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We study the number P (n) of partitions of an integer n into sums of distinct squares and derive an integral
representation of the function P (n). Using semiclassical and quantum statistical methods, we determine its
asymptotic average part Pas (n), deriving higher-order contributions to the known leading-order expression [Tran
et al., Ann. Phys. (NY) 311, 204 (2004)], which yield a faster convergence to the average values of the exact
P (n). From the Fourier spectrum of P (n) we obtain hints that integer-valued frequencies belonging to the
smallest Pythagorean triples (m,p, q ) of integers with m2 + p2 = q2 play an important role in the oscillations of
P (n). We analyze the oscillating part δP (n) = P (n) − Pas (n) in the spirit of semiclassical periodic orbit theory
[M. Brack and R. K. Bhaduri: Semiclassical Physics (Westview, Boulder, 2003)]. A semiclassical trace formula
is derived which accurately reproduces the exact δP (n) for n � 500 using ten pairs of orbits. For n � 4000
only two pairs of orbits with the frequencies 4 and 5, belonging to the lowest Pythagorean triple (3,4,5), are
relevant and create the prominent beating pattern in the oscillations. For n � 100 000 the beat fades away and
the oscillations are given by just one pair of orbits with frequency 4.

DOI: 10.1103/PhysRevE.98.052131

I. INTRODUCTION

Consider a one-dimensional trap with an integer-valued
quantum spectrum. The problem of counting the number of
excited states at a given energy E is the same as writing
an integer as a sum of its parts. For example, partitioning
the excitation energy in a harmonic spectrum is the same as
partitioning an integer into a sum of other integers. Similarly,
partitioning the excitation energy in a one-dimensional box
with infinitely steep reflecting walls corresponds to partition-
ing an integer into sums of squares of integers [1]. This con-
nection leads to a link between number theory and statistical
mechanics. A partition may be fully unrestricted, allowing
all possible sums with repetitions (bosonic), or allowing only
distinct entries in the summands (fermionic). It may also be
restricted by allowing only a fixed number N of summands in
each partition.

Asymptotic formulas for large n are known following the
work of Hardy and Ramanujan [2] and are found in many
textbooks (see, e.g., [3]). This year marks the centenary of the
publication of the famous paper by Hardy and Ramanujan [2],
and it is appropriate to study the problem further. In particular,
it is worthwhile to examine the number P (n) of partitions of
an integer n into sums of distinct squares (hereafter called
F2 partitions), which contain some unique features. As was
pointed out in Ref. [1], the exact function P (n) for distinct
square partitions exhibits pronounced oscillations with a beat-
like structure when the points are joined by a continuous
curve, as shown in Fig. 1 (cf. also Figs. 2 and 3 below).

*matthias.brack@ur.de

It is interesting to note that the beat structure eventually
fades out for n � 100 000 (as shown in Sec. V), while the
oscillations persist even as n → ∞. Where are these regular
oscillations coming from? Consider an integer n that is a sum
of squares n = m2 + p2. If n itself is a square n = q2, then the
three numbers m, p, and q form what is commonly called a
Pythagorean triple (PT) of integers (m,p, q ) with m2 + p2 =
q2. Such triples can only occur in square partitions, since
Fermat’s last theorem [4] asserts that only squares of integers
may be written as sums of two (or more) other squares. Since
an increasing number of such triples will occur in the F2 par-
titions with increasing n, it is quite plausible that they reflect
themselves in the oscillatory behavior of the function P (n).

In semiclassical physics [5,6], oscillatory behavior in the
quantum-mechanical density of state of a dynamical system
is described by a superposition of the periodic orbits of the
corresponding classical system. The quantitative link between
the quantum and classical description is called a trace formula
[5]. In many examples it has been shown [6] that the gross
features of quantum oscillations may be interpreted in terms of
the shortest periodic orbits of the system, whose interference
often leads to beating patterns. One of the goals of the
present paper is to find a semiclassical trace formula for the
oscillations in P (n).

