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Zipf’s law is a hallmark of several complex systems with a modular structure, such as books composed
by words or genomes composed by genes. In these component systems, Zipf’s law describes the empirical
power-law distribution of component frequencies. Stochastic processes based on a sample-space-reducing (SSR)
mechanism, in which the number of accessible states reduces as the system evolves, have been recently proposed
as a simple explanation for the ubiquitous emergence of this law. However, many complex component systems
are characterized by other statistical patterns beyond Zipf’s law, such as a sublinear growth of the component
vocabulary with the system size, known as Heap’s law, and a specific statistics of shared components. This
work shows, with analytical calculations and simulations, that these statistical properties can emerge jointly
from a SSR mechanism, thus making it an appropriate parameter-poor representation for component systems.
Several alternative (and equally simple) models, for example, based on the preferential attachment mechanism,
can also reproduce Heaps’ and Zipf’s laws, suggesting that additional statistical properties should be taken into
account to select the most-likely generative process for a specific system. Along this line, we will show that the
temporal component distribution predicted by the SSR model is markedly different from the one emerging from
the popular rich-gets-richer mechanism. A comparison with empirical data from natural language indicates that
the SSR process can be chosen as a better candidate model for text generation based on this statistical property.
Finally, a limitation of the SSR model in reproducing the empirical “burstiness” of word appearances in texts
will be pointed out, thus indicating a possible direction for extensions of the basic SSR process.
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I. INTRODUCTION

A large number of complex systems have a modular struc-
ture. For example, genomes can be viewed as an assembly
of genes, written texts are composed of words, and several
manmade systems, such as softwares or LEGO toys, are built
starting from basic components. Systems with this modu-
lar structure can be described using the general framework
of component systems [1]: an ensemble of realizations (e.g.,
genomes, books, LEGO toys) that are simply defined by
the statistics of their elementary components (genes, words,
LEGO bricks). One of the prominent and ubiquitous features
of these complex component systems is a high level of hetero-
geneity in the usage of components. Typically, the component
abundances follow the famous Zipf’s law. This statistical law
was first observed in different contexts [2–4], and then ex-
tensively studied mainly in quantitative linguistics [5–8], and
essentially refers to the empirical fact that word abundances
in a written text scale as a power law of the word rank, i.e.,
the position in the list of words sorted by their abundances.
Moreover, the exponent is usually close to −1. An analogous
behavior has been observed in a huge variety of other com-
plex systems [9,10], from genome composition [11], to firm
sizes [12].
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Several possible theoretical explanations have been pro-
posed for the “universal” emergence of Zipf’s law [9,10].
Stochastic growth with a preferential attachment mechanism,
i.e., frequent components have higher probability to further
increase their frequency, naturally leads to a power-law distri-
bution of component abundances. This rich-gets-richer mech-
anism is at the basis of many stochastic models introduced
to describe different component systems such as the Yule-
Simon’s model [13,14] and its different variants introduced
in linguistics [15,16], the Chinese restaurant process [17],
different models based on the Polya’s urn scheme [18–20] or
on a duplication-innovation dynamics [21].

Zipf’s law has also been interpreted as a sign of critical
behavior, leveraging on the general correspondence between
the emergence of power-law statistics and criticality in sta-
tistical mechanics [22]. Following this analogy, the ranked
probabilities of the microstates can be identified with Zipf’s
law, and a power law is expected if the system is close
to a critical point. This critical state could also emerge as
a dynamical consequence of local interactions and without
the need of fine tuning as in the self-organized-criticality
framework [22–24].

Without invoking criticality, some models instead try to ex-
plain the widespread emergence of Zipf’s law from an entropy
maximization principle in the general process of partitioning
of elements into categories (or balls into boxes), such as
the the random-group-formation [25] or by consideirng the
entropy maximization of the log-frequency distribution [26].
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Other mechanisms for the generation of power-law ranked
statistics are based on the idea that components have spe-
cific networks of dependencies and that these relations deter-
mine their co-occurence in a realization [27,28]. Furthermore,
Zipf’s law can be generated via a general random transport
processes [29], or by looking at the record statistics of a very
large sequence of positive independent-identical distributed
random variables [30,31].

More recently, an interesting and simple alternative route
for the emergence of Zipf’s law has been proposed [32]. The
candidate mechanisms is based on a sample-space-reducing
(SSR) process in which the number of accessible states gets
smaller as the process dynamics unfolds, defining a “history-
dependent” random process. In the perspective of component
systems, the SSR process translates into a stochastic growth
process in which the number of possible components that can
be added to a realization progressively reduces as the real-
ization grows. The composition of a text of natural language
has been used as an illustrative example [32,33]. Indeed,
in the writing process the usage of a specific word limits
the possible choices for the following word due to semantic
and syntactic constraints. Therefore, the actual number of
accessible components reduces with respect to the full vocab-
ulary as a sentence is progressively formed. The SSR process
provides a minimal (parameter-poor) description for all sys-
tems characterized by this reduction of the state space dur-
ing evolution and can naturally and robustly generate Zipf’s
law [32,34].

However, Zipf’s law is not the only statistical regularity
that is ubiquitously found in empirical complex component
systems. A realistic candidate generative model for these
systems (e.g., for natural language) is expected to reproduce
all these statistical patterns jointly. Therefore, it is necessary
to fully characterize the theoretical predictions of the SSR
mechanism with respect to these other statistical properties
of component systems and compare them with the known
empirical trends. A clear theoretical understanding of the
model predictions can also make the SSR model an effective
simple “null model” that can be used to disentangle in empir-
ical datasets general statistical effects due to the state-space
reduction (the main model assumption) from system-specific
features due to functional or architectural constraints. The
general purpose of this work is precisely to fully characterize
the statistical properties beyond Zipf’s law emerging from the
SSR mechanism. In particular, we will focus on the statistical
features of empirical systems that are detailed below.

