 values are shown
in the legends and we have used here v = 10. (b) Density profile
ρ[x − x0(t )] for different barrier velocity v = 3 (red continuous
line), 8 (blue dashed line), 15 (magenta dotted line), and 25 (black
fine dotted line). In all cases, temperature T = 1 and barrier strength
V0 = 10.

To study how the particle current J is affected by discrete
jump of the potential barrier, we plot in Fig. 8 the variation of
J with barrier speed v for different values of the jump length
l. As explained in the beginning of this section, we vary v

by holding l fixed and changing τ . Our data in Fig. 8 show
that, for small values of l, current remains positive for all v.
This is consistent with our finding in the previous section,
since one expects to retrieve the results for continuous barrier
movement in the limit of small l. However, as l increases,
we find J becomes negative for a certain v range, before
vanishing for large v. In other words, for particles moving
in continuum, acted upon by an external potential moving in
discrete jumps, the particle current J shows a positive peak for
smaller v values and a negative peak for larger v values, just
as found in [29,30] for a lattice model. Our data also shows
that the negative peak of J is most pronounced for l = 4. For
jump lengths much larger than this, the overall magnitude of
J goes significantly down and the positive as well as negative
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FIG. 8. Driving protocol (ii). Particle current J is plotted as a
function of effective barrier velocity v = l/τ by varying the waiting
time τ for fixed values of jump lengths l. The largest magnitude of
negative current is observed for jump length l = 4. Here, we have
used barrier height V0 = 10 and temperature T = 1.

peaks become rather small. Since we are mainly interested in
the negative part of J , in the remaining part of this section,
we keep l fixed at the value 4, and investigate how other
parameters in the system affect the negative J .

In Fig. 9 we show the variation of particle current J as
a function of particle density ρ0 for different values of v.
Negative J is observed for smaller values of ρ0. The current
shows a negative peak, followed by a positive peak, whose
positions and height depend strongly on v. For a fixed jump
length l = 4, as v is increased by decreasing the residence
time τ , we find that the negative peak shifts to higher values
of ρ0 and its height also increases, whereas the positive peak
becomes less and less pronounced for large v. In Fig. 10,
we plot J as a function of v for different potential strengths
V0 [panel (a)] and different temperatures T [panel (b)]. Both

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0  0.2  0.4  0.6  0.8  1

J

ρ0

v=5
v=7

v=10
v=15
v=20

FIG. 9. Driving protocol (ii). Particle current J is plotted as a
function of global density ρ0 for different barrier velocities v = 5
(red pluses), 7 (green crosses), 10 (blue asterisks), 15 (magenta open
boxes), and 20 (cyan filled boxes), with temperature T = 1 and
barrier strength V0 = 10 fixed.
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FIG. 10. Driving protocol (ii). Particle current J is plotted as
a function of barrier velocity. In panel (a), we have used different
values of barrier strengths V0 = 5 (red pluses), 10 (black crosses),
15 (blue asterisks), and 20 (magenta open boxes) and T = 1. In
panel (b), the curves correspond to different temperatures T = 1 (red
pluses), 1.5 (green crosses) and 2 (blue asterisks) while V0 = 20.0.
In all cases, we take global density ρ0 = 0.5 and jump length l = 4.
In the inset of panel (b), we show J ∼ 1/L scaling for v = 3 (red
plus points) and v = 25 (blue asterisk points) taking T = 1.0 fixed.

the panels show that the particle current has a positive peak,
followed by a negative peak. Not surprisingly, the height of
these peaks and indeed the overall magnitude of the current
decrease (increase) as the temperature (potential strength)
increases. In the inset of Fig. 10(b), we plot the current
as a function of the inverse of the system size L. Clearly,
the current decays as J ∼ 1/L, which is expected as the
current is generated locally around the barrier, through density
relaxation, and the barrier comes back at a particular point
after a time period L/v. Most importantly, our data in Figs. 9
and 10 clearly show that, when the global number density ρ0 is
small and/or the barrier velocity v is large, the system supports
a negative current.

The dimensional analysis presented in the previous section
regarding the scaling properties of J , remains valid in the case
of discrete barrier movement as well. Therefore, we expect the
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FIG. 11. Driving protocol (ii). (a) Scaled current J/T is plotted
as a function of scaled barrier velocity v/T for different values
of barrier strength V0 and temperature T with keeping V0/T = 10
fixed. (b) Scaled current J/T is plotted as a function of scaled barrier
strength V0/T for fixed v/T . Upper curve is for v/T = 3 and the
lower curve is for v/T = 25.

following scaling form for J :

J

T
= f2

(
ρ0,

v

T
,
V0

T

)
, (6)

where the scaling function f2 is naturally expected to be
different from f1 appearing in Eq. (5). In the top panel of
Fig. 11(a) we plot scaled current J/T as a function of scaled
barrier velocity v/T , keeping scaled barrier strength V0/T

fixed. We find a quite good scaling collapse. In Fig. 11(b), we
plot J/T as a function of V0/T by keeping v/T fixed at two
different values. As expected, the sign of current is negative
when v/T takes a large value.

