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State-dependent jump processes: Itô-Stratonovich interpretations, potential, and transient solutions
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The abrupt changes that are ubiquitous in physical systems often are well characterized by shot noise with
a state-dependent recurrence frequency and jump amplitude. For such state-dependent behavior, we derive the
transition probability for both the Itô and Stratonovich jump interpretations and subsequently use the transition
probability to pose a master equation for the jump process. For exponentially distributed inputs, we present a
class of transient solutions, as well as a generic steady-state solution in terms of a potential function and the
Pope-Ching formula. These results allow us to describe state-dependent jumps in a double-well potential for
steady-state particle dynamics, as well as transient salinity dynamics forced by state-dependent jumps. Both
examples showcase a stochastic description that is more general than the limiting case of Brownian motion to
which the jump process defaults in the limit of infinitely frequent and small jumps. Accordingly, our analysis
may be used to explore a continuum of stochastic behavior from infrequent, large jumps to frequent, small jumps
approaching a diffusion process.
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I. INTRODUCTION

The traditional tenet that denies sudden changes, an axiom
in the works of Leibniz [1] and epitomized by the maxim
“Natura non facit saltus”—Nature does not make jumps [2], is
clearly challenged by the abrupt transitions that are common
in nature, from random bursts in gene expression [3], to the
atomic transitions (quantum jumps) of electrons between
energy levels [4]. Jumps are synonymous with delta-pulse
trains and shot noise. References to shot noise first appeared
in the study of vacuum tubes where it represents the random
transfer of discrete charge units [5,6]. Electron shot noise
occurs in many solid-state devices such as p-n junctions
[7–12]. In addition, shot noise occurs with optical devices
where it represents the transfer of discrete packets of photons
[13].

More generally, jumps are ubiquitous in a variety of fields
such as queuing theory [14], stock market modeling [15–17],
insurance risk [18], population dynamics [19], and of course,
stochastic processes in general [15,20]. Typically, these jumps
punctuate a continuous time process [15], as in biology, where
the jumps represent the sudden drop in voltage caused by
nerve excitation [21–23], and in environmental science and
engineering, where jumps may reasonably represent natural
phenomena such as fires [24,25], rainwater infiltration [26–
28], extreme events [29], avalanches [30], runoff and stream-
flow [31–33], large earthquakes [34,35], volcanic eruptions
[36], and solar flares [37].
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The jump process is defined by both the jump ampli-
tudes and the frequency of jump events. In many models,
the frequency and amplitudes of jumps are considered to be
independent of the system state. In contrast, for many natural
systems, both the jump frequency and amplitude depend on
the system state. This state dependence may be critical. For
instance, a state-dependent frequency may create both persis-
tent jump behaviors and preferential states [38,39]. Similarly,
a state-dependent amplitude is essential for naturally limiting
the system response to the jump [40,41]. For example, a jump
of rainfall infiltration is limited by the degree of soil satura-
tion [42–44]. However, for white noise, this effect varies for
different interpretations of the jump process—the well-known
Itô-Stratonovich dilemma [41,45]. Although some work has
begun to address this issue [41,45], the effects of this state
dependence in the amplitude and frequency have yet to be
examined together or in terms of transition probability density
functions (PDFs).

Toward this goal, here we define the transition PDFs
in terms of a state-dependent frequency and jump ampli-
tude for both the Itô and Stratonovich interpretations of the
jump process. Unlike previous definitions, here the transition
PDFs are defined in terms of a jump amplitude function
for which the forcing input and state dependence are not
necessarily separable. Furthermore, we discuss the generality
of the limiting conditions under which a state-dependent
jump process converges to a diffusion process. A detailed
derivation of the limits to the corresponding Fokker-Planck
equations is provided in the Appendix for both the Itô and
Stratonovich interpretations. For the master equation in terms
of the Stratonovich jump prescription, we then consider an

2470-0045/2018/98(5)/052132(16) 052132-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052132&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevE.98.052132


MARK S. BARTLETT AND AMILCARE PORPORATO PHYSICAL REVIEW E 98, 052132 (2018)

exponential PDF of forcing inputs and present a general
solution in terms of a potential function. We use this result
to analyze particle dynamics in a double-well potential based
on the state dependence of both the jump frequency and
amplitude. We also present a class of transient solutions and
demonstrate the result by analyzing a transient solution for
soil salinity dynamics.

II. JUMP PROCESS

Consider a system evolving in time because of a determin-
istic component and jump perturbations with random timing
and amplitudes, as described by the stochastic differential
equation (SDE), i.e., Langevin-type equation,

dχ

dt
= m(χ, t ) + ξ (χ, t ), (1)

where m(χ, t ) is a deterministic function, and ξ (χ, t ) repre-
sents the jumps, which generally are a state-dependent noise
that perturbs the system. More specifically, these jumps are
defined as

ξ (χ, t ) =
N (t )∑
i=1

b(χ, z)δ(t − ti ), (2)

where, as indicated by Dirac δ function, δ(·), the function
b(χ, z) is instantaneous at the arrival times {ti}(i = 1, 2, ...).
These arrival times are modeled as a nonhomogeneous Pois-
son process with a (state-dependent) rate of λ(χ, t ). For each
jump, the function b(χ, z) depends on the state variable, χ ,
and mutually independent random forcing inputs, z, with a
probability distribution, pz(z) [46,47]. Though not explicitly
stated here, the function b(χ, z) generally also could be
dependent on time.

Typically for Eq. (2), the literature [e.g., 48] considers the
less general case of b(χ, z) = b(χ )z [40,41]. This implicitly
assumes that any dependence on z has been factored out,
i.e., b(χ, z) = b(χ )bz(z), and subsequently, bz(z), has been
lumped into a new jump distribution p̌z(z) based on a change
of variables, i.e.,

p̌z(z) = pz

(
b−1

z (z)
)

∣∣b′
z

(
b−1

z (z)
)∣∣ , (3)

where b′
z(·) is the derivative with respect to z, and b−1

z (·) is the
inverse of bz(z) [49].

Though Eq. (1) is the basis of many modeling approaches,
there is one major caveat due to the white-noise character
of the forcing. More specifically, for the function b(χ, z),
the value of χ is undetermined at the arrival times {ti}(i =
1, 2, ...) of the δ function, and like the case of Gaussian
noise [40, p. 230], it does not stipulate whether one assumes
the value of χ before the jump, after the jump, or conceiv-
ably an intermediate value between both extremes [40]. The
Stratonovich interpretation uses for χ in b(χ, z) an interme-
diate point between the states before and after a jump and
preserves the rules of standard calculus. In Sec. II D, we show
that for b(χ, z) = b(χ )z this χ corresponds to an average
point only in the limit of small jumps. While for the Itô
interpretation, Itô’s lemma performs the role of the standard
calculus chain rule [50], and thus χ is interpreted as the

value immediately before a jump. The Stratonovich approach
corresponds to taking the zero limit of the correlation time of
the jump [41] and accordingly represents the limit of a system
that continuously evolves during the jump process. This Itô-
Stratonovich dilemma has been explored for the specific case
of b(χ, z) = b(χ )z, linear drift, and a homogeneous Poisson
process [41] but thus far has not been examined for the more
general case of b(χ, z), a nonhomogeneous Poisson process,
and a generic drift function.

A. Master equation

In both interpretations of the jump process, the PDF
pχ (χ, t ) evolves in time as

∂tpχ (χ, t ) = −∂χJ (χ, t ), (4)

where the probability current, J (χ, t ) = Jm(χ, t ) + Jξ (χ, t ),
is the sum of the drift component

Jm(χ, t ) = m(χ, t )pχ (χ, t ), (5)

and the jump induced current

Jξ (χ, t ) = Jχu(χ, t ) − Juχ (χ, t ). (6)

The first component, Jχu(χ, t ), is the current from jumping
away from a prior state χ to any posterior state u, while the
second component, Juχ (χ, t ), is the current from jumping
from a prior (antecedent) state u and arriving at a (posterior)
state χ . These currents are

Jχu(χ, t ) =
∫ χ

−∞
pχ (x, t )

∫ ∞

−∞
W (u|x, t )dudx, (7)

Juχ (χ, t ) =
∫ χ

−∞

∫ x

−∞
W(·)(x|u, t )pχ (u, t )dudx, (8)

where W (u|x, t ) is the transition PDF of jumping from a
state x and transitioning to any state u, while W(·)(x|u, t )
is the transition PDF of jumping away from a prior (an-
tecedent) state u and transitioning to any (posterior) state x.
For W(·)(x|u, t ), the subindex, (·), indicates either WI (x|u, t )
or WS (x|u, t ) for the respective Itô and Stratonovich interpre-
tations of the jump transition.