As mentioned above, F2 partitions express an integer n as a
sum of distinct squares. This is analogous to the distribution of
the total energy E = n = m2

1 + m2
2 + · · · among unrestricted

numbers of Fermions in a one-dimensional box whose spec-
trum is given by the squares of integer quantum numbers mi

(when all scales are set to unity). Thus we can map the F2
partitions onto a dynamical system in which fermions move
in a one-dimensional box. This allows us to use the language
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FIG. 1. Plot of P (n) of the F2 partitions, shown in the low-n
region. Note that P (n) is given for integer values of n. Here we
have joined the points by a continuous curve to emphasize the beat
structure.

of dynamical systems, with the notion of energy and its
conjugate variable defined in Fourier space, the (time) period.
The inverse of the period is then the frequency of the classical
orbit in the dynamical system (though all these quantities
are dimensionless in the present case). We will demonstrate
that the orbits with the frequencies 4 and 5 that occur in the
smallest PT (3,4,5) are sufficient to reproduce the beating
oscillations in δP (n) = P (n) − Pas (n) of the F2 partitions
for n � 4000. For smaller n, more orbits, among them with
frequencies 12 and 13 contained in the PT (5,12,13), are
needed to reproduce δP (n), while in the asymptotic domain
n � 100 000, where the beat fades away, the orbits with
frequency 4 alone reproduce the correct oscillations.

Our paper is structured as follows. Section II contains our
basic definitions and some formal results. Among them is an
integral representation of P (n) that later serves as a starting
point for our semiclassical studies. In Sec. III we focus on the
asymptotic smooth part Pas (n). We use the stationary-phase
method not only for rederiving the leading-order asymptotic
expression P (0)

as (n) given in [1], but also to find saddle-point
corrections which lead to a faster convergence of Pas (n)
to the average of the exact P (n). We show that the limit
P (n)/Pas (n) → 1 is practically reached for n ∼ 10 000.
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FIG. 2. Bessel-smoothed partition density g(1)(E) [Eq. (20)]
(black line) for small energies E. The red crosses at integer values
of E = n show the exact values of P (n).
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FIG. 3. Same as in Fig. 2 for larger energies E.

In Sec. IV we present the Fourier spectrum of P (n). We
classify the leading peaks of the F2 spectrum into successive
generations with decreasing intensities and observe a domi-
nant presence of pairs of Fourier peaks whose frequencies are
related to PTs. This suggests that the main oscillations in P (n)
may indeed be governed by the smallest PTs.

Finally, in Sec. V, we focus on the oscillating part δP (n).
Using stationary-phase integration over a few leading saddles
in the complex β plane that correspond to the dominating
Fourier peaks, we derive a semiclassical trace formula for
δP (n). The results converge very fast upon including suc-
cessive generations of orbits. In fact, the exact δP (n) is
reproduced by the trace formula already for n � 4000 using
only the orbits with the frequencies 4 and 5 appearing in the
PT (3,4,5). The rapid oscillations in δP (n) have roughly the
period of the orbit with the largest amplitude (frequency 4),
while the period of the beating amplitude is given by the
inverse difference 20 of their frequencies.

In Appendix A we explain details of the saddle-point
corrections for the smooth part of the partition density and
in Appendix B we illustrate the stationary-phase integration
method in the complex plane as a tool for evaluating asymp-
totic oscillations for the model case of the Airy function.

II. BASIC DEFINITIONS AND FORMAL RESULTS

A. Unrestricted square partitions

The function P (n) counts the number of ways in which a
given integer n can be written as a sum of distinct squares of
positive integers mi ,

n =
In∑

i=1

m2
i , mi �= mj for i �= j. (1)

Hereby the number In of summands is not specified. It may
start from In = 1, in which case m1 is the largest integer less
than or equal to

√
n. The highest In is limited by the value of n

itself and may be found from summing the lowest In distinct
squares so that

In∑
i=1

i2 = In(In + 1)(2In + 1)/6 � n. (2)

052131-2



SEMICLASSICAL ANALYSIS OF DISTINCT SQUARE … PHYSICAL REVIEW E 98, 052131 (2018)

This leads, for large n, to the upper limit

In � (3n)1/3 − 1/2 + O(n−1/3). (3)

Each particular sum (1) is called a partition of n into squares.
The word distinct implies that all mi within each partition
must be different. This is analogous to the distribution of
single-particle energies among fermions in statistical mechan-
ics at a given total energy. We therefore use the acronym F2
for these partitions, where F stands for fermionic and 2 for
squares. The word “unrestricted” specifies the fact that the
number In in (1) is not fixed. We define P (0) = 1 and trivially
one sees that P (1) = 1. The infinite series of numbers given
by P (n) for n = 0, 1, 2, . . . is called the series A033461 in
the on-line encyclopedia of integer sequences [7]. Its first ten
members are 1, 1, 0, 0, 1, 1, 0, 0, 0, 1.

The partition function Z(β ) for the unrestricted F2 parti-
tions was given in [1] in several forms. We may obtain it as
a generating function, which for any given partition P (n) is
defined as

Z(β ) =
∞∑

n=0

P (n)e−nβ. (4)

For the F2 partitions it becomes (cf. Table 14.1 of [3])

Z(β ) =
∞∏

m=1

[1 + e−m2β], (5)

which was also used to generate our database for the P (n) up
to n = 160 000.