A statistical regularity that is often observed in component
systems displaying a Zipf’s law is Heaps’ law. This law
describes the sublinear growth of the number of different com-
ponents (i.e., the observed vocabulary) with the system size
(i.e., the total number of components), and has been observed
in several empirical systems from linguistics to genomics
[8,35–39]. In models based on equilibrium ensembles, such
as the random-group-formation model [25], the vocabulary
is typically a fixed parameter, thus this scaling cannot be ad-
dressed straightforwardly. However, stochastic growth models
based on preferential attachment can be easily extended by
introducing a rate of arrival of new components conveniently
chosen to capture the empirical Heaps’ law [15,16,20,39].
The first question we will address is whether Heaps’ law can

naturally emerge from the SSR mechanism and what is its an-
alytical form depending on the model parameters (Sec. III A).

Moreover, Zipf’s and Heaps’ law are not in general inde-
pendent. In fact, models that build realizations using a simple
random sampling of components with relative abundances
given by the Zipf’s law naturally predict Heaps’ law, and
a precise relation between the exponents of the two power-
law behaviors [40–45]. A basic assumption of the random
sampling procedure is the complete independence between
components, and thus the absence of correlations. This as-
sumption is in principle violated by the SSR process that could
introduce temporal correlations between components due to
the temporal evolution of the state-space. We will address the
question of the relation between the Zipf’s and Heaps law ob-
tained by the SSR model by analytical calculations and simu-
lations and test whether the effect of possible correlations can
actually be observed in the Heaps-Zipf relation (Sec. III A).

In addition to Heaps’ and Zipf’s laws, a relevant statis-
tical property of component systems is the distribution of
shared components [1]. This statistics describes the number
of components that are in common to a certain number of
realizations, for example, the number of words that are in
common to a certain number of books. This system property
is captured by the distribution of occurrences, defined as the
fraction of realizations in which a component is present. A
rare component (small occurrence) appears in a small fraction
of realizations, while a common or core component (high
occurrence) is present across essentially the whole ensemble
of realizations. The distribution of occurrences is well studied
in genomics, where the occurrence distribution of the basic
components (genes or protein domains) has a peculiar U
shape [46–48]. This means that there is large number of
core and very rare genes with respect to genes shared by
an intermediate number of genomes. At the same time, the
distribution behavior for small occurrences is well captured
by a power-law decay [48]. This pattern has gained large
attention in the field because of its robustness and generality
across taxonomic levels, giving rise to questions about the
evolutionary mechanisms at the basis of its origin [49,50].
Recently, we have extended the analysis of this statistical
property to component systems from linguistics and techno-
logical systems [1] and we showed how a random-sampling
model that assumes Zipf’s law can capture several features of
empirical occurrence distributions.

Here, we will study the occurrence distribution that can be
obtained from an ensemble of realizations built with the SSR
process (Sec. III B). In particular, we will show that the SSR
model is a good candidate generative model for component
systems as it can jointly reproduce Zipf’s law, Heaps’ law, and
the statistics of shared components often found in empirical
systems. Classic models based on preferential attachment,
such as Simon’s model [15,16] or the Chinese restaurant
process [39], can reproduce Heaps’ and Zipf’s law but cannot
be used to study statistical properties across different real-
izations, such as the occurrence distribution. In fact, in these
models the components in a realization are only characterized
by their occupation number (their abundances) and are not
labeled in any other way. Therefore, there is no natural way
to compare the presence or absence of a specific component
across independent realizations.
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Moreover, there is another critical point of preferential
attachment models, especially as models of text generation.
In fact, by construction, the components that are selected at
the beginning of a realization are expected to show a higher
abundance with respect to the one selected at the end [25,51].
This is a natural consequence of preferential attachment, since
there is a higher probability of reusing components that are
present for longer times. However, this bias is typically not
observed in empirical texts [51], as we will further test with
an illustrative example. The question is if the SSR model
also suffers from an analogous bias or if it can represent a
more realistic simple generative model for texts. To tackle
this question, we will introduce a measure of asymmetry in
the temporal (or positional) component distribution and use
it to analyze how components of different frequencies are
distributed along a realization in the SSR model in comparison
with results from a model based on preferential attachment
(Yule-Simon’s model), and with empirical data (Sec. III C).

Finally, a nontrivial correlation pattern in the word oc-
currences have been observed in natural language, and have
been interpreted as an emergent consequence of the language
communication purpose, in which complex ideas and con-
cepts have to be projected into a one dimensional sequence of
words [52–55]. This correlation pattern can be quantified by
looking at the inter-occurrence distance between words, which
is highly nonrandom in data [45,52]. We will analyze this
quantity for realizations of the SSR model (Sec. III C) show-
ing that, in this case, the model cannot reproduce the empirical
trend. This discrepancy suggests a possible direction to extend
the basic formulation of the SSR model to fully reproduce the
complex correlation properties of natural language.

II. METHODS

A. Definition of the sample-space-reducing process (SSR)

The basic sample-space-reducing (SSR) process [32] is de-
fined as follows. A sample space V is composed by N possible
states which are labeled and ordered {N, . . . , 1}. A stochastic
process is defined over this sample space. At the first time
step, one of the states is randomly chosen, for instance the
state k. At the following time step, only the last k − 1 states
are accessible, i.e., the subset {k − 1, . . . , 1}, and the process
selects one of them with uniform probability. The procedure is
iterated, while the sample space progressively reduces at each
iteration, until the “cascade” ends with the obligated selection
of state 1. After hitting the final state 1, the process can be
restarted with again N accessible states with equal visiting
probability. We denote this process as φM , where M indicates
the final time step or equivalently the total number of visited
states (with their multiplicity). During the growth process,
the partial time is indicated with m, m ∈ [1,M]. Therefore,
φM generates a realization r of size M as a specific ordered
sequence of visited states r = (x1, . . . , xM ) with xi ∈ V . To
translate this general procedure into a concrete example of
a component system, a realization r can be visualized as
a text of natural language. The SSR process composes the
text by adding at each time step m a word xm among the
possible N word types in the dictionary. An ensemble of R

realizations can be built as the result of R independent runs

of this stochastic process, specifying the final time steps/sizes
{M1, . . . ,MR}.