The transition PDF (per unit time) for jumping away from
a state must be related to the frequency of jumping. This
frequency, λ(χ, t ), is independent of the jump interpretation.
Thus, integrating over all of the potential posterior (future)
states u provides the overall rate λ(χ, t ) of exiting the state χ

[32], i.e., ∫ ∞

−∞
W (u|χ, t )du = λ(χ, t ). (9)

The complementary transition PDF (per unit time) for jump-
ing to any state is the frequency of exiting u with a transition
amplitude of �χ = χ − u [32], i.e.,

W(·)(χ |u, t ) = λ(χ, t )
∫ ∞

−∞
p�χ |uz(�χ |u, z)pz(z)dz, (10)

which is found by integrating the PDF of transition ampli-
tudes, p�χ |uz(�χ |u, z), over the PDF of forcing inputs, pz(z).
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Now, following the probability currents of Eqs. (5), (7), and
(8), we express the master Eq. (4) as

∂tpχ (χ, t ) = −∂χ [m(χ, t )pχ (χ, t )] − λ(χ, t )pχ (χ, t )

+
∫ χ

−∞
W(·)(χ |u, t )pχ (u, t )du, (11)

where on the right-hand side, the second term is based on
Eq. (7) with the substitution of Eq. (9), and the transition PDF
W(·)(χ |u, t ) must be defined based on an interpretation of the
jump transition amplitude.

The transition amplitude is derived from Eq. (1) at the
instance of a jump, i.e.,

dχ

dt
= b(χ, z)δ(t − ti ), (12)

where as indicated by Dirac δ function at the times {ti} (i =
1, 2, ...), the infinite change of the jump overrides all other
terms of Eq. (1). Within Eq. (12), b(χ, z) must be interpreted
with either the Itô or Stratonovich conventions of stochastic
calculus. For the two conventions, we construct two different
versions of p�χ |uz(�χ |u, z) and W(·)(χ |u, t ) [i.e., WI (χ |u, t )
and WS (χ |u, t )].

B. Itô prescription

Following the Itô convention, b(u, z) depends on u, the
state before (i.e., antecedent to) the jump. Accordingly, the
jump transition is given as

�χ = χ − u = b(u, z). (13)

This expression is retrieved by integrating both sides of

Eq. (12) as
∫ u+�χ

u
dχ = ∫ t+i

t−i
b(χ (t ), z)δ(t − ti )dt , where t−i

and t+i are the respective times immediately before and after a
jump, and following the Itô convention, χ (ti ) = u is the state
immediately prior to the jump. Consequently, b(χ (ti ), z) is
interpreted as b(u, z).

This expression of Eq. (13) is the basis of a conditional
PDF, i.e.,

p�χ |uz(�χ |u, z) = δ(χ − u − b(u, z)), (14)

where the Dirac δ function, δ(·), indicates a deterministic
relationship that may be posed as a function of the jump
magnitude, z, i.e.,

g(z) = χ − u − b(u, z). (15)

Based on Eq. (15), p�χ |uz(�χ |z, u) also can be written as

p�χ |uz(�χ |u, z) = δ(g(z)) = δ(z − zn(χ, u))
|g′(zn(χ, u))| , (16)

where g′(·) is the derivative with respect to z, and zn(χ, u)
is the root for which g(zn) = 0 (see Appendix A of [32]).
Eq. (16) is useful in facilitating integration over z.

Based on Eqs. (10) and (14), the transition PDF in the Itô
sense for a state-dependent marked Poisson process becomes

WI (χ |u, t ) =λ(u, t )
∫ ∞

−∞
δ(χ − u − b(u, z))pz(z)dz, (17)

where the product of λ(u, t ) and p�χ |u(�χ |u) describes
the transition to any χ . If b(χ, z) = b(χ )z, where bz(z) is

absorbed into the jump distribution p̌z(z) of Eq. (3), which
we now call pz(z), the transition PDF of Eq. (17) simplifies to

WI (χ |u, t ) = λ(u, t )

|b(u)| pz

[
χ − u

b(u)

]
, (18)

which is derived from Eq. (16) where g(z) = χ − u − b(u)z,
zn(χ, u) = χ−u

b(u) , and g′(zn(χ, u)) = −b(u).

C. Stratonovich prescription

Following the Stratonovich convention, the state χ in
b(χ, z) is interpreted as an intermediate value between the
antecedent and posterior states. The Stratonovich jump tran-
sition is derived by posing Eq. (12) in terms of an integrated
variable [40, p. 230], i.e.,

dη(χ, z)

dt
= δ(t − ti ) (19)

η(χ, z) =
∫

1

b(χ, z)
dχ, (20)

where as will be shown in the next section, η(χ, z) indicates
that the argument χ of b(χ, z) is evaluated for each infinitesi-
mal increment of the overall transition, �χ . Equation (19) can
thus be formally integrated as

η(χ, z) − η(u, z) = 1. (21)

The jump transition �χ = χ − u is implicit in the difference
between the function η(·, ·) after the jump, η(χ, z), and before
the jump, η(u, z). In other words, we recover Eq. (21) by

integrating both sides of Eq. (19) as
∫ u+�η

u
dη = ∫ t+i

t−i
δ(t −

ti )dt , where t−i and t+i are the respective times immediately
before and after a jump.

Equation (21) is the basis of a conditional PDF for the jump
transition, i.e.,

p�χ |uz(�χ |u, z) = 1

|b(χ, z)|δ(η(χ, z) − η(u, z) − 1),

(22)

where we have used a change of variables [e.g., 51],
i.e., p�χ |uz(�χ |u, z) = p�η|uz(�η|u, z)| dη

dχ
| for which

dη

dχ
= 1

b(χ,z) and p�η|uz(�η|u, z) = δ(η(χ, z) − η(u, z) − 1).
Again, similar to Eq. (14), the δ function in Eq. (22) indicates
a deterministic relationship, i.e.,

g(z) = η(χ, z) − η(u, z) − 1, (23)

which we interpret as a function of z. With Eq. (23), the PDF
p�χ |uz(�χ |u, z) may be posed in the form of Eq. (16), which
is useful for facilitating the integration of p�χ |uz(�χ |u, z)
over z.

From Eqs. (10) and (22) and the rate λ(u, t ), the transition
PDF in the Stratonovich sense becomes

WS (χ |u, t ) = λ(u, t )

|b(χ, z)|
∫ ∞

−∞
δ(η(χ, z)−η(u, z) − 1)pz(z)dz.

(24)

If b(χ, z) = b(χ )z and thus η(χ, z) = η(χ )
z

, the conditional
PDF of Eq. (22) may be simplified based on the scaling
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FIG. 1. For the Stratonovich jump interpretation, (a) comparison of the Eq. (29) jump transition, �χ , (black line) and jump transition,
�χn, for the summation within Eq. (30) based on different forcing input values z and different values of n, and (b) for different values of n,
the difference between �χ of Eq. (29) and the summation within Eq. (30), �χn. In both cases, b(χ ) = χ , η(χ ) = ln[|χ |], and the antecedent
state is u = 0.1.

property of the δ function, i.e.,

p�χ |uz(�χ |u, z) = 1

|b(χ )|δ(η(χ ) − η(u) − z). (25)

Accordingly, the simplified transition PDF is given by

WS (χ |u, t ) = λ(u, t )

|b(χ )| pz(η(χ ) − η(u)), (26)

which follows from Eq. (16) where g(z) = η(χ ) − η(u) − z,
zn(χ, u) = η(χ ) − η(u), and g′(zn(χ, u)) = 1. Though not
explicitly mentioned in previous works [41,52], Eq. (26) is
the transition PDF that is used to pose the master equation in
terms of the Stratonovich jump prescription.

D. Jump process simulation

When numerically simulating the jump process, the jump
transition at times {ti} (i = 1, 2, ...) must be consistent with
the adopted jump interpretation. For the Itô interpretation, the
jump transition is given by Eq. (13). For the Stratonovich
interpretation, the jump transition derived from Eq. (21) is
given by

�χ = χ − u = η−1(η(u, z) + 1, z) − u, (27)

where u is the state prior to the jump, and η−1(·, ·) is the
inverse function, i.e., χ = η−1(y, z) for which y = η(χ, z).
These expressions not only are useful in comparing realiza-
tions for different jump prescriptions but also highlight the
differences between the different jump prescriptions.