In the following we write the complex variable β as

β = x + iτ, x, τ ∈ R, (6)

where x and τ are dimensionless real variables. Note that
(5) can be viewed as a fermionic canonical grand partition
function with chemical potential μ = 0. Therefore, there is
no constraint on the average particle number N which may
go up to infinity. Its single-particle spectrum is given by
integer squares, as for a particle in an infinite square box (with
dimensionless energy and spatial units).

The inverse Laplace transform of Z(β ) yields the partition
density g(E),

g(E) = L−1
E [Z(β )] = 1

2πi

∫
C

Z(β )eEβdβ. (7)

Here E is a dimensionless real variable. We choose here the
symbol E because of its relation to the energy in the context of
statistical physics, where g(E) is the level density (or density
of states) of a system of independent particles.

The contour C in (7) runs parallel to the imaginary axis τ

with a real part x = ε > 0, so we may write

g(E) = 1

2π

∫ +∞

−∞
Z(ε + iτ )eE(ε+iτ )dτ, ε > 0. (8)

The (two-sided) Laplace transform of g(E) gives back the
partition function Z(β ),

Lβ[g(E)] =
∫ +∞

−∞
g(E)e−EβdE = Z(β ). (9)

Using the form (4), the density of F2 partitions is immediately
found to be

g(E) =
∞∑

n=0

P (n)δ(E − n), (10)

where δ(E − n) is the Dirac delta function peaked at E = n.
In order to recover the P (n) from the partition density (10),

we just have to integrate it over a small interval around E = n,

P (n) =
∫ n+a

n−a

g(E)dE, 0 < a < 1. (11)

If we choose a = 1/2, Eq. (11) corresponds to an averaging of
g(E) over a unit interval �n = 1 around n. Averaging g(E)
over larger intervals �E therefore corresponds to averaging
the P (n) over some larger interval �n,

〈g(E)〉�E ∼ 〈P (n)〉�n. (12)

This property will be used in Sec. III to evaluate the asymp-
totic part of P (n).

For our following investigations, we rewrite (5) in the form

Z(β ) = exp

{
M∑

m=1

ln[1 + e−m2β]

}
. (13)

In principle, M is infinity according to Eq. (5). However,
when calculating the partition density g(E) using the Laplace
inverse (9) at finite E, we have, for the reason given after
Eq. (1), the restriction

M (E) = [
√

E], (14)

where [
√

E] denotes the largest integer M contained in
√

E.
We note that Z(β ) in (13) has no poles on the right half β

plane, including the imaginary axis as long as M (E) is finite.
We may therefore shift the contour C onto the imaginary axis
(i.e., choose ε = 0) and write the inverse Laplace transform
(7) as

g(E) = 1

2π

∫ +∞

−∞
Z(iτ )eiEτ dτ

= 1

2π

∫ +∞

−∞
exp{iEτ + ln Z(iτ )}dτ. (15)

Since the imaginary part of the integrand above is antisym-
metric with respect to τ = 0, the result g(E) becomes real,
as it must be, and we only need to retain the real part of the
integral

g(E) = 1

2π

∫ +∞

−∞
Re exp{iEτ + ln Z(iτ )}dτ. (16)

We next define the Fourier transform (FT) of g(E) by

Fτ [g(E)] =
∫ +∞

−∞
g(E)e−iEτ dE = F (τ ). (17)

Note that E and τ are a pair of conjugate dimensionless
variables. Comparing (9) and (17), we can write F (τ ) as

F (τ ) = Z(iτ ), (18)

i.e., F (τ ) is given by the values of Z(β ) along the imaginary
axis τ . This is a general property valid for any partition
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function Z(β ) which has no poles on or to the right of the
imaginary axis. The absolute value of F (τ ), inserting the
partition function (13) into (18), becomes

|F (τ )| = exp{Re ln Z(iτ )}. (19)

This Fourier spectrum will be studied numerically in Sec. IV.

B. Integral representation of P (n)

We start from the expression (15) for the Laplace inversion
of Z(β ). We now formulate the following lemma.

Lemma. The Laplace inversion integral (15) limited to the
interval τ ∈ (−kπ,+kπ ) with k = 1, 2, . . . yields a sum of
Bessel functions weighted by P (n) such that its value at
E = n is kP (n):

g(k)(E) = 1

2π

∫ +kπ

−kπ

eiEτZ(iτ )dτ

= k

∞∑
n=0

P (n)j0[kπ (E − n)], k = 1, 2, 3, . . . .

