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Scaling in the eigenvalue fluctuations of correlation matrices
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The spectra of empirical correlation matrices, constructed from multivariate data, are widely used in many
areas of sciences, engineering, and social sciences as a tool to understand the information contained in
typically large data sets. In the past two decades, random-matrix-theory-based tools such as the nearest-neighbor
eigenvalue spacing and eigenvector distributions have been employed to extract the significant modes of
variability present in such empirical correlations. In this work we present an alternative analysis in terms of the
recently introduced spacing ratios, which does not require the cumbersome unfolding process. It is shown that
the higher-order spacing ratio distributions for the Wishart ensemble of random matrices, characterized by the
Dyson index β, are related to the first-order spacing ratio distribution with a modified value of codimension β ′.
This scaling is demonstrated for the Wishart ensemble and also for the spectra of empirical correlation matrices
drawn from the observed stock market and atmospheric pressure data. Using a combination of analytical and
numerics, such scalings in spacing distributions are also discussed.
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I. INTRODUCTION

Large multivariate data sets are commonly encountered
in many areas of sciences [1,2], engineering [3], and social
sciences [4]. Some common examples include the data gener-
ated from the financial markets [5], atmospheric and climate
parameters [6], and communication networks [7]. Analysis of
the spectra of empirical correlation matrices constructed from
large data sets provides detailed and graded information about
the systems being studied. In the past two decades, tools and
results from random-matrix theory (RMT) have been widely
applied to make sense of the information provided by detailed
spectra, namely, the eigenvalues and the eigenvectors, of the
empirical correlation matrices [8,9]. Originally, RMT was
conceived as a model for the energy spectra of complex many-
body quantum systems such as nuclei and atoms [10–12].
These applications of RMT expanded its scope well beyond
its original domain of quantum spectra.

The eigenvalues Ei , i = 1, 2, . . . , N , of the empirical cor-
relation matrix of order N are positive definite, i.e., Ei � 0.
Typically, the corresponding eigenmodes fall into two broad
groups: (i) eigenmodes of the top and bottom small eigen-
values (in magnitude) that carry most of the information
embedded in the original data set and (ii) the bulk of the
rest which represents random correlations. It is the latter
group that displays broad agreement with random-matrix-
based results. For instance, the bulk of the correlation matrix
spectra obtained from the time series of the largest stocks in
the United States, including the ones that make up the S&P
index, was shown to be in agreement with the random-matrix
averages [13–16], and some studies have argued that they
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contain finer correlated structures [17,18]. The density of the
bulk of the eigenvalues follows the Marčenko-Pastur distribu-
tion [19] and can be used to identify the top eigenvalues that
carry significant information. The analysis of eigenvectors, in
terms of its agreement with the Porter-Thomas distribution
[20], indicates the stocks that are strongly correlated [14]. A
similar approach for the analysis of atmospheric data can dis-
tinguish physically relevant modes of atmospheric variability
from the those that are noisy [6]. By now, many applications
[21–25] including in biology [26], image processing [27], and
network traffic [28] abound.

An often demonstrated property of the bulk of eigen-
values is that the distribution of the spacings si = Ei+1 −
Ei , i = 1, 2, . . . , between consecutive eigenvalues (after un-
folding) follows the celebrated Wigner distribution P (s) =
(π/2)s exp(−πs2/4) [10]. This signifies level repulsion, the
tendency of the eigenvalues to repel one another. This con-
tinues to be a popular test for RMT-like behavior, especially
for the claim that spectral fluctuations of empirical correlation
matrices display universal characteristics irrespective of the
data set or system considered for analysis. A major impedi-
ment to computing the spacing distribution is the requirement
to unfold the eigenvalues, a somewhat unreliable numerical
procedure that approximately separates the system-dependent
eigenvalue properties from the generic ones. This problem
can be circumvented by considering the ratio of consecutive
spacings ri = si+1/si , i = 1, 2, . . . , which is independent of
local eigenvalue density and hence does not depend on the
system [29–31]. In this work, scaling properties relating to
the distribution of higher-order spacings and spacing ratios to
the nearest-neighbor spacing properties are demonstrated.