For the common assumption of b(χ, z) = b(χ )z, these
jump transitions of Eqs. (13) and (27) simplify to

�χ = zb(u) (28)

�χ = η−1(η(u) + z) − u, (29)

for the respective Itô and Stratonovich interpretations.
Equation (29) also is consistent with the Stratonovich

interpretation of b(χ ) for a Brownian motion. For a Brownian
motion, the argument of b(χ ) is correctly interpreted as the
average of values immediately before and after an infinites-
imally small random transition, i.e., b( u+χ

2 ) where u is the
antecedent value and χ is posterior value (see Eq. (4.10)
of Ref. [40]). This same interpretation also applies to the

Stratonovich jump process when each jump is considered as a
consecutive series of infinitesimal values, i.e.,

�χ = lim
n→∞

n∑
j=1

z

n
b

(
uj + χj

2

)
= η−1(η(u) + z) − u, (30)

where the jump transition, �χ , is the sum of an n number
of consecutive transitions each with an antecedent value uj

and a posterior value χj caused by the same consecutive
forcing input, �z = z/n. The values uj and χj are defined
recursively following the Stratonovich transition of Eq. (29).
The posterior value is defined as

χj =η−1
[
η(uj ) + z

n

]
, (31)

which is based on the antecedent value uj prior to the input of
�z = z/n. The antecedent value is initially u, but with each
consecutive transition, the previous posterior value, χj−1,
becomes the next antecedent value, uj , i.e.,

uj =
{
u j � 1
χj−1 j > 1 , (32)

where based on Eq. (31), χj−1 = η−1
(
η(uj−1) + z

n

)
for which

uj−1 is the previous antecedent value.
We examine the convergence of Eq. (30) based on the

transition, �χn, as defined by the summation in Eq. (30). For
the case of n = 1, the overall jump transition, �χ1, greatly
deviates from the actual Stratonovich transition of Eq. (29)
[Fig. 1(a)]. As n increases, �χn rapidly converges to the
Stratonovich transition [Fig. 1(b)]. Because of this rapid con-
vergence, �χn may approximate the Stratonovich transition
in cases where the jump is considered as a series of con-
secutive transitions. As shown by Eq. (30), the Stratonovich
interpretation is ideal for representing jump transitions based
on a continuous feedback from the concurrent increase (or
decrease) in state variable as the forcing input, z, increases.

E. Jump process diffusive limit

The forward master Eq. (11) provides a general description
of a Markov process with state-dependent transitions and
thus acts as a framework for evaluating a stochastic process
in terms of both coarser, larger jump transitions and finer,
frequent transitions approaching a diffusion. For the limiting
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case of small, infinitely frequent jumps, the state dependence
of both the jump amplitude and frequency directly translates
to the state-dependence of the diffusion coefficient. In the Ap-
pendix for the case of b(χ, z) = b(χ )z, we show in detail how
the master Eq. (11) converges to the Itô and Stratonovich ver-
sions of the Fokker-Planck equation, respectively, under the
limiting scenario of infinitely small jumps occurring infinitely
often. The explicit and detailed derivations of the Appendix
also help clarify the conditions in which this convergence is
possible, and in particular the condition that the mean forcing
amplitude is zero.

This convergence is particularly interesting for the steady-
state condition. Specifically, for the case of b(χ, z) = b(χ )z,
the jump process description can be linked to the well known
steady-state solutions for the Itô and Stratonovich Fokker-
Planck equations as follows. Both solutions may be written
in terms of a potential function, i.e.,

pχ (χ ) = Ne−�(·) (χ ), (33)

where N is a normalization constant such that∫ ∞
−∞ pχ (χ )dχ = 1, and the potential function, �(·)(χ ),

is specific to Eqs. (A14) and (A27) of the Appendix for the
respective Itô and Stratonovich version of the Fokker-Planck
equation, i.e.,

�I (χ ) =
∫ (

− m(χ )λo

Doλ(χ )b(χ )2
+ 2

∂χb(χ )

b(χ )
+ ∂χλ(χ )

λ(χ )

)
dχ,

(34)

�S (χ ) =
∫ (

− m(χ )λo

Doλ(χ )b(χ )2
+ ∂χb(χ )

b(χ )
+ ∂χλ(χ )

2λ(χ )

)
dχ,

(35)

where �I (χ ) is the Itô potential, �S (χ ) is the Stratonovich
potential, and

∫ ∂χ b(χ )
b(χ ) dχ = ln[|b(χ )|]. For both potentials,

we have substituted for the state-dependent diffusion co-
efficient, D(χ ) = 2Doλ(χ )

λo
; see Eq. (A12) of the Appendix.

Thus, the potentials clearly identify the link with the state-
dependent jump frequency, λ(χ ), and jump amplitude b(χ )z,
where z is implicit to the diffusion coefficient resulting from
the Eq. (A11) limit of infinitely frequent and small jumps.
Considering this limit in the Fokker-Planck Eqs. (A14) and
(A27) gives rise to a connection with the jump process that
typically is not considered in presentations of the Fokker-
Planck equation.

To illustrate how the Fokker-Planck steady-state solution
may provide a reasonable representation of high frequency
jump processes, we first consider the simple case of a constant
jump frequency, λo, with independent jump amplitudes, i.e.,
b(χ, z) = b(χ )z and b(χ ) = 1. We consider both the jump
and diffusion processes to share identical descriptions of a
linear drift, m(χ ) = −kχ , as well as a zero mean forcing am-
plitude, 〈z〉 = 0. Accordingly, we assume the jump is forced
by an input with a two-sided exponential PDF,

pz(z) =
{

γ

2 e−γ z z � 0
γ

2 eγ z z < 0,
(36)

where γ is the scale parameter. Thus, the jump process system
trajectories fluctuate from both positive and negative jumps

and are forced back to zero by the drift [Fig. 2(a)]. For steady-
state conditions, the known solution to the master Eq. (11) is
[46]

pχ (χ ) =
2

1
2 (1− λo

k
)|χ |− 1

2 (1− λo
k

)γ 1− 1
2 (1− λo

k
)K 1

2 (1− λo
k

)(γ |χ |)
√

π �
( 1

2 − 1
2

(
1 − λo

k

)) ,

(37)

where �(·) is the gamma function, and Kn(·) is the modified
Bessel function of the second kind [53]. When λo = 2k, this
jump process steady-state PDF of Eq. (37) is identical to the
PDF of the forcing inputs of Eq. (36) [54].

The resulting process provides for a continuum of stochas-
tic behavior between a process with infrequent but large
jump transitions [Fig. 2(a)] and a process with infinitely
frequent but small transitions approaching a diffusion process
[Fig. 2(b)]. Since in this case there is no state dependence,
the corresponding diffusion process is represented by either
the Itô or Stratonovich version of the Fokker-Planck equation,
for which the steady-state solution is given by Eqs. (33)–(35).
The corresponding diffusion coefficient is calculated from the
jump process parameters, i.e.,

Do = λo

γ 2
, (38)

where λo is the jump frequency (independent of the state
variable), and γ −1 is the average jump amplitude. For jump
parameters related by a constant Do in Eq. (38), the jump
process PDF Eq. (37) rapidly converges to a Gaussian shape
as the jump frequency increases [Fig. 2(c)]. Accordingly, as
shown by Fig. 2(d), there is rapid decrease in the Kullback-
Leibler divergence, i.e., the relative entropy, DKL(P ‖Q),
between the jump process distribution, P , with the PDF of
Eq. (37) and the diffusion process distribution, Q, with the
PDF of Eq. (33). The relationship of Fig. 2(d) is the same for
any assumed value of Do in Eq. (38). At jump frequencies
as small as λo = 10, one observes little difference between
the steady-state statistics of the jump and diffusion processes
[Fig. 2(d)].

In the case of state dependence, the steady-state solution
of the diffusion process is based on functions for the jump
frequency and amplitude, i.e., λ(χ, t ) and b(χ ). Thus, we
can derive a diffusion process PDF that approximates the
statistics of any high frequency jump process. Moreover, if
the jumps are occurring extremely often, the state dependence
of the frequency, λ(χ, t ), approximately has the same effect
as the state dependence of the jump amplitude. Under such
conditions, we reasonably may assume a constant frequency,
λo, and subsequently merge the state-dependent component of
the frequency into a new amplitude function, i.e.,

b̂(χ ) =
√

2Do

λ(χ, t )

λo

b(χ ), (39)

which is based on the Itô and Stratonovich versions of the
Fokker-Plank equation and the corresponding Kramers-Moyal
expansion of the jump process; see the Appendix. This ap-
proximation provides simplicity with little loss of fidelity in
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FIG. 2. Examples of (a) a trajectory for infrequent and large jumps, (b) a trajectory for frequent but tiny jumps, (c) the steady-state jump
process PDF of Eq. (37) for different jump frequencies, and (d) the Kullback-Leibler divergence, DKL(P ‖Q), between the jump process
distribution, P , with the PDF of Eq. (37), and the diffusion process distribution, Q, with the Fokker-Planck steady-state PDF of Eq. (33). In all
cases, Do = 2 [L2/T] and γ and Do are related by Eq. (38). Here, b(χ, z) = b(χ )z, b(χ ) = 1[−], pz(z) is given by Eq. (36), the drift is given
by m(χ ) = −kχ , and k = 0.25 [1/T].

the simulation of high frequency jump processes with state
dependence.