As mentioned before, the particle current is essentially
diffusive in nature and can be understood from the structure of
the density profile as in our previously studied lattice model in
Refs. [29,30]. To validate the mechanism behind the current
reversal, as described in the introduction, we study density
relaxation by tagging particles behind and in front of the
barrier. During the waiting time τ , the barrier remains static
and the contributions to positive (anticlockwise) and negative
(clockwise) currents arise mainly due to the movement of
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FIG. 12. Driving protocol (ii). The space-time trajectories of
particles around the barrier x0(t ). Different colors have been used to
show the trajectories of different particles. The tags of the particles
are changed, each time the barrier jumps. Here we have used v = 3
(top panel) and v = 25 (bottom panel). The other parameters are set
at l = 4, V0 = 10, and T = 1.0 for both plots. τ0 = a2/D is diffusive
time unit.

particles to the right and the left of the peaks along the down-
hill slopes of the density profile, i.e., from the peaks to the
troughs. Below we explicitly study the space-time trajectories
of several particles around the barrier and explicitly measure
the current contributions to the right and the left of the barrier.

The top panel in Fig. 12 corresponds to a slow barrier
movement (v = 3) and the bottom panel corresponds to a fast
barrier movement (v = 25). Every time the barrier moves, the
tag of each particle is changed such that for each position
of the barrier, the trajectories of all particles within a certain
distance from the barrier are shown. We have used different
colors to depict the trajectories of different tagged particles.
As seen from these trajectories, the particles which are to
the right of the barrier show a net rightward displacement
and those on the left side of the barrier show a net leftward
displacement. This is expected since the particles always tend
to move away from the potential barrier. In other words,
contribution to the particle current is positive (negative) for
those particles on the right (left) of the barrier. To verify this,
we explicitly measure current J1 (J2) averaged over a region
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FIG. 13. Driving protocol (ii). (a) The positive and negative
components of the current as a function of barrier velocity. The red
points correspond to jump length l = 2 and blue points correspond
to l = 4. The positive current J1 is shown by box symbols and the
negative current J2 by circles. (b) Comparison between total current
J and sum of J1 + J2 as a function of v. The red points are for l = 2
and blue points are for l = 4. The solid squares represent total J and
hollow triangles represent J1 + J2.

on the right side (left side) of the barrier. In Fig. 13(a) we plot
J1 and J2 as a function of v and, as expected, J1 is always
positive and J2 remains always negative. The total current
J is approximately the sum of these two contributions. In
the bottom panel of Fig. 13, we compare J1 + J2 with the
total current J and find qualitatively quite similar behavior
between the two quantities. The observed difference between
the two quantities is presumably due to the averaging over
particles in a limited region around the barrier. From the above
analysis, it follows therefore that the negative current arises
when magnitude of J2 exceeds that of J1. Comparing with
the density profile as in Fig. 7(b), we also observe that the
negative contribution J2 takes a large magnitude if the jump
length l is such that, after each jump, the barrier lands just
at the right of the density peak that was created around its
old position. This is expected since there are more particles
contributing to J2 in this situation. The excess density, which
is now at the immediate left of the new barrier position, will
relax by filling up the density trough created at the old barrier

position and, due to the large density gradient present in this
region, the corresponding diffusive current (which is negative
in this case) will have a large magnitude, leading to a net
negative current in the system.

This mechanism is quite similar to the one in the lattice
model studied in Ref. [29], for which current was calculated
analytically within a mean-field theory. However, an analyt-
ical calculation in a continuum system, especially when the
barrier jumps in discrete time steps, as considered in this
paper, turns out to be more challenging.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied a set of driven colloidal parti-
cles interacting with each other via short-ranged potential and
experiencing an externally applied potential barrier that moves
around the system with a fixed (average) velocity. We find that
the presence of an external time-periodic drive gives rise to
a traveling wave density profile in the system that moves with
the same velocity as that of the potential barrier. However,
the particle current that flows through the system depends
strongly on the specific protocol of barrier movement. When
the barrier moves continuously with velocity v, the current
always flows in the direction of the barrier movement. But
when the barrier moves through the system in discrete jumps,
then it is possible to have current flowing in the opposite
direction. In both cases we find a scaling form for the current
as a function of barrier height and barrier speed, scaled by
system temperature.

In a recent study [32], a similar system was consid-
ered where colloidal particles under a sinusoidally varying
traveling-wave potential were shown to support a current
that only flows in the direction of the traveling wave. Al-
though a lattice model version of the system was studied in
Ref. [27] where negative current was found, it was concluded
in Ref. [32] that, for particles moving in continuum, it may
not be possible to have a negative current. But our present
work shows that, even in continuum, a negative current can
be obtained, if the potential moves in discrete jumps in the
system. Our study demonstrates that a naive extension of a
lattice model to continuum may not always reproduce the
qualitative features of particle transport observed in the origi-
nal lattice model. This is because the lattice spacing implicitly
introduces a length scale, which could be important in the
problem as the phenomenon of current reversal happens due to
the local diffusive relaxation of density. In our work, by using
the driving protocol (ii), we incorporate an additional length
scale in the system in the form of a jump length of the moving
barrier. We have demonstrated that the jump length indeed
plays a crucial role in the phenomenon of current reversal.
The conclusions of this paper, which support the mechanism
of current reversal described above, are also consistent with
our earlier work on a lattice model studied in Refs. [29,30].

Finally, it would be quite exciting to verify some of our
conclusions in experiments. Recently, it has been possible to
experimentally realize a monolayer of interacting colloidal
particles in a quasiperiodic potential [11,34] whose ampli-
tude was periodically modulated in time. The motion of the
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colloidal particles was studied in the presence of a driv-
ing force acting laterally on the monolayer and interesting
effects such as dynamical ordering [11], Shapiro-step-like
dependence of particle velocity on applied force [34] has
been observed. Our conclusions can be tested in a similar
experimental set up where colloidal particles are trapped in
a one-dimensional channel and then, by using the driving
protocol discussed in this paper, it would be quite interesting
to see if a current reversal can be observed in a real system.
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