(20)

Proof. For finite k, we use the form (4) of Z(β ) and
the integration yields immediately Eq. (20). Since j0(0) = 1,
we get

g(k)(E = n) = kP (n), (21)

as claimed at the end of the lemma. Q.E.D.
In the limit k → ∞, the Bessel functions become delta

functions (see, e.g., Ref. [8])

lim
k→∞

{kj0[kπ (E − n)]} = δ(E − n). (22)

Therefore, the limit k → ∞ yields the exact partition density
as it should:

lim
k→∞

g(k)(E) =
∞∑

n=0

P (n)δ(E − n) = g(E). (23)

The function g(1)(E) in (20) represents a smooth interpola-
tion curve through the exact values P (n) at E = n, which we
like to call a Bessel-smoothed partition density. It is shown in
Figs. 2 and 3.

Setting E = n in (20) with k = 1, we obtain the following
integral representation of P (n):

P (n) = 1

2π

∫ π

−π

ReeinτZ(iτ )dτ

= 1

2π

∫ π

−π

Re exp

⎡
⎣inτ +

[
√

n]∑
m=1

ln(1 + e−im2τ )

⎤
⎦dτ.

(24)

This integral formula is one of the central results of our paper.
It will be the starting point in Sec. V C for the derivation of a
semiclassical trace formula for the oscillations in P (n).

C. Continuous trace formula for g(E)

We rewrite the real part of the exponent in (16):

g(E) = 1

2π

∫ +∞

−∞
exp[Re ln Z(iτ )]

× cos[Eτ + Im ln Z(iτ )]dτ. (25)

Using (19), we obtain the expression for the partition density

g(E) = 1

2π

∫ +∞

−∞
|F (τ )|cos[Eτ + φ(τ )]dτ, (26)

where the phase function φ(τ ) is given by

φ(τ ) = Im ln Z(iτ ) =
[
√

E]∑
m=1

arctan

[ − sin(m2τ )

1 + cos(m2τ )

]
. (27)

In its structure, the expression (26) resembles a semiclas-
sical trace formula (see [6] for more details), with amplitudes
given by the Fourier spectrum |F (τ )|, actions by Eτ , periods
by τ , and phases by φ(τ ). The difference compared to the
standard trace formulas [5,6] is that here we do not have a
discrete sum, but a continuous integral over periodic orbits
labeled by the period variable τ . We call Eq. (26) a continuous
trace formula for the density g(E) of F2 partitions. Note that
it is exact, since no approximation has been made whatsoever
in deriving it. It is in fact a general result for any level density
g(E), provided one knows its Fourier spectrum |F (τ )| and
its Laplace transform on the imaginary axis τ . Unless these
ingredients are known analytically, Eq. (26) is of no practical
use. The only exact case we found is the example of the one-
dimensional harmonic oscillator without zero point energy. It
has the single-particle spectrum En = n (n = 0, 1, 2, . . . ) and
corresponds to P (n) = 1. Its Fourier peaks are at τk = 2πk

with φ(τk ) = 0, so (26) reproduces the exact trace formula
given in [6], Eq. (3.40):

gHO(E) = 1 + 2
∞∑

k=1

cos(2πkE). (28)

Equation (26) gives us, however, a hint as to how a trace
formula with discrete orbits and periods would look. In
Sec. V C we will use a semiclassical approach for its
realization.

III. ASYMPTOTIC EXPANSION OF
THE SMOOTH PART OF g(E)

In this section we briefly rederive the leading asymptotic
form Pas (n) of the square partitions, given already in [1],
and then obtain a series of next-to-leading-order contributions
which yields a faster convergence to the average values of the
exact P (n). We closely follow the method used in Refs. [1,9].
As stated above in (12), averaging over g(E) yields an average
of P (n). Therefore, the results of the smooth asymptotic part
of g(E) can be identified with that of P (n) when E is taken
as an integer n.
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A. Leading asymptotic form g(0)
as (E)

We rewrite the inverse Laplace transform in Eq. (7) for the
function g(E) in the form

g(E) = L−1
E [Z(β )] = 1

2πi

∫
C

eS(E,β )dβ, (29)

where S(E, β ) is given by

S(E, β ) = Eβ + ln Z(β ), (30)

which is often called the entropy. We now derive the asymp-
totic smooth part of g(E) by performing the inverse Laplace
transform (29) by saddle-point integration. The asymptotic
smooth part for large E comes from the neighborhood of a real
saddle point in the complex β plane, lying near the imaginary
axis. Doing the Laplace integral over such a saddle point by
the method of stationary phase should yield the asymptotic
smooth part of g(E). Hereby we can approximate the sum
over m in (13) using the Euler-Maclaurin expansion [10],
yielding