III. SOLUTIONS FOR THE STRATONOVICH
INTERPRETATION

While analytical solutions to the Fokker-Planck equa-
tion are well known [e.g., 15,55], little attention has been
focused on analytical solutions to the more general jump
process description of the master Eq. (11). Here, for the
Stratonovich prescription of the jump process, we develop a
general class of solutions for both transient and steady-state
conditions, for which the steady-state solution is presented
in terms of both a potential function and the Pope-Ching
formula [56].

The solution to Eq. (11) starts with a change of variables
based on the Stratonovich jump prescription, i.e.,

y = η(χ ) =
∫

1

b(χ )
dχ, (40)

χ = η−1(y). (41)

For this change of variables, the PDF py (y, t ) is given by

pχ (χ, t ) = py (y, t )

∣∣∣∣ dy

dχ

∣∣∣∣. (42)

We then transform the master Eq. (11) by substituting for χ

and pχ (χ, t ) with Eqs. (41) and (42), multiplying both sides

by dχ

dy
, and noting dχ

dy
= b(χ ), i.e.,

∂

∂t
py (y, t )

= − ∂

∂y

[
m(η−1(y))
b(η−1(y))

py (y, t )

]
− λ(η−1(y), t )py (y, t )

+
∫ y

−∞
λ(η−1(u), t )pz(y − u)py (u, t )du, (43)

where on the right-hand side the first term is the derivative
of the current Jm(χ, t ) of Eq. (5), the second term is the
derivative of the current Jχu(χ, t ) of Eq. (7) and the last
term represents the derivative of the current Juχ (χ, t ) of
Eq. (8) based on the Stratonovich transition PDF WS (χ |u, t )
of Eq. (26).

This master Eq. (43) is not solved readily, but we find a few
general results for an assumed exponential distribution of the
forcing inputs, i.e.,

pz(z) = �(z)γ e−γ z, (44)

where γ −1 is the average input, and �(z) is the Heaviside step
function. Exponential inputs have been central to studying
physical and environmental processes, in particular, for the
simpler case of b(χ, z) = z [e.g., 26]; however, only specific
solutions have been derived for state-dependent jumps [e.g.,
41,52].
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FIG. 3. For the symmetric double-well potential of Eq. (59), a simulated trajectory (line) and a comparison of the simulated distribution
(histogram bars) to the PDF of Eq. (48) (black line). The parameter values for the constitutive functions of m(χ ), λ2(χ ), b2(χ ), and p̃z(z, χ )
are a = 10 [L], β = 1.5 [L], k = 0.25 [1/T], λo = 0.25 [1/T], and γ = 0.04 [1/L], f (χ − a/2) = α, and α = 49/50 [−].

A. General steady-state solution and potential function

For the exponential distribution of forcing inputs Eq. (44),
the solution to the master Eq. (43) under steady-state condi-
tions is given by

py (y) = N
|b(η−1(y))|
|m(η−1(y))|e

−γ y−∫
λ(η−1(y))b(η−1(y))

m(η−1 (y))
dy

, (45)

where N is an integration constant such that
∫ ∞
−∞ py (y)dy =

1. This solution is found from an ordinary differential equation
(ODE) that is retrieved by multiplying Eq. (43) by an inte-
grating function eγy and differentiating [e.g., 26,57,58]. After
applying a change of variables, we may pose the solution of
Eq. (45) in terms of χ , i.e.,

pχ (χ ) = N

|m(χ )|e
−γ

∫
dχ

b(χ ) −
∫

λ(χ )
m(χ ) dχ

, (46)

where λ(χ ) is the state-dependent arrival frequency of
inputs, and N is the normalization constant such that∫ ∞
−∞ pχ (χ )dχ = 1. This solution unifies and extends previous

results of [41,52], both of which were limited to specific forms
of functions for m(χ ) and b(χ ).

Rather surprisingly, in cases where b(χ ) is a rectangular
hyperbola, the solution of Eq. (46) also represents processes
forced by a two-sided exponential distribution of z. For such
cases, the jump transition of Eq. (29) then is modeled as

�χ = η−1(η(u) + |z|, sgn[zb(χ )]) − u, (47)

which differs from the typical approach because of the
functional dependence on sgn[zb(χ )]. The transition now is
forced by the absolute value |z| because the direction of
the transition is governed by the inverse function, η−1(·, ·),
that now depends on a sign function, i.e., sgn[zb(χ )]. This
sign function determines the direction of the transition and
generally represents the two real roots of η(·, ·) in cases where

b(χ ) is a rectangular hyperbola, which will be used later in
describing double-well potentials.

The steady-state solution Eq. (46) also may be written in
terms of a potential function, i.e.,

pχ (χ ) = Ne−�(χ ), (48)

where N is a normalizing constant, and the effective potential
is given by

�(χ ) =
∫ [

γ

b(χ )
+ λ(χ )

m(χ )
+ ∂χm(χ )

m(χ )

]
dχ. (49)

where
∫ ∂χm(χ )

m(χ ) dχ = ln[|m(χ )|].
Furthermore, note that the ensemble average of the velocity

squared and the acceleration conditional on χ , respectively,
are given by

〈χ̇2|χ〉 = m(χ )2, (50)

〈χ̈ |χ〉 = m(χ )

[
−γ

m(χ )

b(χ )
− λ(χ ) + ∂χm(χ )

]
. (51)

Following Eqs. (50) and (51), we may pose Eq. (46) in terms
of the Pope and Ching formula [56], i.e.,

pχ (χ ) = N

〈χ̇2|χ〉e
∫ 〈χ̈ |χ〉

〈χ̇2 |χ〉 dχ
, (52)

which shows that this general solution of Eq. (46) also satisfies
the differential equation − d

dχ
(〈χ̈ |χ〉p) + d2

dχ2 (〈χ̇2|χ〉p) = 0
[55,59].

IV. DOUBLE-WELL POTENTIALS

The general potential solution Eq. (48) now can be applied
to the interesting case of a jump process within a double-well
potential (Fig. 3). Such a process may be of interest in a

052132-7



MARK S. BARTLETT AND AMILCARE PORPORATO PHYSICAL REVIEW E 98, 052132 (2018)

FIG. 4. Comparison of (a) the frequency functions of Eqs. (54) and (55), (b) the jump state dependence of Eqs. (56) and (57) and the drift
of Eq. (53), (c) the symmetric double-well potentials of Eqs. (58) and (59), and (d) the asymmetric double-well potentials of Eqs. (64) and
(67). Parameter values are k = 0.1 [1/T], a = 10 [L], λo = 0.1 [1/T], β = 2 [L], γ = 2 [1/L], ε = 0.5 [L].

variety of fields, from preferential states and bistability in
natural sciences [60,61] to quantum mechanics, where the
double-well potential conveys the idea of a superposition
of classical states [62]. The double-well potential also may
represent bistable physical and chemical systems such as
second order phase transitions [63], nuclear fission and fusion
[64,65], chemical reaction rates [66,67], and isomerization
processes [68]. While in the literature the noise within a
double-well potential is typically represented by Brownian
motion [69], here we extend the double-well potential pro-
cesses to include the case where both the jump amplitude and
frequency are state dependent. This may be especially useful
in describing anomalous jumps between two states [70], as
well as in describing natural processes such as abrupt changes
between two climatic states [71].

We consider a family of double-well potential functions
based on a linear drift function, i.e.,

m(χ ) = k

(
a

2
− χ

)
, (53)

where k [1/T] is the rate constant that controls the intensity
of the drift, which is symmetric about the position a/2 [L]
[Fig. 4(b)]. The frequency of jump events may be given by
either a first or second order expression, i.e.,

λ1(χ ) = λo

2γ a

β

∣∣∣∣χ − a

2

∣∣∣∣ + λo, (54)

λ2(χ ) = λo

4γ a

β2

(
χ − a

2

)2

+ λo, (55)

where λo [1/T] is a minimum frequency, γ [1/L] is the
inverse of the average jump amplitude, and β [L] controls

the positioning of the local minima of the double potential
wells [Fig. 4(a)]. Because these expressions are symmetric
about a/2, both result in a symmetric double-well potential.
The corresponding expressions for the state dependence of
the jump, respectively, are based on first- and third-order
polynomials of χ , i.e.,

b1(χ ) = β2k

2λoa
(
χ − a

2

) , (56)

b2(χ ) = β4k

4λoa
(
χ − a

2

)3 , (57)

where both are negative valued functions for x < a/2, pos-
itive valued functions for x > a/2, with a discontinuity at
x = a/2 [Fig. 4(b)].