The basic SSR assumption is that the choice of a word
restricts the space of the possible words than can follow it for
semantic or structural reasons [33], at least for the duration of
a cascade. The definition of the SSR process implies a visiting
probability of state i that follows Pi = i−1 [32]. This naturally
translates, for sufficiently long times M (or equivalently for
large realization sizes), into an average occupation frequency
fi described by the well-known Zipf’s law fi ∝ i−1. Here,
fi corresponds to the normalized number of times that com-
ponent i has been used in a realization of given size M , i.e.,
fi = ∑m=M

m=1 δxm,i/M for all possible states i = 1, . . . , N .
The SSR process can be generalized by adding a multi-

plicative process to obtain a visiting probability that follows a
power law with arbitrary exponent [56]. This generalization is
schematically depicted in Fig. 1. At the first iteration μ balls
are randomly thrown over a sample space V of N possible
states. Thus, μ states {x1, . . . , xμ}, with xk ∈ {N, . . . , 1}, are
independently selected with uniform probability among the N

possible ones. At the next time step, each of these μ balls gen-
erates again μ balls that can only fall into states with a lower
label, following the SSR prescription. For example, a ball in
state k generates μ balls that can only bounce on the k − 1
still accessible states. When a ball reaches the final state 1, it is
removed from the process. Eventually, all the generated balls
will reach this final state, thus completing the cascade. The
process can then restart with μ balls that can randomly choose
among the N states. We denote this generalized process as
φ

μ

M , where M is the number of visited states (or the realization
size) and μ is the free parameter of the multiplicative process.
In general, for large realizations M � 1, the number of times
the state i is selected by φ

μ

M is simply proportional to i−μ [56],
thus generalizing the classic Zipf’s law.

The process is not only defined for integer values of μ.
In fact, in general, the number of new balls can be extracted
from a distribution (that has to be defined) with average
μ. In the following, we will consider a Poisson distribution
with average μ. However, we checked numerically that the
generalized Zipf’s law [56], as well as the results we will
present for the Heaps’ law and for the statistics of shared
components do not change if a constant (i.e., no variance) is
used for the case of integer μ, or if the different prescription
presented in Ref. [56] for noninteger μ values is adopted.

III. RESULTS

A. The SSR process naturally generates a sublinear scaling
of the number of different components with the realization

size (Heaps’ law)

Every text of natural language presents a natural ordering
of words defined by the reading and writing process from
the first m = 1 word to the end of the text at m = M . For
all component systems whose realizations have this temporal
ordering of components, it is possible to evaluate over a single
realization how the number of different components h grows
with the realization size m as given by the total number of
components used. In other words, h(m) represents how the
size of the vocabulary grows with the text length m. This
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Sketch of the SSR process, =2, N=8

12345678

(b) Component statistics of the realization

FIG. 1. Schematic representation of the sample-space-reducing
(SSR) process. (a) At the first step, all the N labeled states are
accessible, and μ balls (the μ = 2 red balls in the example) select
among them with uniform probability. At the next step, each ball
divides into μ new balls, which jump to states labeled with an index
lower than the one of the starting state. In the illustrated example, the
red ball in state 4 splits into two green balls that can only jump to
states {3, 2, 1}. When a ball reaches state 1, it is removed from the
process. Finally, all existing balls will reach this state, thus ending
a “cascade.” The process then restarts with μ balls thrown over the
sample space as in step 1. The SSR process can be interpreted as
a stochastic growth process in which the visited states represent
components (e.g., words) that are progressively added to a realization
(e.g., a book). Therefore, the component statistics of a realization of
size M corresponds to the statistics of visited states of the process
φ

μ

M , as depicted in panel (b).

quantity can be formalized as

h(m) =
N∑

i=1

1[i ∈ r (m)], (1)

FIG. 2. Zipf’s law and Heaps’ law from the SSR model. Panel
(a) shows the rank plot of the component frequencies for four
realizations of the SSR model with different values of μ. Section II A
presents in detail the model definition. The simulations confirm the
theoretical expectation in Eq. (2): the power-law exponent is simply
defined by the value of μ. Panel (b) shows that the number of differ-
ent components h(m) grows sublinearly with the realization size. For
each parameter value, four independent trajectories are reported to
give a qualitative idea of the small dispersion around the average. All
trajectories saturate to the asymptotic value h(m) = N (black dotted
line), where N is the second free parameter of the model setting the
total number of possible components or the vocabulary size. Here,
N = 104 for all simulations. The black dashed lines represent the
analytical expression in Eq. (5). The good overlap with simulations
indicates that this analytical approximation can well reproduce the
Heaps’ law generated by a SSR process.

where 1 is the indicator function, which is 1 if argument is true
and 0 otherwise, and r (m) = (x1, . . . , xm) is the sequence of
the first m components in the realization r . Therefore, given a
realization size m, h(m) simply counts the number of different
components of the vocabulary that have been actually used in
a specific realization r (m). As discussed in the Introduction,
in several empirical systems this quantity follows on average
a sublinear and approximately power-law function 〈h(m)〉 ∝
mν (with ν < 1), known as Heaps’s law [8,20,35–39]. Each
run of the SSR process also generates an ordered sequence of
components (or visited states), and the question is what is the
predicted scaling of h(m) for this stochastic process.