S(E, β ) 
 Eβ +
∫ ∞

0
dq ln[1 + e−q2β] − 1

2 ln(2). (31)

Doing the integration [11], we obtain, for real β = x,

S(E, x) 
 Ex + �
(

3
2

)
η
(

3
2

)
√

x
− 1

2
ln(2),

η

(
3

2

)
=

∞∑
l=1

(−1)l−1

l3/2
, (32)

where η(z) is the Dirichlet eta function. To find a real saddle
point (SP) x0, we have to solve the SP equation

S1(E, x0) = ∂S(E, x)

∂x

∣∣∣∣
x0

= E − D

2x
3/2
0

= 0,

D = �

(
3

2

)
η

(
3

2

)
= 0.678 093 895. (33)

Here Si (E, x) denotes the ith partial derivative of S(E, x)
with respect to x at fixed E. This yields the solution for the
SP x0 at each energy E:

x0(E) =
[

D

2E

]2/3

= λ0E
−2/3,

λ0 =
(

D

2

)2/3

= 0.486 227 919. (34)

Doing the contour integral over τ parallel to the imaginary
axis in the stationary-phase approximation yields

g(0)
as (E) = exp[S(E, x0)]√

2π |S2(E, x0)| =
√

λ0

6π
E−5/6 exp(3λ0E

1/3),

(35)

so, using the property (12),

P (0)
as (n) =

√
λ0

6π
n−5/6 exp(3λ0n

1/3). (36)

This is the leading-order asymptotic form of P (n) given
already in Ref. [1] (where our present λ0 was called λ2).

6.2x1012

6.3x1012

6.4x1012

6.5x1012

P(
n)
,P
as
(n
)

19920 19940 19960 19980 20000
n

FIG. 4. Plot of the exact P (n) (red crosses), leading-order
asymptotic part P (0)

as (n) [Eq. (36)] (green dashed line), and corrected
asymptotic part Pas (n) [Eq. (37)] (blue solid line) in the large-n
region.

B. Higher-order contributions to g(0)
as (E)

In Appendix A we derive higher-order saddle-point con-
tributions to the result (35), yielding a better asymptotic form
gas (E) up to third order as given in (A24). For the F2 partition
counting function, this yields

Pas (n) =
√

λ0

6π
n−5/6e3λ0n

1/3
[1−c1n

−1/3 − c2n
−2/3−c3n

−1],

(37)

with the coefficients c1, c2, and c3 given in Eqs. (A25) and
(A26). In Fig. 4 we show the leading approximation P (0)

as (n)
(dashed line) and the improved result Pas (n) using (37) (solid
line). The latter is seen to give excellent agreement with the
average through the exact P (n).

Figure 5 shows that the relative amplitude of the oscilla-
tions decreases exponentially with n, as given more quan-
titatively in Eq. (55) below, and that the ratio P (n)/Pas (n)
reaches unity at n � 10 000. The improved asymptotic form
(37) thus brings a substantial improvement over the leading-
order term P (0)

as (n) for which the limit P (n)/Pas (n) → 1 is
not reached (see also Ref. [7]). For n � 100 000 we found that
the truncated series with three terms in (37) does not converge
fast enough; we will return to this point at the end of Sec. V C.
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P(
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/P
as
(n
)

0 2000 4000 6000 8000 10000
n

FIG. 5. Ratio P (n)/Pas (n) showing that Pas (n) in (37) including
the SP corrections reaches correctly the average values of P (n) in
the large-n limit: P (n)/Pas (n) → 1.
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FIG. 6. Fourier spectra |F (f )| using Z(β ) in (4) versus fre-
quency f . The cutoff of the n sum in (38) is, from top to bottom,
nmax = 300, 4000, and 20 000.

IV. FOURIER ANALYSIS OF g(E)

In order to understand the oscillating part of P (n) we now
investigate the Fourier spectrum (19) of the F2 partitions. We
will use both forms given in Eqs. (4) and (13) for Z(β ) and
plot the results versus the frequency f = 2π/τ .