Specific examples of double-well potentials are retrieved
from Eq. (49) by substituting for m(χ ) with Eq. (53) and
substituting for λ(χ ) and b(χ ) with either Eqs. (54) and (56)
or Eqs. (55) and (57), respectively, i.e.,

φ1(χ ) = λoγ a

kβ2

(∣∣∣∣x − a

2

∣∣∣∣ − β

)2

+ k − λo

k
ln[|a − 2χ |],

(58)

φ2(χ ) = λoγ a

kβ4

[(
x − a

2

)2

− β2

]2

+ k − λo

k
ln[|a − 2χ |],

(59)

where for Eqs. (58) and (59), we have assumed integration
constants of c = (4β2 + a2) λoγ a

4β2k
and c = (2β2 − a2) λoγ a

2β2k
,
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respectively [Fig. 4(c)]. These respective constants allow one
to complete the square of the first term of the right-hand side
of Eqs. (58) and (59).

In quantum mechanics, these two potential functions have
been used as simple models for systems (such as the ammo-
nia molecule) that may reside in a superposition of nearly
degenerate states [62]. For both potential functions, the cor-
responding PDF is given by Eq. (48), and the PDF shows
two local maxima where the potential shows two local min-

ima, which are at χ = a
2 ± β

2

(
1 +

√
λoγ a+2(λo−k)

λoγ a

)
and χ =

a
2 ± β

2

√
2 + 2

√
λoγ a+λo−k

λoγ a
for Eqs. (58) and (59), respectively

[Fig. 4(c)]. When k < λo the potentials wells are separated
by a barrier of infinite strength [Fig. 4(c)]. If k = λo, then
this barrier has a finite value of φmax = λo

k
γ a, and the local

minima are located at a/2 ± β. Conversely, when k > λo,
small differences between k and λo result in the double-well
potential becoming a triple-well potential with an additional
potential well centered at a/2. As k continues to increase to
values much greater than λo, the strength of the last term of the
right-hand side of Eqs. (58) and (59) may cause the system to
converge to a single-well potential.

For the positive jump amplitudes represented by the PDF of
Eq. (44) and b(χ ) of either Eqs. (56) or (57), the trajectories
are repulsed from a/2 because of the jumps (Fig. 3). These
trajectories then are attracted back to a/2 because of the drift
[Figs. 3 and 4(b)]. This drift is zero at a/2, and consequently,
the drift never pushes a trajectory over the barrier to the neigh-
boring potential well. Nevertheless, both potential functions
(and PDFs) describe trajectories over the two potential wells
[Figs. 3 and 4(c)]. Hence, the trajectories must jump between
neighboring potential wells, and accordingly, the jump am-
plitudes must be both positive and negative (Fig. 3). Thus,
because both b1(χ ) and b2(χ ) represent rectangular hyper-
bolas, the distribution of forcing inputs is a state-dependent,
two-sided exponential distribution, i.e.,

p̃z(z, χ ) =
{
f (χ − a/2)γ e−γ z z � 0

(1 − f (χ − a/2))γ eγ z z < 0,
(60)

where the fractional weight f (χ − a/2) controls the relative
probability density for a positive and negative jump. This
function f (χ − a/2) must be symmetric about a/2 to main-
tain the symmetry indicated by the potential functions of
Eqs. (58) and (59).

For this two-sided exponential distribution, the jump
transition is described by Eq. (47). Accordingly, the jump
transition is simulated based on the absolute value of the

forcing input, |z|, because the direction of the transition is
determined by the respective inverse functions, i.e.,

η−1
1 (y) = a

2
+ sgn[b1(χ )z]

1

2

√
4β2ky

λo

+ a2, (61)

η−1
2 (y) = a

2
+ sgn[b2(χ )z]β

(
ky

λo

)1/4

, (62)

where following Eq. (40) η−1
1 (y) and η−1

1 (y) are derived
from b1(χ ) and b2(χ ). As indicated by Eqs. (61) and (62)
if either z b1(χ ) or z b2(χ ) is negative (positive), then the
jump creates a decrease (increase) in the state variable χ .
This underlying process is more generic (and complex) than
one may initially perceive from a cursory inspection of b1(χ )
and b2(χ ) of Eqs. (56) and (57) and the jump distribution
pz(z) of Eq. (44), and these potential functions represent a
steady-state solution with f (χ − a/2) mediating the random
transition (i.e., anomalous jumping) between the two states
(i.e., potential wells).

The double-well potential becomes asymmetric for a small
perturbation, ε, in the location of either the frequency of
the jump, λ(χ ), or the drift, m(χ ). We examine such an
asymmetry for the second double-well potential φ2(χ ). For
a small perturbation, ε, in the frequency location, i.e.,

λε (χ ) = λo

4γ a

β2

(
χ − a

2
+ ε

)2

+ λo, (63)

the frequency function is centered around a
2 − ε. With

Eq. (63), we then retrieve the potential function from Eq. (49)
with substitutions for m(χ ) of Eq. (53) and b(χ ) of Eq. (57),
i.e.,

φλ(χ, ε) = φ2(χ ) − ε
8λoγ a

β2k

(
χ − a

2

)

− ε
4λoγ a

β2k
ln[|a − 2χ |], (64)

where the potential asymmetry is controlled by either a posi-
tive or negative value of ε [Fig. 4(d)]. For k < λo + 4ε2λoγ a

β2

the potentials wells are separated by a barrier of infinite
strength. When k = λo + 4ε2λoγ a

β2 this barrier has a finite value

of φmax = λo

k
γ a. Similar to the symmetric version, the poten-

tial well of Eq. (64) also is centered at a/2. This asymmet-
ric potential, φλ(χ ), not only corresponds to the perturbed
frequency of Eq. (63), but also to a different version of the
state-dependent, two-sided exponential distribution of forcing
inputs, i.e.,

p̃z(z, χ ) =

⎧⎪⎨
⎪⎩

f (χ − a/2)γ e−γ z z � 0

[1 − Pχ (a/2)][1 − f (χ − a/2)]γ eγ z z < 0 and x � a/2

Pχ (a/2)[1 − f (χ − a/2)]γ eγ z z < 0 and x > a/2,

(65)

where the frequency of these transitions now is weighted by the probability of each potential well, as described by the
CDF Pχ (a/2) where Pχ (χ ) = ∫ χ

−∞ pχ (χ )dχ . These CDF weights provide consistency between the jump probability and the
asymmetry of the probability density about a/2 [e.g., Fig. 4(d)].
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FIG. 5. For the asymmetric double-well potential of Eq. (67), a simulated trajectory (line) and a comparison of the simulated distribution
(histogram bars) to the PDF of Eq. (48) (black line). The parameter values for the constitutive functions of m(χ ), λ2(χ ), and p̃z(z, χ ) are
a = 10 [L], β = 1.5 [L], k = 0.25 [1/T], λo = 0.35 [1/T], and γ = 0.04 [1/L], f (χ − a/2) = α, α = 49/50 [−], and ε = 0.5 [L].

For a small perturbation in the location of the drift, i.e.,

mε (χ ) = k

(
a

2
− χ + ε

)
, (66)

the double-well potential again becomes asymmetric [Figs. 4(d) and 5]. The corresponding potential function is found from
Eq. (49) with substitutions for mε (χ ) of Eq. (66), λ2(χ ) of Eq. (55), b2(χ ) of Eq. (57), i.e.,

φm(χ, ε) = φ2(χ ) + ε
2λoγ a

β2k

[
2

(
χ − a

2

)
+ 3ε

]
− ε

4λoγ a

β2k
ln[|a − 2(χ + ε)|] + k − λo

k
ln

[∣∣∣∣a − 2(χ + ε)

a − 2χ

∣∣∣∣
]
, (67)

where as indicated by the term ln[·], the double-well potential is no longer centered at a/2 and potential barrier is only of a finite
value when k = λo + 4ε2λoγ a

β2 (Fig. 5). This asymmetric potential, φm(χ ), not only corresponds to the perturbed drift of Eq. (66),
but also to a different state-dependent, two-sided exponential distribution of forcing inputs, i.e.,

p̃z(z, χ ) =

⎧⎪⎨
⎪⎩

f (χ − a/2)γ e−γ z z � 0( 〈λm〉
〈λ〉 �[ε] + [1 − Pχ (a/2)][1 − f (χ − a/2)]

)
γ eγ z z < 0 and x � a/2( 〈λm〉

〈λ〉 �[−ε] + Pχ (a/2)[1 − f (χ − a/2)]
)
γ eγ z z < 0 and x > a/2,

(68)

where the Heaviside step function �(·) is right continuous,
i.e., �(0) = 1, 〈λm〉 is the frequency at which a trajectory
crosses the location a/2 where the jump direction changes,
and 〈λ〉 is the average frequency of jumping from the larger
potential well. These average frequencies are given respec-
tively by

〈λm〉 = |mε (a/2)|pχ (a/2) (69)

〈λ〉 =
∫ a/2

−∞
λ2(χ )Ne−φm(χ,|ε|)dχ, (70)

where N is the normalization constant of Eq. (48). The first
expression describes the average rate at which the drift causes
a trajectory to cross a/2, while the second expression is the
average rate of jumping from the larger potential and crossing
back over a/2 (Fig. 5). The expression 〈λ〉 is for the larger

potential well as indicated by the absolute value |ε| within the
potential function.