Figure 2(a) reports the rank plots of the component fre-
quencies for different realizations of the SSR process φ

μ
m with

different values of the parameter μ. As expected [32,56], they
all follow Zipf’s law,

p(i) = i−μ

α
α =

N∑
i=1

i−μ, (2)

with a power-law exponent defined by μ.
At the same time, Fig. 2(b) shows the corresponding scal-

ing of h(m), which increases sublinearly, with a steepness
dependent on μ, before saturating at the asymptotic value
h(m) = N defined by the total finite number of possible
states. Therefore, the behavior is qualitatively compatible with
the empirical Heaps’ law suggesting that the SSR process can
be a good generative model for both Zipf’s and Heaps’ laws.

To characterize analytically the sublinear growth of h(m)
and the precise relation between the two laws in Fig. 2, we
introduce an approximation that neglects the possible corre-
lations that the SSR process can introduce. As an example
of possible correlations inherent to the SSR process, consider
the case of φ

(μ=1)
M , thus with just one ball in the scheme of
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Fig. 1. The sequence of components selected during a single
cascade is strictly decreasing, implying that on the time scale
of a cascade (which on average last approximately log N [32])
correlations between sites are present. Whether correlations
in SSR process are actually sufficiently strong to generate
deviations from the behavior of h(m) that can be predicted
by neglecting them will be evaluated a posteriori.

If correlations are neglected, a realization of the SSR
process can be approximated by assuming that at each time
step a component is independently drawn with an extraction
probability defined by the visiting probability in Eq. (2).
This approximation defines a random sampling process with
replacement from a fixed number of possible components N .

Similar approaches based on random sampling have been
previously used to establish the statistical link between Zipf’s
law and Heaps’ law in quantitative linguistics [40–42,45]. For
example, a Poisson process with arrival rates of different com-
ponents described by Zipf’s law has been used to compute the
sublinear vocabulary growth [42]. Similarly, Heaps’ law has
been computed from models based on independent compo-
nent extractions with [40] or without [45] replacement, where
extraction probabilities were defined by a given (power-law)
distribution. Our starting assumptions are analogous to the
one presented in Ref. [40], i.e., a random extraction process
with replacement from a power-law Zipf’s law. However, we
will consider the general case of a finite number of possible
components N , as prescribed by the SSR process we want
to approximate, while Ref. [40] focuses on the asymptotic
behavior of Heaps’ law in the limit of N → ∞. In general,
previous results will be recovered as specific limiting cases of
our framework.

Using the assumption of independent extractions, we can
write the probability of choosing for the first time the compo-
nent i at the step m as

[1 − p(i)]m−1p(i).

This implies that the component i is selected at least one time
after m steps with probability

qm(i) =
m∑

l=1

[1 − p(i)]l−1p(i) = 1 − [1 − p(i)]m. (3)

Therefore, the average value of the number of different
components, i.e., the expectation for the Heaps’ law, can be
expressed as

〈h(m)〉 =
N∑

i=1

qm(i) = N −
N∑

i=1

(
1 − i−μ

α

)m

. (4)

This expression is obtained from Eq. (1) by noticing that
〈1[i ∈ r (m)]〉 = qm(i). In fact, for a sampling process the
indicator function defines a Bernoulli process which is 1 with
probability qm(i) and 0 otherwise. The expectation values of
this Bernoulli process is precisely qm(i). The above implicit
expression is equivalent to the one presented in “Lemma 1” of
Ref. [40]. To get explicit and more intuitive predictions from
Eq. (4), some relevant limiting cases can be considered. We
start by looking at the regime of large realization sizes m � 1.
In this regime, the only relevant terms in the summation are
those that satisfy i−μ/α 	 1. Under such a condition, we can

take advantage of the logarithm first-order approximation:(
1 − i−μ

α

)m

= exp

[
m log

(
1 − i−μ

α

)]
≈ exp

(
−m

i−μ

α

)
.

Substituting all the addends with these exponential forms, and
approximating the summation with an integral, one obtains

〈h(m)〉 ≈ N −
∫ N

1
di exp

(
−m

i−μ

α

)
.

This last expression can be evaluated with the change of
variables z = mi−μ/α and by making use of the definition
of the upper incomplete γ function �(n, t ) = ∫ ∞

t
e−xxn−1dx,

thus obtaining the following expression:

〈h(m)〉 ≈ N − 1

μ

(
m

α

)1/μ

�

(
− 1

μ
,

m

Nμα

)
. (5)

Note that, even though the special function is defined for a
positive first argument, it can be extended to negative values
by analytic continuation. Figure 2(b) shows an extremely
good overlap between the prediction of Eq. (5) and simula-
tions of the SSR process. This good agreement suggests that
the Heaps-Zipf relation defined by a random sampling model
with no correlations between components is also satisfied by
the SSR model. Therefore, correlations present in the history-
dependent process do not affect significantly the average
behavior of the vocabulary growth with the realization size.

A deeper characterization of how the SSR parameters can
affect Heaps’ law can be obtained by looking at some other
limiting cases of Eq. (5). First, we analyze the dynamical
approach to saturation. Given that the total number of pos-
sible states N is finite in the SSR process, in the long run
(m → ∞) all realization will reach the horizontal asymptote
〈h(m)〉 = N . However, the model-parameter values determine
the dynamics of this approach to saturation. Indeed, Fig. 2(b)
shows that by decreasing μ the systems discovers new states
more quickly, thus making the Heaps’ law steeper. This obser-
vation can be made quantitative by approximating the gamma
function in Eq. (5) with its asymptotic series for m � αNμ.
This approximation leads to the expression

〈h(m)〉 ≈ N

[
1 − 1

μ

αNμ

m
exp

(
− m

αNμ

)]
. (6)

This exponential form shows that the time scale (or equiva-
lently the size scale) for saturation is defined by the quantity

m̃ = αNμ. (7)

When the realization size is larger than this scale, i.e., m �
m̃, essentially all the different states have been visited and
〈h(m)〉 ≈ N . As expected, the time scale of saturation is
defined by the total number of states, but the velocity of the
exploration of those states depends on the exponent of the
Zipf’s law.