A. Fourier spectra using Eq. (4)

We first look at the Fourier spectra obtained from (4) with
a linear cutoff given by

F (f ) =
nmax∑
n=0

P (n)e−2πin/f (1 − n/nmax). (38)

Figure 6 shows the results for |F (f )| with, from top to bottom,
nmax = 300, 4000, and 20 000 in the region 2 � f � 20
(normalized to unit intensity at f = 1). The spectra are clearly
cutoff dependent and reveal a varying number of visible
frequencies in the different regions of n. For the lowest cutoff,
the peaks are becoming more diffuse with increasing f , but
we clearly find many more frequencies than for the higher
cutoffs. For nmax = 300 we recognize peaks, with varying
intensities, near the frequencies f = 4, 5, 12, and 13 (besides
others). Interestingly, these numbers belong to the lowest PTs
(3,4,5) and (5,12,13). This gives us a hint that the spectrum
of P (n) is dominated by the lowest PTs. For nmax = 4000,
the peaks at f = 4 and 5 dominate, while only tiny hints of
the other frequencies can be seen. For nmax = 20 000 no more
trace is left of the other frequencies, and the frequency 4 is
clearly dominating over f = 5. The tendency that a decreas-
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FIG. 7. Close-up of the scaled ln |F (f )| near the frequency f =
2π/τ = 5, shown for M = 500 (green dashed line), M = 1000 (blue
dash-dotted line), and M = 5000 (red solid line). The horizontal
dotted line gives the theoretical peak height according to Table I.

ing number of frequencies is important with increasing n will
be confirmed in Sec. V by the semiclassical interpretation of
the oscillations in P (n).

B. Fourier spectra using Eq. (13)

Because of the bad resolution of the above spectra for small
n, we now investigate the FT spectra that we obtain using
Eq. (13) for Z(β ). Their frequency information is in principle
the same, but the peaks turn out to be much cleaner, allowing
us to identify their exact frequencies f and to compare their
relative intensities.

We first discuss the dependence on the upper limit M of
the m summation in (13). We argue that |F (f )| actually is
a distribution function with infinite peaks at many integer or
rational values of f . It therefore has to be normalized in some
suitable way.

1. Normalization of |F( f )|
In Fig. 7 we show the intensity of |F (f )| in a close-up near

a peak at f = 5. Shown are the curves for increasing values of
the upper limit M of the m summation, namely, for M = 500,
1000, and 5000 (from top to bottom). The horizontal line
gives the calculated value 0.7554 of the scaled intensities (see
Table I below). We see that with increasing M , the curves
become narrower, and in the limit M → ∞, we can take the
local spectrum to be a (renormalized) δ function peaked at
f = 5.

The normalization of the curves in all figures has been
chosen in the following way. It is easy to see that for τk =
2kπ with integer k, the exponential in Eq. (13) becomes
unity, so we obtain |F (τk )| = exp(M ln 2). Below we will
call the peaks at τk = 2kπ (i.e., fk = 1/k) the generation 0
peaks, which on a logarithmic scale have the intensity ln I0 =
M ln 2. In all figures we therefore show the scaled function
ln |F (f )|/ ln I0 so that the generation 0 peaks have the height
unity (even if not seen for f � 2).
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TABLE I. Successive generations g of Fourier peaks, their pe-
riods τg , frequencies fg , and scaled relative intensities Ig . The
constants λg , μg , κg , and ϕg are defined and discussed in Sec. V.

g τg fg ln Ig/ln I0 λg μg κg ϕg

0 0 1a 1.0 0.48622 0 3.085 0
1 2π/5 5 0.7554 0.37444 0.0000 4.006 0.0000
2 2π/4 4 3/4 0.400 0.1999187 3.352 − 0.2318
3 2π/13 13 0.6072 0.30743 0.0000 4.877 0.0000
4 6π/13 13/3 0.6072 0.30743 0.0000 4.877 0.0000
5 8π/13 13/4 0.6072 0.30743 0.0000 4.877 0.0000
6 6π/16 16/3 0.5964 0.3200 − 0.154191 4.219 0.2242
7 10π/16 16/5 0.5964 0.3200 0.154191 4.219 − 0.2242
8 2π/12 12 0.5667 0.3129 0.1606108 4.264 − 0.2358
9 22π/48 48/11 0.4158 0.245 − 0.14152 6.502 0.2542
10 2π/3 3 0.3333 0.2847 0.364242 3.244 − 0.4538

aThe frequency f0 = 1 corresponds to τ = 2π , which also belongs
to generation 0.

2. Numerical Fourier spectra |F( f )|
Figure 8 shows the Fourier spectrum as a function of

the frequency f = 2π/τ , plotted for 2 � f � 22 with the
normalization defined above. The peaks are very sharp. We
find peaks located exactly at f = 3, 4, 5, 9, 12, 13, 16, 20,
and 21; all other peaks in this interval appear at rational
frequencies. We can now classify the peaks into generations
with decreasing intensities, as listed in Table I below. The
vertical scale of Fig. 8 was selected such that the peaks
of the generations 1–10 can be clearly differentiated; their
theoretical scaled intensities as given in Table I are shown by
the horizontal dashed lines.