Assuming the trajectories (e.g., Figs. 3 and 5) represent
particle movement, we may use the formula of Pope and
Ching of Eq. (52) to examine the particle dynamics in terms
of the ensemble average velocity squared and acceleration
of Eqs. (50) and (51). The ensemble average of the veloc-
ity squared may describe the average kinetic energy of the
particle, i.e., Ek = 1

2mp〈χ̇2|χ〉 for which mp is the mass.
Accordingly, the kinetic energy increases with the distance
from a/2. The ensemble average acceleration then describes
the power applied to the particle, i.e., Pw = mp〈χ̈ |χ〉m(χ ),
where mp again represents the particle mass. This repels
the particle away from a/2, and reaches a local maximum
right before the minima of each double-well potential, as
shown by the ensemble average acceleration [Fig. 6(a)]. The
symmetry of this acceleration mostly is controlled by the
symmetry of the frequency function. A small perturbation
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FIG. 6. The ensemble average acceleration of Eq. (51) for (a) the symmetric double well potentials �1(χ ) of Eq. (58) (black line) and
�2(χ ) of Eq. (59) (gray line) and (b) for the asymmetric double well potentials �λ(χ ) of Eq. (64) (black line) and �m(χ ) of Eq. (67) (gray
line). Parameter values are k = 0.1 [1/T], a = 10 [L], λo = 0.1 [1/T], β = 2 [L], γ = 2 [1/L], ε = 0.5 [L].

in the frequency produces large changes in the symmetry of
the acceleration [Fig. 6(b), black line]. Conversely, a small
perturbation in the drift, while altering the symmetry of the
potential function (Fig. 5), does not significantly change the
acceleration [Fig. 6(b), gray line].

V. A CLASS OF TRANSIENT SOLUTIONS FOR THE
STRATONOVICH INTERPRETATION

In the case of the Stratonovich jump interpretation, it also is
possible to solve Eq. (11) for a class of transient solutions. The
solutions are derived by starting with the transformed master
Eq. (43) and assuming a (y-dependent) linear drift, i.e.,

my (y) = m(η−1(y))
b(η−1(y))

= κy, (71)

where κ [1/T] is a generic constant that adjusts the drift. Note
that the drift, my (y), accommodates a variety of χ -dependent
drift functions, m(χ ), and jump functions, b(χ ), that satisfy
the following relationship, i.e.,

m(χ ) = κb(χ )
∫

1

b(χ )
dχ, (72)

where examples of the constant κ are given in Table I. In addi-
tion to Eq. (71), we assume a homogeneous Poisson process,
i.e., λ(η−1(y), t ) = λ, an exponential PDF of forcing inputs
given by Eq. (44), and an initial condition of py (y, 0, y0) =
δ(y − y0). We find a transient solution by converting the
master Eq. (43) with a laplace transform, solving the resulting
equation with the method of characteristics, and subsequently

inverting the Laplace transform solution [72,73], i.e.,

py (y, t, y0)

= e−λt δ(y − y0e
κt ) − λγ

κ
e−λt−γ (y−yoe

κt )

· (e−κt − 1) 1F1

(
1 + λ

κ
; 2; γ (y − y0e

κt )(1 − e−κt )

)

· �(y − y0e
κt ), (73)

where 1F1(·; ·; ·) is the confluent hypergeometric function of
the 1st kind, and �(·) is the Heaviside step function. The so-
lution in terms of the original state variable is pχ (χ, t, χ0) =
py (η(χ ), t, η(χ0))| dy

dχ
|
y=η(χ )

, i.e.,

pχ (χ, t, χ0)

= e−λt

|b(χ )|δ(η(χ )−η(χ0)eκt )− λγ

|b(χ )|κ e−λt−γ (η(χ )−η(χo )eκt )

· (e−κt−1) 1F1

(
1+λ

κ
; 2; γ (η(χ )−η(χ0)eκt )(1−e−κt )

)

· �(η(χ ) − η(χ0)eκt ), (74)

where the expression is a mixed distribution consisting a
continuous part and an atom of probability, which moves
along a trajectory as described by the argument of the δ

function, i.e., δ(η(χ ) − η(χo)e−κt ). Following the property of
Appendix A of Ref. [32], this δ function may be posed as
δ(χ−χn )
|g′(χn )| where g(χ ) = η(χ ) − η(χo)e−κt and χn is the root for
g(χn) = 0. Examples of various transient solution functions
are given in Table I.

TABLE I. Examples of transient solution functions.a

b(χ ) m(χ )b y = η(χ ) η−1(y ) κ

Ex. 1 βχn kχ
χ1−n

β(1−n) [(1 − n)yβ]
1

1−n k(1 − n)

Ex. 2 � + βχ k(� + βχ ) ln[|� + βχ |] ln[|�+χβ|]
β

eyβ−�

β
kβ

Ex. 3 βenχ k − e−nχ

nβ

1
n

ln [| − 1
nβy

|] −kn

Ex. 4 � + βenχ k(� + βenχ )(nχ − ln [|� + βenχ |]) nχ−ln [|�+βenχ |]
n�

− 1
n

ln [| e−n�y−β

�
|] k�n

aNote that β, �, and n are generic parameters of b(χ ), and k is a generic parameter of the drift, m(χ ).
bNote that the drift function is derived from Eq. (72).
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We also consider the limiting case where the y-dependent
drift simply is constant, i.e.,

my (y) = m(η−1(y))
b(η−1(y))

= κ, (75)

in which case m(χ )/b(χ ) = κ [L/T], and thus m(χ ) and
b(χ ) share the same functional dependency on χ . Similar
to the previous case, we also assume an initial condition of
py (y, 0, y0) = δ(y − y0), an exponential PDF of forcing in-
puts, and a homogeneous Poisson process, i.e., λ(η−1(y), t ) =
λ. We find the corresponding solution by posing the master
Eq. (43) in terms of Laplace transforms, solving the resulting
equation, and then transforming the solution with an inverse
Laplace transform [74], i.e.,

py (y, t, y0) = e−λt δ(y0 − y − κt )

+
√

γ λt

y0 − y − κt
I1[2

√
γ λ(y0 − y − κt )t]

· e−y0+y+γ κt−λt�(y0 − y − κt ), (76)

where I1[·] is the modified Bessel function of the first
kind [53]. With a change of variables, i.e., pχ (χ, t, χ0) =
py (η(χ ), t, η(χ0))| dy

dχ
|
y=η(χ )

, we retrieve the solution in terms

of the original state variable, i.e.,

pχ (χ, t, χ0) = e−λt

|b(χ )|δ(η(χ0) − η(χ ) − κt )

+ 1

|b(χ )|

√
γ λt

η(χ0) − η(χ ) − κt

· I1[2
√

γ λ(η(χ0) − η(χ ) − κt )t]

· e−η(χ0 )+η(χ )+γ κt−λt�(η(χ0) − η(χ ) − κt ),

(77)

and this solution describes a mixed distribution that consists
of a continuous part and an atom of probability (represented
by the Dirac δ function).

A. Soil salinity dynamics

The transient solutions just presented find use in modeling
the dynamics of soil salinity based on the assumptions of
previous models that only examined the steady-state condition
[e.g., 41,52]. We consider salt is deposited into the soil layer
at a constant rate ks and subsequently leaches in proportion
to the rainfall amount per storm event [Fig. 7(a)]. Over a
range of salt content w for which the normalized salt content
is χ = X/w, the proportional loss of salt may be captured
by the function b(χ ) = βenχ for which β = βs/w. Hence,
the normalized deposition of salt is k = ks/w, and the rep-
resentation follows the functions of Example 3 of Table I.
The probabilistic dynamics of the salt content, which may
be appreciated from looking at the ensemble of trajectories
[Fig. 7(b)], are described by the transient solution of Eq. (74),
as shown by Fig. 7(c).