The opposite regime of m 	 m̃ represents Heaps’ law at
the beginning of the growth process. Note that Eq. (5) was
derived in the limit of m � 1, therefore N have to be chosen
sufficiently large to satisfy both conditions. In this case, the
gamma function can be reformulated using its recurrence
relation �(n + 1, t ) = n�(n, t ) + tne−t . Moreover, the upper
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gamma can be expressed as the difference between the classi-
cal Euler gamma and the lower incomplete gamma function,
thus obtaining the following expression:

〈h(m)〉 ≈ N

{
1 − exp

(
m

m̃

)
+

(
m

m̃

)1/μ[
�

(
1 − 1

μ

)

− γ

(
1 − 1

μ
,
m

m̃

)]}
,

where γ (n, t ) = ∫ t

0 e−xxn−1dx. Applying the limit m
m̃

→ 0
and approximating the exponential function and the lower
gamma to the first order, i.e., γ (n, t ) → tn/n, we have

〈h(m)〉 ≈ N

[
m

m̃

1

1 − μ
+

(
m

m̃

)1/μ

�

(
1 − 1

μ

)]
.

This expression indicates that the asymptotic behavior for
m 	 m̃ crucially depends on μ. When μ < 1, the second term
is negligible with respect the first one, while the opposite is
true if μ > 1. The case μ = 1 is singular but can be evaluated
integrating by parts Eq. (5) and using the definition of the
exponential integral function, E1(z) = ∫ ∞

z
e−xx−1dx, and its

asymptotic expansion.
We can summarize the results for Heaps’ law in the far-

from-saturation regime (m
m̃

→ 0) as

〈h(m)〉 ≈

⎧⎪⎨
⎪⎩

(m(μ − 1))1/μ�
(
1 − 1

μ

)
for μ > 1

m
ln N

ln
(

ln NN
m

)
for μ = 1

m for μ < 1

, (8)

Here, we used the explicit expressions for the normalization
factor α, which is present in definition of the size scale m̃

[Eq. (7)]. Using an integral approximation of the sum in
Eq. (2), this factor is α ≈ 1/(μ − 1) for μ > 1, α ≈ ln N

for μ = 1, and α ≈ N1−μ/(1 − μ) for μ < 1. The expression
above fully characterizes the different growth regimes of
the number of visited states for the SSR process when the
realizations are much smaller than the sample space, which
is often the case in empirical systems such as texts of natural
language. The presence of a transition between a linear growth
regime for μ < 1 to a sublinear power-law behavior for μ > 1
is in agreement with a derivation of Heaps’ law from a Poisson
growth process assuming Zipf’s law [42].

In conclusion, the SSR model can jointly reproduce Heaps’
and Zipf’s law, and the link between the two laws can be safely
calculated by neglecting correlation in the stochastic process.

B. The statistics of shared components from an ensemble
of realizations of the SSR process

As anticipated in the Introduction, the SSR process pro-
vides an ideal framework to investigate statistical patterns of
components across different realizations. In fact, given a fixed
sample space with N states labeled from N to 1, it is possible
to analyze how many states or components are shared by R

independent realizations of the process φ
μ

M . In other words,
the occurrence distribution p(o) can be computed, where the
occurrence o of a state (or component) is defined as the frac-
tion of realizations in which the state has been selected. Three
examples (for three μ values) of occurrence distributions
obtained from an ensemble of SSR realizations are shown

FIG. 3. Component occurrence distribution from a SSR process.
The first panel (a) shows the component occurrence distribution
for three ensembles of R = 1000 realizations of the SSR process.
Each ensemble has a different value of μ, while the other two
parameters describing the size M of realizations and the number N of
possible states are fixed (N = M = 104). The distributions obtained
by numerical simulations are in good agreement with the analytical
predictions of Eq. (10) (dashed black curves). The distribution left
boundaries oleft predicted by Eq. (11) are indicated with vertical
dotted lines. The inset shows that the same distributions in double-
logarithmic scale display a power-law decay with an exponent well
described by Eq. (12). In panel (b) this exponent is estimated for en-
sembles generated by stochastic simulations of the SSR model with
different parameter values: μ values are reported on the x axis, while
M and N values are indicated in the legend. Each dot is obtained
through a least square fit of the occurrence distribution. The fitted
region is defined as [oleft + ε1; oright − ε2], where oleft and oright are the
boundaries defined by Eq. (11). ε1 and ε2 are two positive arbitrary
constants chosen to select the power-law part of the distribution,
thus removing the finite-size cutoff for occurrences near oleft, and
the increasing part on the right-tail of the distribution that defines
the “core” components. The estimated exponents are compared with
the analytical expectation (black dashed line) from Eq. (12), which
is independent of M and N , showing a good agreement.

in Fig. 3(a). All the three curves display the characteristic
U shape often present in empirical data [1,48,50] due to the
presence of a peak at low occurrences and a second peak at
o = 1 defining the “core” components. Moreover, the log-log
representation in the inset of Fig. 3(a) shows that for low
occurrences the trend is well approximated by a power-law
decay.

Also in this case, it is possible to derive analytical expec-
tations for the statistics of shared components by neglecting
possible correlations in the SSR process. This approximation
is again equivalent to a random sampling assumption, in
which realizations are obtained by independent extractions
of components with probabilities defined by the Zipf’s law
generated by the SSR process [Eq. (2)].