The elements of the empirical correlation matrix represent
the pairwise Pearson correlation among the N variables,
each one being a time series of length T . From the point
of view of random-matrix theory, correlation matrices fall
within the class of the Laguerre-Wishart ensemble [32] of
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random-matrix theory represented by W = DRDS
R , where DR

represents the standardized data matrix of order N by T

with real, complex, or quaternion elements depending on the
Dyson index β = 1, 2, 4 of the ensemble and XS represents
self-dual operation on matrix X. For the Laguerre-Wishart
ensemble indexed by β, the random-matrix average for the
spacing ratios is not yet known, though in the limit of matrix
size N → ∞ it is well approximated by that for the Gaussian
ensembles given by

P (r ) = Cβ

(r + r2)β

(1 + r + r2)1+(3/2)β
, (1)

where Cβ is a constant whose form is given in Ref. [31].
However, results for spacing ratios and spacing distributions
beyond the nearest neighbors are not yet known. The higher-
order spacing statistics provide a finer test for the universality
of spectral fluctuations. In addition, the deviations from these
will quantify the timescales up to which random-matrix-type
universality can be expected to be valid in empirical cases.
Indeed, long-range correlations such as �3 statistics have in-
dicated limitations of RMT assumptions at longer timescales
[6,15,28].

The structure of the paper is as follows. In Sec. II a scaling
relation is given for the higher-order spacing ratios for the
Wishart ensemble of random matrices. In Sec. III this scaling
relation is tested on various systems, including the spectra
of the Wishart random-matrix ensembles and the spectra of
empirical correlation matrices drawn from the stock market
and atmospheric data set. This relation has also been shown
to hold analytically for the first few orders for the spacing
distribution. Section IV summarizes the work.

II. DISTRIBUTION OF HIGHER-ORDER SPACING RATIOS

Consider a sample correlation matrix C of order N � 1,
constructed from time series of N variables and each of length
T , whose ordered eigenvalues are E1 � E2 � · · · � EN . The
density of eigenvalues are given, in the limit T � N � 1,
by the Marčenko-Pastur distribution, which predicts an upper
and a lower bound for the eigenvalues [19]. In nearly all of
the earlier studies involving spectra of empirical correlation
matrices, eigenvalue density and spacing distributions had
been widely studied [33]. In contrast, in this work we study
the kth-order spacing ratios defined by

r
(k)
i = s

(k)
i+k

s
(k)
i

= Ei+2k − Ei+k

Ei+k − Ei

, (2)

where kth-order spacings can also be defined as s (k) = si+k −
si . If k = 1, this reduces to the standard nearest-neighbor
spacing ratio. The distribution of kth-order spacing ratio is
denoted by P k (r, β ), where β = 1, 2, 4 is the codimension
that represents the Wishart ensemble. Note that the higher-
order spacing ratios are not uniquely defined [31]. In Eq. (2)
we take them such that no common spacings are shared
between the numerator and denominator. Using Eq. (2), the
main result of this paper can be stated as follows: For
the random matrix of order N � 1 and T � N � 1, from the
Wishart ensemble with β = 1, 2 and 4, the kth-order spacing

ratio distribution is related to the nearest-neighbor (k = 1)
spacing ratio distribution statistics by

P k (r, β ) = P (r, β ′), β = 1, 2, 4, (3)

β ′ = k(k + 1)

2
β + (k − 1), k � 1. (4)

Here 4 � β ′ < ∞, though for these values of β ′ explicit
matrix forms for the Wishart ensemble are not known. Though
the eigenvalue density given by the Marčenko-Pastur distribu-
tion depends on the ratio T/N [19], the statistics of fluctua-
tions represented by Eq. (4) can be expected to be independent
of T/N . A similar scaling relation had been postulated for
the spacing distribution of Gaussian ensembles [34] and its
generalizations [35], and recently numerical evidence was
provided for the ratios [36]. Both P k (r, β ) and P (r, β ′) have
identical functional forms and the modified parameter β ′
depends on the order k of the spacing ratio and codimension β.
Further, we present strong numerical evidence from Wishart
matrices as well as from empirical correlation matrix spectra
computed from the observed stock market and atmospheric
data.

A rigorous proof of Eqs. (3) and (4) is mathematically
challenging, but we give an intuitive argument why β ′ should
be greater than β. The eigenvalues of the Wishart ensemble
correspond to the charged particles of a two-dimensional
Coulomb gas [37]. In this physical picture, the degree of repul-
sion between eigenvalue pairs beyond the nearest neighbors is
greater than that for consecutive eigenvalue pairs. Hence, it
appears physically reasonable to expect that β ′ for the case of
k > 1 is greater than β for k = 1. For the special case of k = 2
in the context of the circular orthogonal ensemble (β = 1)
of RMT, a limited analytical proof was derived in Ref. [38].
Thus, Eqs. (3) and (4) represent a generalization of this result
for the spacing ratios of the Wishart ensemble. In the next
section we apply the scaling relation in Eqs. (3) and (4) to the
spectra of various systems.