Figure 9 shows the same for f up to 105. Many more
integer-valued frequencies appear. We notice in particular the
dominating intensities of peak pairs with the frequencies (4,5),
(12,13), (28,29), (36,37), (60,61), (84,85), and (100,101).
Four of them appear as the largest numbers in PTs, namely,
in (3,4,5), (5,12,13), (11,60,61), and (13,84,85). The numbers
28, 29, and 101 appear isolated in other PTs.

We have thus found strong evidence that the PTs play a
dominant role in the spectrum and hence also the oscillations
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FIG. 8. Scaled Fourier transform ln |F (f )| of g(E) on a loga-
rithmic vertical scale. The horizontal dashed lines give the calculated
relative intensities of the first ten generations.
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FIG. 9. Same as Fig. 8 over a larger range of the frequency f .

of P (n). This will indeed be confirmed quantitatively by the
semiclassical trace formula derived and discussed in Sec. V.

For reasons that become evident in Sec. V, we will now
map the interval τ ∈ (0, 2π ) on the interval τ ∈ (−π,+π ).
The Fourier spectrum then is symmetric about τ = 0, with the
peak pairs of each generation appearing with opposite signs
of τ .

Table I presents the first ten generations of Fourier peaks
and their properties; for the periods τg only the positive
values are given. Generation 0 creates the smooth part P (0)

as ,
as discussed in Sec. III A. For convenience and brevity, the
constants λg , μg , κg , and ϕg are given in the table but will
be discussed later in Sec. V B together with the use of the
generations 1–10 as orbits in a semiclassical trace formula.
We should note that there exist further generations (with
frequencies 9, 9/2, and 9/4) that have the same intensities
as generation 10. Their contributions to the trace formula (53)
are however negligible. We have listed the generation 10 here
mainly because its frequency 3 belongs to the PT (3,4,5).

We also point out that the ordering of the generations is
done here according to the decreasing intensities ln Ig/ln I0.
In Sec. V C we will see that the semiclassical amplitudes
Ag (n) of the orbits appearing in the trace formula (53) follow
a somewhat different ordering, in agreement with the results
in Fig. 6 where the peaks with f = 4 (generation 2) have a
higher intensity than those with f = 5 (generation 1).

V. DERIVATION OF A TRACE FORMULA FOR δ P (n)

In this section we derive a semiclassical trace formula for
the oscillating part of P (n). The main idea of our approach
is that asymptotic expressions of oscillating functions can be
found from stationary-phase integration over complex saddles
in the β plane. As shown in Sec. III A, the asymptotic smooth
part Pas (n) is obtained from the real saddle point x0 given in
(34). This technique has been used, e.g., by Balazs et al. [13]
to find both smooth and oscillating asymptotic expressions for
integrals of the Airy function. We will illustrate this method
in Appendix B for the Airy function itself.

We start from the integral representation (24) of P (n)
for which the integration along the τ axis from −π to +π

(contour C) yields the exact P (n) for all n. Since the in-
tegrand has no singularities for x > 0, we may deform the
contour arbitrarily, keeping its end points fixed. We choose
it to pass over the most important saddles in the complex β
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FIG. 10. Schematic plot of the contour for the integral (24). The
exact contour C (going from −π to +π along the τ axis) is deformed
into a new contour (red) C̃ which goes over some selected saddles in
the complex β plane.

plane corresponding to the leading Fourier peaks and then use
stationary-phase integration locally at each saddle.

Figure 10 shows a sketch of the situation in the complex β

plane, with the deformed contour C̃ chosen to pass over five
representative saddles. The exact path between the saddles
does not matter, since we will only collect the local contribu-
tions near each saddle in the stationary-phase approximation.
While the real saddle yields the smooth Pas (n) as shown in
Sec. III A, the complex saddles will yield an approximation
for the oscillating part δP (n).

A. Saddle points in the complex β plane

Scanning the complex β plane for the function ReS(E, β )
in (30) using Eq. (13), we observe that for each of the domi-
nant Fourier peaks listed in Table I, there exists a saddle at a
stationary point with τ close to the value τg listed there. We
illustrate this in the following three figures for the generations
0, 1, and 2, with contour plots of the function ReS(E, β )
(evaluated here at E = 40) in the complex β plane.

Figure 11 shows the real saddle at τ0 = 0 which was used
in Sec. III A to derive the asymptotic function Pas (n). The
position of the saddle point x0 axis is given in (34).