Here, the observable we are interested in is the component
occurrence, which is defined by the probability that compo-
nent i is present in a realization of size M as described by
Eq. (3). Therefore, the average fraction oi of the R realizations
in which the component i is present is given by the expression

〈oi〉 = 1

R

R∑
j=1

qM (i) = 1 −
(

1 − i−μ

α

)M

. (9)

Note that here we are considering the most simple case in
which the probabilities qM (i) are identical for each realiza-
tion, i.e., all realizations have the same M and μ. Therefore,
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qM (i) do not depend on the index j and the summation is
trivial. In general, the scenario in empirical systems can be
much more complicated and better described by an ensemble
of realizations with different sizes {Mj }, and coming from
slightly different multiplicative processes, i.e., different {μj }.

The expression in Eq. (9) represents the expected occur-
rence values for a process of random extractions of com-
ponents from a fixed power-law abundance distribution with
exponent μ [1]. Here, we want to test if this formulation can
well approximate the results from a SSR process. More specif-
ically, the analytical formula for the component occurrence
distribution can be calculated [1] as

p(o) = (1 − o)1/M−1

〈h(MR)〉 μMα1/μ.(1 − (1 − o)1/M )1/μ+1
. (10)

This distribution is defined in the interval [oleft, oright], where

oleft = 〈oN 〉 = 1 −
(

1 − 〈h(MR)〉−μ

α

)M

oright = 〈o1〉 = 1 −
(

1 − 1

α

)M

. (11)

Note that 〈h(MR)〉 is the expected number of observed dif-
ferent components in the ensemble, given by Eq. (5) using the
total system size MR.

This analytical expression is compared with simulations of
the SSR process in Fig. 3(a) showing that also for the statistics
of shared components the random sampling approximation
can well reproduce the model results. Also the analytical
expressions of the distribution boundaries in Eq. (11) (vertical
dotted lines) are accurate. For the sake of simplicity, the sim-
ulations were performed close to the saturation regime, i.e.,
with a system size MR is much larger than the critical scale
m̃ = Nμα. This allows to simplify the expression 〈h(MR)〉 ≈
N in Eq. (10), as discussed in the previous section [see
Eq. (6)].

The size scale of saturation m̃ defined by Eq. (7) plays
an important role also in determining the global shape of
the occurrence distribution. In fact, the left boundary in
Eq. (11) close to the saturation regime (for example for a
large number of realizations R, such that MR � m̃) can be
simply expressed as oleft ≈ 1 − exp (−M/m̃). Therefore, the
minimal occurrence coincides with zero only when M 	 m̃.
However, oleft approaches the maximal occurrence 1 if M �
m̃, implying that all the components in the ensemble are
present in all the realizations.

Another characteristic feature of the occurrence distribu-
tion is the power-law decay for rare components reported in
the inset of Fig. 3(a). This behavior can be understood by
looking at the limit o 	 1 and M � 1 in Eq. (10). In fact,
in this limit we have

p(o) ≈ M1/μ

α1/μ μ 〈h(MR)〉 o−1/μ−1. (12)

The expression above gives a very simple prediction for the
exponent of the power-law decay, which depends only on
μ. This prediction is verified in Fig. 3(b), showing that the
derived simple relation linking Zipf’s law and the statistics of
shared components can be safely applied to the SSR process.

C. Temporal dependence of component distributions in the SSR
model, in preferential attachment models, and in empirical texts

of natural language

We have shown that the SSR model can reproduce Zips’s
and Heaps’ law jointly (Sec. III A), making it a good candidate
model for many component systems characterized by these
laws such as texts of natural language. The two free model
parameters μ and N can be estimated directly from data
since N is the total number of components (e.g., the text
vocabulary), while μ can be set to match the empirical Zipf’s
law. This is shown for the illustrative example of Darwin’s
book On the Origin of Species in Fig. 4. The SSR model can
produce a realization of the same size M of the text in analysis
with a similar word abundance statistics [Fig. 4(a)] and, at the
same time, makes a prediction for the vocabulary growth that

FIG. 4. Comparing the SSR model predictions with statistical
patterns from Darwin’s book On the Origin of Species and from
a model based on preferential attachment. The Zipf’s law for the
word frequencies in On the Origin of Species (blue line) is compared
with the corresponding distribution from a SSR process with μ = 1
(green line-dot curve) in panel (a). The number of possible states N

and the realization size M are fixed to match the book’s vocabulary
N = 9 132 and size M = 178 820. With this parameter matching, the
SSR model can also well approximate the empirical Heaps’ laws as
panel (b) shows. Panel (c) focuses on the relative density of words
[Eq. (13)] ρ for words of low and high frequencies. Here, ρ is
computed on a moving window of 104 consecutive words. The model
formulation presented in Ref. [15] is used as implementation of a
Yule-Simon’s process (orange dashed lines), with parameter values
ν = 0.8 and α0 = 0.5 fixed to match the empirical Zipf’s and Heaps’
laws. For low frequency (in the interval f ∈ [10−6, 10−4]) words, the
Simon’s model shows a specific increasing relative density along the
book (left plot), while the density decreases for high frequency words
(f ∈ [10−3, 10−1]). Finally, panel (d) displays the inter-occurrence
distance distribution p(τ ), with τ defined by Eq. (14) for k > 1,
and evaluated for all words with total abundances between 2 and
103. The distribution obtained from Darwin’s book (blue line) is
compared with the one measured on 20 realizations of the SSR model
(green line-dot), and with reshuffled realizations of the model (purple
dashed line). The theoretical expectation for a random Poisson
process is reported as a black dotted line.
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can well approximate the empirical trend [Fig. 4(b)]. Similar
results can be obtained using stochastic growth processes
based on a preferential attachment mechanism [15,16,20,39]
inspired to the Yule-Simon’s model [13,14], the Chinese
restaurant Process [17], or the Polya’s urn scheme [18]. This
makes extremely hard to select the most-likely generative
mechanism from these two average behaviors alone.