Initially, over the first few years, the salt concentration is
tightly centered near the value of χ = 1

n
ln [eκt+nχ0 ], which

is the initial salt concentration relocated by the governing

FIG. 7. For the variable χ = X/w, (a) the constant drift, m(χ ) =
k, and state-dependent function, b(χ ) = βe−nχ , (b) realizations of
the transient dynamics, and (c) the continuous part of the transient
PDF pχ (χ, t, χ0) of Eq. (74). Though not shown, the PDF includes
an atom of probability of strength e−λt located at χ = 1

n
ln [eκt+nχ0 ].

Parameter values are λ = 0.17 d−1, w = 90 g, α = 0.2 cm, γ =
1/α cm−1, β = βs/w cm−1, βs = −1/en g cm−1, n = 1 [−], k =
ks/w d−1, ks = 0.03 g d−1 and χ0 = 0.05 [−].

dynamics. At around a decade, the salt concentration (per
unit area) shows significantly more variability in the range
of about ±5.6 g [Fig. 7(c) for which 5.6 = 0.062 × 90 g].
This variability will affect the time at which the soil re-
quires remediation to remove salt. From a decade onward,
the variability increases while the median value of the PDF
increases. Such behavior continues until approximate steady-
state conditions occur at around year 40. Thus, the tran-
sient PDF provides a basis for assessing the risk, costs,
and benefits of remediating the soil at different junctures
in time between the initial time and steady-state conditions
[Fig. 7(c)].
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VI. CONCLUSION

For systems forced by random jumps, i.e., shot noise, we
have provided a general theory for defining the jump transition
for both the Itô and Stratonovich interpretations of the jump
process. For the Stratonovich jump interpretation and an ex-
ponential PDF of forcing inputs, we have presented a steady-
state solution for the state variable PDF that is general to func-
tions for the deterministic drift, state-dependent recurrence
frequency of jumps, and state-dependent jump amplitudes.
This solution allows us to describe a jump process within a
double-well potential, where particle dynamics are forced by
an input with a two-sided exponential distribution that then
allows for anomalous jumps between the two potential wells.
We have shown that small perturbations in the deterministic
drift and the frequency of jumps create asymmetry between
the strength of the two potential wells. We also have derived
a class of transient solutions that are general to functions for
the deterministic drift and state-dependent jump amplitudes.
As demonstrated with soil salinity dynamics, the transient
solution provides a faster approach to assessing long term
behavior versus the typical approach involving more onerous
numerical simulations. In general, the processes investigated
here provide a framework for moving stochastic process de-
scriptions beyond the typical paradigms that assume noise
driven diffusion represented by Brownian motion.

It will be interesting to analyze the possibility of moving
beyond the typical Itô and Stratonovich jump interpretations.
For example, the jump process could be defined by directly
imposing two distributions that respectively describe the vari-
ability of the state variable before and after the jump. Such a
description naturally may be suited to representing stochastic
renewal and control processes. Work along these lines will
be presented elsewhere. Furthermore, even in steady state, the
jump process represents a system that never reaches equilib-
rium, i.e., there is an asymmetry in the timescale of drifting to
a state and jumping from a state. Because of this asymmetry,
the system does not balance (in detail) the frequency of
entering and exiting a particular state. Such a lack of a detail
balance and the associated nonequilibrium state are of par-
ticular interest in statistical mechanics. Future work thus will
consider the typical Brownian forcing in conjunction with a
jump process description that could reveal new paradigms for
a nonequilibrium steady state in stochastic thermodynamics,
which primarily assumes a Brownian motion [75].
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APPENDIX: JUMP PROCESS CONVERGENCE
TO A DIFFUSION PROCESS

For the case of b(χ, z) = b(χ )z, we show how the jump
process converges to a diffusion process that is described by
a Fokker-Planck equation with a state-dependent diffusion
coefficient. To show this convergence we expand the master
Eq. (11) components representing the jump forcing, i.e.,

−∂χJξ (χ, t ) = −pχ (χ, t )
∫ ∞

−∞
W (u|χ, t )du

+
∫ χ

−∞
W(·)(χ |u, t )pχ (u, t )du, (A1)

where W(·)(χ |u) represents either the Itô transition PDF,
WI (χ |u), of Eq. (18) or the Stratonovich transition PDF,
WS (χ |u), of Eq. (26). We link both cases to a diffusion
process with a Taylor series expansion of the second term of
Eq. (A1).

1. Itô description

For the Itô jump prescription, we introduce the jump tran-
sition by substituting for the antecedent state (before) a jump
event, i.e.,

u = χ − υ, (A2)

where υ = �χ is the jump transition. Upon substituting
Eq. (A2) into Eq. (A1) and accounting for a change of
variables for a probability distribution [e.g., 51], the jump
component is posed as an integration over υ, i.e.,

−∂χJξ (χ, t ) = −pχ (χ, t )
∫ ∞

−∞
W (χ − υ|χ, t )

∣∣∣∣ du

dυ

∣∣∣∣dυ

+
∫ ∞

0
WI (υ|χ − υ, t )pχ (χ − υ, t )

∣∣∣∣ du

dυ

∣∣∣∣dυ,

(A3)

where | du
dυ

| = 1 and WI (χ |u, t ) has become a PDF of υ

conditional on χ − υ, i.e.,

WI (υ|χ−υ, t )=λ(χ−υ, t )
∫ ∞

−∞
δ(υ − b(χ−υ )z)pz(z)dz,

(A4)

which is specific to the Itô transition PDF, WI (χ |u, t ), of
Eq. (18). The term W (χ − υ|χ, t ) often is given with the
notation W (χ,−υ, t ), i.e., conditional on being in the present
state χ there is a prior state at a distance −υ. The second term
WI (υ|χ − υ, t ) often is written as WI (χ − υ, υ, t ), i.e., con-
ditional on begin at the prior state χ − υ there is a transition
of size υ [40].

Recognizing the second term of Eq. (A3) is a function of
u [see Eq. (A2)], we pose WI (υ|χ − υ, t )pχ (χ − υ, t ) as a
Taylor-series expansion around a transition to χ , i.e.,

−∂χJξ (χ, t ) = −pχ (χ, t )
∫ ∞

−∞
W (χ − υ|χ, t )dυ

+
∫ ∞

0

∞∑
n=0

(−1)nυn

n!

∂n

∂χn
WI (υ|χ, t )pχ (χ, t )dυ,

(A5)
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where the distance from u is simply the negative jump
distance; accordingly, (−1)nυn = (u − χ )n. Integrating
WI (υ|χ, t ) over υ defines the jump moments given by

Mn(χ ) =
∫ ∞

0
υnWI (υ|χ, t )dυ = λ(χ, t )b(χ )n〈zn〉, (A6)

which follows from the sifting property of the δ function
within WI (υ|χ, t ) = λ(χ, t )

∫ ∞
0 δ(υ − b(χ )z)pz(z)dz. Note

that 〈zn〉 = ∫ ∞
0 znpz(z)dz, and WI (υ|χ, t ) is Eq. (A4) with

χ − υ replaced by χ based on the Taylor-series expansion. In
addition, the first term on the right-hand side of Eq. (A5), i.e.,

−λ(χ, t )pχ (χ, t ) = −pχ (χ, t )
∫ ∞

−∞
W (χ − υ|χ, t )dυ,

(A7)

cancels with the zero-order term of the expansion of Eq. (A5),
i.e.,

λ(χ, t )pχ (χ, t ) = (−1)0

0!

∂0

∂χ0
[M0(χ )pχ (χ, t )]. (A8)

Based on Eqs. (A6)–(A8), we may compactly pose
Eq. (A1) as

−∂χJξ (χ, t ) =
∞∑

n=1

(−1)n

n!

∂n

∂χn
[Mn(χ )pχ (χ, t )], (A9)

and this is the so-called Kramers-Moyal expansion that is
the basis of past derivations of the Fokker-Planck equation
[66,76]. Upon substitution of the jumps moments, Mn(χ ), the
Kramers-Moyal expansion for the Itô prescription of a marked
Poisson process is given by

−∂χJξ (χ, t ) =
∞∑

n=1

(−1)n

n!

∂n

∂χn
[〈zn〉λ(χ, t )b(χ )npχ (χ, t )].