III. RESULTS

A. Random-matrix spectra

Now we consider the spectra obtained from an ensemble of
Wishart matrices with β = 1 and test the validity of Eqs. (3)
and (4) by computing the higher-order spacing ratios. In
Fig. 1, the kth-order spacing ratio distributions are shown as
histograms for two cases, namely, N = T and N �= T . The
validity of the scaling in Eq. (3) can be clearly inferred from
the excellent agreement of the histogram with a solid curve
representing P (r, β ′), where β ′ given by Eq. (4). An addi-
tional layer of quantitative verification can be performed as
follows. Let the cumulative distributions corresponding to the
computed histograms P k (ri, β ) and P (r, β ′) be represented,
respectively, by I k (ri, β ) and I (ri, β

′). In Eq. (4), β ′ is treated
as a tunable parameter and the difference between cumulative
distributions

D(β ′) =
∑

i

|I k (ri, β ) − I (ri, β
′)| (5)

is computed. The minimum of D(β ′) is the best value of β ′
that fits the histogram data. As seen in the insets in Fig. 1, the
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FIG. 1. Histograms of the kth-order spacing ratio distribution for
the spectra of the random Wishart matrix for β = 1 with (a)–(c) N =
T = 40 000 and (d)–(f) N = 20 000 and T = 30 000. The computed
histograms display good agreement with P (r, β ′), shown as a solid
line. Here β ′ is given by Eq. (4). The inset shows that the minimum
of D(β ′) corresponds to the value of β ′ predicted by Eq. (4).

minimum of D(β ′) precisely coincides with the value of β ′
postulated in Eq. (4).

The results displayed in Fig. 2 show that the higher-order
spacing ratio distributions computed from the spectra from
Wishart matrices with β = 2 and 4 are consistent with the
scaling relation postulated in Eqs. (3) and (4). The elements of
Wishart matrices with β = 2 and 4 are, respectively, complex
numbers and quaternions, and empirical correlations with
such elements are rarely encountered in practice. The sym-
bols in this figure represent the histograms and solid curves
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FIG. 2. Histograms of the kth-order spacing ratio distribution for
the spectra of the random Wishart matrix with (a)–(c) β = 2 and
(d)–(f) β = 4. For the N = T case, N = T = 20 000; for the N �=
T case, N = 10 000 and T = 20 000. The computed histograms
display good agreement with P (r, β ′), shown as a solid line [β ′ is
given by Eq. (4).

TABLE I. Mean values of spacing ratio for Wishart matrix 〈r〉w,
atmospheric correlations data 〈r〉atm, and stock market correlations
〈r〉fin. The expected theoretical value is 〈r〉th.

〈r〉w 〈r〉w

β k β ′ 〈r〉th (n = m) (n �= m) 〈r〉atm 〈r〉fin

2 4 1.174 1.177 1.176 1.214 1.330
1 3 8 1.085 1.086 1.085 1.123 1.237

4 13 1.052 1.053 1.052 1.089 1.211

represent P (r, β ′). The results are shown for both N = T

and N �= T and, as anticipated, the agreement with Eqs. (3)
and (4) is good irrespective of the relative values of N and
T . Another form of evidence in Table I for the mean ratio
〈r〉 shows good agreement between the theoretically expected
value based on Eqs. (3) and (4) and that obtained from
computed Wishart spectra.

B. Stock market and atmospheric data

Next we demonstrate the validity of the scaling relation
(3) and (4) for the spectra of empirical correlation matrices
drawn from two different domains, namely, the stock market
and an atmospheric data set. To begin with, the data of the time
series of stocks that are part of the S&P500 index for the years
1996–2009 are considered [17]. This data set continues to be
extensively used to understand the ramifications of how an
RMT-based approach might work in the context of empirical
correlation matrices. The data consist of daily (log) returns
for T = 3400 days for N = 396 assets. The elements of the
correlation matrix denote the Pearson correlation between
pairs of stocks averaged over time. Note that T � N , imply-
ing that the correlations can be assumed to have converged.
The statistical properties of its spectra have been reported
in Refs. [13–16].