However, there is a peculiar feature of models based on
preferential attachment that emerges by looking at the dis-
tribution of components along a realization, thus following
its natural temporal order. Taking again the example of a
text generated with a rich-gets-richer mechanism, rare worlds
should be more densely present late in the book, while the
opposite should be true for common words. In fact, compo-
nents that are selected for the first time at the end of the
process have a lower chance of being reselected and trigger
the preferential attachment mechanism. To make this intuition
more quantitative, we introduce a measure of local component
density and use it to analyze to what extent this positional
(or equivalently temporal) bias allows to actually distinguish
the SSR model, models based on preferential attachment and
empirical data.

Using the notation introduced in Sec. II A, a realization
or book r is an ordered sequence of words or components
r = (x1, . . . , xM ), where each component instance belongs
to the vocabulary, i.e., xm ∈ V = {1, . . . , N}. A portion of
given size of the book sm,�m = (xm, . . . , xm+�m) can be de-
fined as the sub-sequence of consecutive words from posi-
tion m to m + �m. By definition, we have s1,M−1 = r . We
are interested in the density of words of a given frequency
class at different positions m. Therefore, we can select the
subset of words of the vocabulary vf1,f2 ⊂ V whose frequen-
cies are in the interval [f1, f2]. Finally, the relative density
ρ(m,�m, f1, f2) of components belonging to the frequency
class vf1,f2 within the portion of the realization sm,�m is

ρ(m,�m, f1, f2) = n(sm,�m, vf1,f2 )

�m
− n(r, vf1,f2 )

M
. (13)

n(s, v) is the number of times that components belonging
to class v appear in s, i.e., n(s, v) = ∑

x∈s

∑
c∈v δx,c. The

relative density ρ(m,�m, f1, f2) measures the difference
between the local density in sm,�m and the average density
across the whole realization n(r, vf1,f2 )/M for components
of a given frequency. Therefore, this quantity is positive if
components of frequency v are enriched at a certain position
m of the realization. The two plots in Fig. 4(c) describe how
the density of words with low (f1 = 10−6, f2 = 10−4) and
high (f1 = 10−3, f2 = 10−1) frequency varies by moving the
window sm,�m from the beginning to the end of the book. The
line associated to the Simon’s model (as defined in Ref. [15])
shows a clear increasing or decreasing trend for words of
low or high frequencies. This trend quantifies the expected
positional (or temporal) bias inherent to models based on
preferential attachment. On the contrary, the SSR model do
not have a specific positional bias for components of different
frequencies. It simply predicts local fluctuations around the
ρ = 0 line for all frequency classes. A similar trend of local
word density is present in the empirical example from On
the Origin of Species, confirming that words of different
frequencies are equally spread across real texts [25,51].

This marked qualitative difference between the SSR pro-
cess and stochastic processes based on preferential attachment
can be used for model selection, and suggests that the SSR
mechanism is better suited to represent the text generation
process with respect to the often-invoked rich-gets-richer
scenario.

D. The SSR model cannot reproduce the complex temporal
correlation patterns of real texts

While the average local density of words do not display
a specific temporal trend in empirical texts, it seems to
show marked fluctuations [Fig. 4(c)]. In fact, several studies
showed the presence of nontrivial correlation patterns in the
temporal distribution of words across texts [8,45,52,55]. More
specifically, the appearance of instances of the same word
typically displays a bursty behavior [52], which essentially
implies the presence of clusters of word instances. Intuitively,
this behavior can be traced back to semantic reasons. For
example, if a character of a novel has a role only in a small
part of the storyline, the appearance of his or her name will
be localized in a corresponding relatively small region of the
text.

This statistical pattern can be quantified by looking
at the distribution of interoccurrence distances between
words [45,52]. Given a word i ∈ V of frequency fi , we can
compute its kth interoccurrence distance τ

(k)
i as the number

of other words between its (k − 1)th and kth appearances
normalized by the average distance, which is simply given by
the inverse frequency 1/fi . In other words, the relative kth
interoccurrence distance is defined as

τ
(k)
i = (

l
(k)
i − l

(k−1)
i

)
fi, (14)

where l
(k)
i ∈ {1, . . . , M} represents the position of the kth

appearance of i, with the convention that l
(0)
i = 0. For a

completely random distribution of words, the stochastic vari-
able τ

(k)
i follows approximately an exponential distribution

with average 1 for any word frequency fi and any value
of k [45]. Therefore, there is a unique null expectation that
can be compared to the empirical distribution p(τ ) measured
for words of different values of fi and for different k. This
comparison is reported in Fig. 4(d) for one empirical example,
and confirms that the word interoccurrence distance has a
marked excess of short distances with respect to the random
expectation (dashed line) for k > 1. Note that for k = 1, τ

(1)
i

simply defines the time of first appearance of words, thus it is
closely connected to the vocabulary growth (Heaps’ law), and
the distribution p(τ (k=1)) has been shown to be compatible
with the random Poisson expectation [45].

The SSR model cannot reproduce the empirical clustering
of words, and in fact its prediction for the interoccurrence
distances is well approximated by the exponential random
expectation [Fig. 4(d)]. This means that, at this scale of
observation, the ordering of components in SSR realizations is
compatible with random ordering. In fact, the interoccurrence
distance distribution from a SSR realization is not signif-
icantly different from its reshuffled version [dashed purple
line in Fig. 4(d)], in which the temporal order of components
is randomized. The small deviation between the reshuffled
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realizations and the theoretical exponential expectation at
small distances is due to the presence of a frequency-
dependent lower bound in Eq. (14), i.e., τ

(min)
k = f . On a

finer scale, this equivalence between the SSR model and
the random ordering should be violated by the presence of
cascades of decreasing order of selected states, during which,
for example, the same component cannot be selected multiple
times (for μ � 1). However, this effect seems not strong
enough to introduce substantial deviations from a random
model. In conclusion, also for this observable, the correlation
structure induced by the SSR model is negligible, and the
model predicts that components are approximately homoge-
neously scattered across its realizations.