(A10)

This jump description converges to a diffusion process under
the limiting scenario of the jump weights approaching zero,
i.e., z → 0, while the density of jump events increases, i.e.,
λ(χ, t ) → ∞, such that

lim
(λ,z)→(∞,0)

〈z2〉λ(χ, t ) = D(χ, t ), (A11)

where the state-dependent diffusion coefficient is given as

D(χ, t ) = 2Do

λ(χ, t )

λo

. (A12)

This diffusion results from noting that (1) the jump frequency
consists of a component independent of the state variable, i.e.,
λo = 1/to, (2) the jump frequency is equivalent to λ(χ, t ) =
λ(χ,t )
λoto

, and (3) in the limit of Eq. (A11), the mean-squared dis-
placement, 〈z2〉, converges to 2Doto, where Do is a diffusion
coefficient. For Eq. (A11), convergence to D(χ, t ) implies
that n � 3 terms are zero, i.e., 〈zn〉λ(χ, t ) → 0, because 〈zn〉
tends to zero faster than λ(χ, t ) tends to infinity, while if 〈z〉 	=
0, the n = 1 term is infinite, i.e., 〈z〉λ(χ, t ) → ∞, because
λ(χ, t ) tends to infinity faster than 〈z〉 tends to zero.

Thus, unless the jump magnitude PDF pz(z) is symmetric
about the origin (z = 0), convergence only occurs if the n = 1

term of Eq. (A10) is balanced by the drift, i.e.,

m(χ, t ) = mo(χ, t ) − 〈z〉λ(χ, t )b(χ ), (A13)

where mo(χ, t ) is a generic function and 〈z〉λ(χ, t )b(χ ) com-
pensates for the average rate of increase from the jump pro-
cess. For the drift of Eq. (A13) and ∂χJξ (χ, t ) of Eq. (A10),
the master Eq. (11) converges to a diffusion process under the
limit of Eq. (A11), i.e.,

∂tpχ (χ, t ) = − ∂

∂χ
[mo(χ, t )pχ (χ, t )]

+ 1

2

∂2

∂χ2
[D(χ, t )b(χ )2pχ (χ, t )], (A14)

and this is the Itô version of the Fokker-Planck for which the
first term on the right-hand side represents the deterministic
drift and the second term represents the diffusion process.
Note that the Fokker-Planck drift mo(χ, t ) is different than
the jump process drift of Eq. (A13) unless the PDF pz(z) is
symmetric about z = 0. The state-dependent diffusion coeffi-
cient D(χ, t) differs from previous derivations in which the
Poisson rate of jumping and thus the diffusion coefficient are
constants [e.g., 41,48].

2. Stratonovich description

Here we also show the jump process convergence to a
diffusion for the Stratonovich prescription of the jumps. For
the Stratonovich jump prescription of Eq. (26), we consider
Eq. (A1) under the change of variables given by Eqs. (40)–
(42). Following this change of variables, Eq. (A1) becomes

−∂yJξy
(y, t ) = −py (y, t )

∫ η(∞)

η(−∞)
W (u|y, t )du

+
∫ y

η(−∞)
WS (y|u, t )py (u, t )du, (A15)

where the transformed transition PDFs are given by

W (u|y, t ) = W (u|η−1(y), t ) (A16)

WS (y|u, t ) = λ(η−1(u), t )
∫ ∞

−∞
δ(y − u − z)pz(z)dz,

(A17)

for which the last expression is derived from the Stratonovich
transition PDF of Eq. (26), WS (χ |u, t ). Equation (A15) is
derived from Eq. (A1) by substituting for pχ (χ, t ) based
on Eq. (42), substituting for χ with Eq. (41), substituting
∂χJξ (χ, t ) = dy

dχ
∂yJξy

(y, t ), and then multiplying both sides

by dχ

dy
. This derivative is given by

dχ

dy
= dη−1(y)

dy
= b(η−1(y)), (A18)

which is based on the property for the derivative of an in-
verse function, i.e., d

dy
η−1(y) = d

dx
[1/η(χ )]|χ=η−1(y). Similar

to Itô prescription, we then introduce the jump transition into
Eq. (A15) by substituting for the antecedent value given by

u = y − υ. (A19)
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Subsequently, we expand Eq. (A15) around a transition to y,
as was done for the Itô prescription of the previous section.

The methodology for expanding Eq. (A15) is the same as in
previous Itô case, and the resulting expansion is the Kramers-
Moyal expansion of Eq. (A9), but in terms of the variable
y. For this Kramers-Moyal expansion, the jump moments are
given by

Mn(y) =
∫ ∞

0
vnWS (υ|y, t )dυ = λ(η−1(y), t )〈zn〉, (A20)

where 〈zn〉 = ∫ ∞
0 znpz(z)dz and WS (υ|y, t ) = λ(η−1(y), t )∫ ∞

0 δ(v − z)pz(z)dz. This term WS (υ|y, t ) is Eq. (A17)
with a substitution for u based on Eq. (A19), after which
λ(η−1(y − υ ), t ) is replaced with λ(η−1(y), t ) because of the
Taylor series expansion around a transition to y. Accordingly,
based on Eqs. (A20) and (A9) in terms of y, the expansion for
the transformed jump process is given by

−∂yJξy
(y, t ) =

∞∑
n=1

(−1)n

n!

∂n

∂yn
[〈zn〉λ(η−1(y), t )py (y, t )].

(A21)

However, in Eq. (A21), the frequency, λ(η−1(y), t ), represents
a multiplicative function. Consequently, for consistency with
the Stratonovich jump interpretation, this frequency must be
merged into a new variable, i.e.,

ŷ = η̂(χ ) =
∫

1

b(χ )
√

λ(χ, t )
dχ, (A22)

where accordingly χ = η̂−1(ŷ) and pχ (χ, t )=pŷ (ŷ, t )| dŷ

dχ
|,

and now

dχ

dŷ
= dη̂−1(ŷ)

dŷ
=

√
λ(η̂−1(ŷ), t )b(η̂−1(ŷ)). (A23)

Based on this change of variables, Eq. (A21) is posed as

−∂ŷJξŷ
(ŷ, t)=

∞∑
n=1

(−1)n

n!

∂n

∂ŷn

[√
λ(η̂−1(ŷ), t )

2−n〈zn〉pŷ (ŷ, t )
]
,

(A24)

for which the corresponding ŷ-dependent drift is given as
mŷ (ŷ, t ) = m(η̂−1(ŷ ))

b(η̂−1(ŷ ))
√

λ(η̂−1(ŷ ),t )
. After transforming Eq. (A24)

with a change of variables following Eqs. (A22) and (A23),
we recover the Kramers-Moyal expansion for the Stratonovich

jump prescription, i.e.,

−∂χJξ (χ, t ) =
∞∑

n=1

(−1)n

n!

1√
λ(χ, t )b(χ )

(√
λ(χ, t )b(χ )

∂

∂χ

)n

[〈zn〉
√

λ(χ, t )
3−n

b(χ )pχ (χ, t )
]
, (A25)

where pŷ (ŷ, t ) = pχ (χ, t ) dχ

dŷ
,

√
λ(χ, t )b(χ ) = dχ

dŷ
,(√

λ(χ, t )b(χ ) ∂
∂χ

)n = ∂n

∂ŷn , and Eq. (A25) is based on

recognizing ∂ŷJξŷ
(ŷ, t ) = dχ

dŷ
∂χJξ (χ, t ) and multiplying both

sides of Eq. (A24) by dŷ

dχ
. When λ(χ, t ) is a constant, the

terms of Eq. (A25) may be rearranged so the expression is
equivalent to the form given by Eq. (D5) of Ref. [41].

We now consider the convergence of Eq. (A25) under the
limit of Eq. (A11), i.e., infinite jump events as the forcing
weights approach zero, z → 0. Similar to the Itô case, un-
less the forcing input PDF, pz(z), is symmetric about the
origin (z = 0), convergence only occurs if the n = 1 term of
Eq. (A25) is balanced by the drift, i.e.,

m(χ, t ) = mo(χ, t ) − 〈z〉λ(χ, t )b(χ ), (A26)

where similar to the Itô drift of Eq. (A13), the drift is based
on λ(χ, t ). For the Stratonovich version of ∂χJξ (χ, t ) of
Eq. (A25) and the drift term of Eq. (A26), the master Eq. (11)
under the limit of Eq. (A11) converges to a diffusion process
description, i.e.,

∂tpχ (χ, t )

= − ∂

∂χ
[mo(χ, t )pχ (χ, t )]

+ 1

2

∂

∂χ

{√
D(χ, t )b(χ )

∂

∂χ
[
√

D(χ, t )b(χ )pχ (χ, t )]

}
,

(A27)

which is the Stratonovich version of the Fokker-Planck equa-
tion where D(χ, t ) is given by Eq. (A12) and follows from
the Eq. (A11) limit of 〈z2〉λ(χ, t ). Note that the drift for
the corresponding jump process is given by Eq. (A26) and
is different than the Fokker-Planck drift term unless pz(z) is
symmetric about z = 0. In both Fokker-Planck Eqs. (A14)
and (A27), the diffusion coefficient D(χ, t ) has the same
dependence on the jump frequency, λ(χ, t ).
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