In Figs. 3(a)–3(c) we display the spacing ratio distribution
for various orders. Figure 3(a) shows the nearest-neighbor
spacing ratio distribution and it agrees with the analytical
result in Eq. (1) obtained for the case of the Gaussian or-
thogonal ensemble [30]. The higher-order spacing ratio dis-
tributions are displayed in Figs. 3(b) and 3(c) and we notice
good agreement with the postulated theoretical distribution
P (r, β ′), with β ′ as given by Eq. (4). Further, we consider the
time series of monthly mean sea level pressure over the North
Atlantic Ocean. The monthly data are drawn from National
Centers for Environmental Prediction reanalysis archives [39]
and is available over equally spaced latitude and longitude
grids for the North Atlantic region bounded by (0–90◦N,
120◦W–30◦E) for the years 1948–2017. Thus, in this case,
N = 434 grid points and T = 840 months, satisfying the
condition T/N > 1. An analysis of the climate phenomenon
of the North Atlantic oscillation was performed by construct-
ing an empirical correlation matrix from this data and using
RMT statistics such as the spacing and eigenvector distribu-
tions [6]. In Fig. 3(d) the spacing ratio distributions for the
nearest-neighbor spacings obtained from the spectra of this
correlation matrix are shown. The computed histogram is seen
to be well described by the theoretical distribution in Eq. (1)
obtained for Gaussian ensembles. The higher-order spacing
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FIG. 3. Histograms of the kth-order spacing ratio distribution
for the spectra of the correlation matrix from (a)–(c) S&P500 stock
market data and (d)–(f) mean sea level pressure data. The computed
histograms display good agreement with P (r, β ′), shown as a solid
line. Here β ′ is given by Eq. (4).

ratio distributions shown in Figs. 3(e) and 3(f) display good
agreement with P (r, β ′), as anticipated by Eq. (4).

Both these empirical correlation matrix spectra are com-
puted from a relatively short sequence of time series compared
to the length of time series used in computing Wishart spectra
for Fig. 1. Hence, the noise level for the correlations is higher
than for the Wishart case, and it is evident in the higher-order
spectral statistics shown in Fig. 3. This also manifests as poor
agreement with the 〈r〉 values shown in Table I. Finally, we
point out that violating the conditions N � 1 and T � N �
1 leads to deviations from the scaling relation (3) and (4) due
to finite-size effects as shown in Fig. 4. Figures 4(a)–4(c)
show that the minima of D(β ′) converge to the predicted
value β ′ = 76 on considering a (relatively) small range of
eigenvalues in the bulk, where the density of states may be
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2000 eigenvalues, for matrices of dimensions N = T = 30 000. Here
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the spectrum.
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FIG. 5. Histograms of the kth-order spacing distribution for the
spectra of the Wishart matrix. The histograms display good agree-
ment with F (s, β ′), shown as a solid line. Here β ′ is given by Eq. (4).

assumed to be constant. This finite-size or convergence effect
has also been discussed for Gaussian ensembles in Ref. [36].
In contrast, Figs. 4(d)–4(f) show that the minima of D(β ′)
do not converge to the predicted value β ′ = 229 even on
considering a (relatively) small range of eigenvalues in the
bulk. To obtain a constant local density of states over a
larger energy scale thus requires a random matrix of larger
dimensions.

C. Spacing distributions

We have also studied the validity of the scaling relation (4)
for the more popular eigenvalue spacing distribution [10,37].
In order to examine this, the kth-order nearest-neighbor spac-
ing is defined as s (k) = (si+k − si )/〈s〉, i = 1, 2, . . . . Based
on the analytical result (see the Appendix), it is postulated
that the second-order (third-order) spacing distribution is
F (s, β ′) = Aβ ′sβ ′

e−Bβ′ s2
, a form that is reminiscent of the

Wigner surmise, where β ′ = 3β + 1 (β ′ = 6β + 2). This β ′
agrees with Eq. (4) for k = 2 (k = 3). The constants Aβ ′ and
Bβ ′ depend on β ′ and are given in Ref. [11].

In Fig. 5 we verify this claim for the computed Wishart
matrix spectra. The computed histograms display excel-
lent agreement with the spacing distributions F (s, β ′ = 4)
[Fig. 5(a)] and F (s, β ′ = 8) [Fig. 5(b)]. Figures 6(a) and 6(b)
display next-nearest-neighbor (k = 2) spacing distribution for
the data drawn from mean sea level pressure and S&P500
stocks. In both these cases, good agreement with the an-
ticipated F (s, β ′) is evident. For k > 3, it does not appear
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FIG. 6. Histograms of the kth-order spacing distribution for the
spectra of the correlation matrix from (a) mean sea level pressure
data and (b) S&P500 stock market data. The computed histograms
display good agreement with F (s, β ′), shown as a solid line. Here β ′

is given by Eq. (4).
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straightforward to extend these results due to pronounced
finite-size effects and the limitations of pushing the spacing
distributions postulated based on s → 0 results well beyond
their regime of validity.