IV. DISCUSSION

The presence of common or universal statistical patterns
in complex component systems across different fields has
attracted a lot of attention [1,8,57,58], and several alterna-
tive mechanisms have been proposed to be at the origin of
these laws. Besides the inherent interest in understanding
the generative processes at the basis of these emergent pat-
terns, simple and parameter-poor models of these systems
are also extremely useful as statistical “null” models that
can be used to disentangle general statistical effects from
system-specific patterns due to functional or architectural
constraints [1]. This is particularly true in genomics, where
one is typically interested in identifying the features that
have been selected by evolution to perform specific biological
functions [58].

In this paper, we have shown that the SSR mechanism can
be added to the list of the simple statistical models that can
jointly reproduce Zipf’s and Heaps’ laws [15,16,20,27,28,39].
Moreover, the SSR model is an appropriate modeling frame-
work to analyze properties of the statistics of shared compo-
nents, which characterize the number of components in com-
mon to a given fraction of realizations. In particular, the SSR
mechanism can naturally produce the U-shaped distribution
of occurences that has been observed and intensively studied
in genomics [1,48–50,59,60]. This model property marks a
relevant difference with respect to commonly used models
based on an innovation-duplication dynamics inspired by the
classic Yule-Simon’s model [13–16], the Chinese restaurant
process [17,39], or the Polya’s urn scheme [18–20]. In fact, in
these models the components (or states) can be distinguished
only through their occupation numbers, while the SSR model,
without adding much complexity, has an inherent labeling of
the states that allows to compare the component composition
of independent process realizations.

The precise links between several features of these dif-
ferent statistical patterns generated by the SSR mechanisms
are well approximated by analytical expressions that neglect
possible correlation structures in the model. In other words,
a random sampling framework that only assumes the com-
ponent abundance distribution set by the model seems to
capture other statistical model properties, such as the av-
erage number of states discovered in time. Similarly, the
theoretical relation that is often used in linguistics to con-
nect Zipf’s law and Heaps’ law is based on an equiva-
lent random sampling framework [40–42,45]. Interestingly,

also when these statistical patterns are generated with more
complex models explicitly based on networks of component
dependencies [27,28], thus with a strong intrinsic correlation
structure, they do not significantly deviate from the random
sampling prediction [28]. This surprising phenomenology
suggests that average statistical laws, such as Zipf’s and
Heaps’ laws, do not contain enough information about the mi-
croscopic dynamics to clearly distinguish between alternative
generative mechanisms. High-order statistical observables,
such as two-point correlations between components [28] or
fluctuation scalings [61] could thus be necessary to actually
select the more appropriate model for a given empirical com-
ponent system.

Following this line of reasoning, we introduced a mea-
sure of local density of components along a temporally or-
dered realization, focusing on the specific empirical example
of texts of natural language. The temporal distribution of
components of different frequencies can clearly distinguish
realizations of the SSR process with respect to realizations
built with a preferential attachment mechanism. In fact, the
rich-gets-richer scenario leads to a high density of low-
frequency words at the end of realizations. We showed that
the SSR model does not introduce this bias, which is indeed
not present in real texts. This result identifies the SSR model
as a better representation of the text generation process with
respect to models based on preferential attachment that are
often used in this context [15,16].

While the SSR mechanism seems remarkably effective
in reproducing several average empirical trends despite its
simplicity, it is reasonable to expect that its two-parameter
formulation has to be extended to fully capture all statistical
properties of complex systems such as language. To identify
a possible direction for future model extensions, we analyzed
the inter-occurrence distance distribution in the model and in
empirical data. In real texts, this distribution deviates from
the uncorrelated scenario of words randomly scattered along
the text. In fact, it is characterized by an enrichment for short
distances that is due to the tendency of instances of the same
word to cluster. The presence of topic-dependent structures,
epitomized by the subdivision in paragraphs and chapters,
has been suggested as a possible origin of the temporal cor-
relation patterns observed in texts [54,55]. The SSR process
clearly does not encode any of these complex features, and
consistently we showed that it cannot reproduce the empirical
“burstiness” of word appearances.

This limitation of the model suggests a possible direction
for future extensions of its basic formulation. One possibil-
ity would be to include a long-term memory in the state
selection process to introduce temporal autocorrelations. A
similar approach has been explored to extend the Yule-
Simon’s model [62]. An alternative route could be to con-
sider an underlying spatial organization of the sample space
over which the dynamics unfolds. Along this line, a model
specifically designed for text generation has been studied [33].
The model is inspired to the SSR mechanism, but it is es-
sentially a random walk over empirical networks of words,
in which a link is present if two words are found to be
consecutive in the text at least one time. While a relation
between the network structure and the emergence of Zipf’s
law has been found, other emergent statistical properties of
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the model and their direct comparison with data are still to
be characterized. More general models based on the pres-
ence of a network of component dependencies have been
recently studied [27,28], showing that they can reproduce
Heaps’ and Zipf’s laws. Moreover, an edge-reinforced random
walk on a complex dependency network can also generate
nonrandom inter-occurrence distance distributions [27]. Iden-
tifying the precise relations between these different network-
based models, their key different predictions, the specific
role of topology, and how these models are related to the

general SSR principle are all interesting directions for future
investigations.
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