IV. CONCLUSION

The empirical correlation matrices are widely used in
many areas of sciences and engineering as tools to extract
information from large data sets. Typically, this is done
by analyzing their spectra, the bulk of which are known
to follow the random-matrix-theory predictions, especially
for the eigenvalue density and the popular nearest-neighbor
spacing distribution. Computation of the spacing distribution
involves unfolding the spectra through an ambiguous fitting
procedure. In recent years, the spacing ratio has become a
popular alternative to spacing distributions since the former
does not depend on the eigenvalue density and hence it does
not require unfolding. In this work, for the Wishart matrices
of order N � 1, we focused on the higher-order spacing
statistics and showed that the kth-order spacing ratio distri-
bution P k (r, β ) can be obtained in terms of the corresponding
nearest-neighbor (k = 1) distribution P (r, β ′), where β ′ > β

and β ′ depends on k and β. We have used the correspondence
of the Wishart eigenvalues with the charged particles of a
two-dimensional Coulomb gas to explain β ′ > β. Further,
using analytical and simulation results, a similar scaling with
a limited scope was obtained for the spacing distributions of
Wishart matrix spectra and empirical correlation matrices.

We demonstrated the validity of scaling in eigenvalue
fluctuations using the spectra drawn from an ensemble of
Wishart matrices. As an application with observed data sets,
the scaling in fluctuations was also shown for the spectra of
empirical correlation matrices obtained from S&P500 stock
market data and mean sea level pressure data over the North
Atlantic Ocean; both of these had earlier been analyzed from
the RMT point of view. It would be interesting to obtain these
results exactly for the Wishart ensemble. This presents the
opportunity for tests for the claims of universality of eigen-
value fluctuations and further it can potentially determine
the timescales over which RMT-like fluctuations hold for
empirical correlation matrices.
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APPENDIX: SPACING DISTRIBUTIONS FOR SECOND
AND THIRD ORDER

In this Appendix the analytical result leading to the second-
and third-order spacing distributions is derived. Consider the
random Wishart matrix W of order N and specialized to the
case of the next-nearest-neighbor (k = 2) spacing distribution
that can be obtained from the Wishart matrix of order T = 3
with three eigenvalues {E1, E2, E3}. Then the joint probabil-
ity density function (JPDF) of the eigenvalues El � 0, l =
1, 2, 3, for the Wishart ensemble is given as

f ({El}) = 1

WaβT

T∏
i=1

E
βa/2
i e−βEi/2

∏
1�j<p�T

|Ep − Ej |β,

where a = N − T + 1 − 2/β and WaβT is a constant [37].
Further, with T = 3, N and β are chosen such that a = 0.
Then the JPDF can be obtained as

f (E1, E2, E3) = 3!

W0β3

3∏
i=1

e−βEi/2
∏

1�j<p�3

|Ep − Ej |β.

(A1)

Using the transformation x = E2 − E1 and y = E3 − E2, we
obtain E2 = E1 + x, E3 = E1 + x + y, and

f (E1, x, y) = 3!

W0β3
xβyβ (x + y)βe−cβ(3E1+2x+y)/2.

(A2)

Letting K1 = 3!/W0β3 and integrating over E1, we obtain

f (x, y) = 2K1

3βc
xβyβ (x + y)βe−cβ(2x+y)/2. (A3)

It can be seen that 0 � x + y = E3 − E1 = s and y = s − x.
After some algebra, the next-nearest-neighbor (k = 2) spac-
ing distribution F̃ 2(s) can be obtained as

F̃ 2(s) = s3β+1e−cβs/2

2−1K−1
1 3βc

β∑
q=0

∞∑
n=0

(
β

q

)
sn(−1)β−q (−cβ/2)n

n!(2β − q + n + 1)
.

(A4)

In the limit of s → 0, the leading behavior is proportional
to sβ ′

, where β ′ = 3β + 1. The result derived above can be
extended easily for the case of k = 3 as well, resulting in
β ′ = 6β + 2. Thus, based on these analytical results and in
the spirit of the scaling relation (3) and (4), it is postulated
that the second-order (third-order) spacing distribution is
F (s, β ′) = Aβ ′sβ ′

e−Bβ′ s2
, where β ′ = 3β + 1 (β ′ = 6β + 2).

The constants Aβ ′ and Bβ ′ (given in Ref. [11]) depend on β ′
[Eq. (4)].
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