Figure 12 shows one of the saddles of generation 1, lying
approximately at τ1 = 2π/5. Note that for generations 0
and 1, the path of steepest descent appears to be parallel to
the imaginary axis. This is, however, analytically true only for
the real saddle, as will be discussed in the following section.

Figure 13 shows one of the saddles of generation 2, lying
somewhat below τ2 = 2π/4. The precise value of τ2 at the
saddle is energy dependent and given in Eq. (44) below. The
path of steepest descent here is tilted with respect to the τ axis
by an angle α2 which leads to the Maslov index ϕ2 defined in
Eq. (52) below.

FIG. 11. Contour plot of the function ReS(E, β ) in (30), evalu-
ated at E = 40, in the saddle-point region of generation 0 at τ = 0.

What we see in these three examples can be summarized
as follows. From each of the dominant Fourier peaks listed
in Table I (and for many more), a ridge with a conditional
maximum of S(E, β ) in the τ direction descends from its
position on the τ axis (where it corresponds to a peak that
diverges for M → ∞, as discussed in Sec. IV B 1) towards the
right, i.e., in the x direction. Eventually it will deviate from the
x direction (except for the generations 0, 1, and 3–5) and form
a saddle at some value xg (E). The exact position βg (E) =
xg (E) + iτg (E) of the saddle point of each generation (as
a function of energy E) has to be found by solving the SP
equations discussed next.

B. Solutions of the complex saddle-point equations

When integrating over a saddle by the method of steepest
descent, one chooses the direction in which the real part of the
entropy function S(E, β ) in (29) has its steepest maximum.
This yields a rapidly oscillating phase which tends to cancel
all contributions except close to the SP where the phase
becomes stationary (hence the alternative name stationary-
phase approximation). Near the SP β0, the integrand may be
approximated by a Gaussian integral that can be evaluated
exactly if the curvature of ReS(E, β ) at β0 is known. While
this integral yields a smooth semiclassical amplitude as a

FIG. 12. Same as Fig. 11 for generation 1 at τ1 = 2π/5.

052131-8



SEMICLASSICAL ANALYSIS OF DISTINCT SQUARE … PHYSICAL REVIEW E 98, 052131 (2018)

FIG. 13. Same as Fig. 11 for generation 2 at τ2 ∼ 2π/4. Note
that, different from the two previous cases, the saddle here is tilted
with respect to the x and τ axes.

function of E (as in Sec. III A), the imaginary part ImS(E, β )
at β0 yields an oscillatory function of E if τ0 is not zero.

The saddles are thus determined by the stationary condition
∂S(E, β )/∂β|β0 = 0 in the complex β plane, which yields two
equations. Using (30) and (13), we find from the real part

E − 1

2

∑
m

m2 exp(−m2x0) + cos(m2τ0)

cosh(m2x0) + cos(m2τ0)

= ∂

∂x
ReS(E, β )

∣∣∣∣
β0

= 0 (39)

and from the imaginary part

−1

2

∑
m

m2 sin(m2τ0)

cosh(m2x0) + cos(m2τ0)

= ∂

∂τ
ReS(E, β )

∣∣∣∣
β0

= 0. (40)

These equations may be transformed into a more symmetrical
form, involving double sums

E =
∑
m

m2
∞∑

k=1

(−1)k+1e−km2x0 cos(km2τ0), (41)

0 =
∑
m

m2
∞∑

k=0

(−1)ke−km2x0 sin(km2τ0). (42)

We are not able to solve these SP equations analytically,
except for the case of the real saddle at τ0 = 0 for generation
0. In this case, (40) and (42) are trivially fulfilled for all x0

since sin(m2τ0) = 0 for all m (and k). For (39) we can then
use the Euler-Maclaurin approximation (replacing the m sum
by an integral; see Sec. III A) with the result given in (34). In
the same spirit, we find that our numerical solutions of the SP
equations for all generations g can be very accurately fitted by
the equations

x
(g)
0 (E) = λgE

−2/3, (43)

τ
(g)
0 (E) = ±τg ∓ μgE

−2/3, (44)

with the values of λg and μg given in Table I. For the
generation 0, μ0 is exactly zero. For generations 1 and 3–5, μg

is zero within the numerical accuracy of the constants given in
the table. The entropies S at the saddle points can be fitted by

ReS(E, β0) = 3λgE
1/3 − ln(2)/2, (45)

ImS(E, β0) = ±Eτg ∓ 3μgE
1/3. (46)

Note that the last term in (46) contains a contribution φg (E)
defined by

φg (E) = Im ln Z(βg ) =
∑
m

arctan

{
− exp[−m2x

(g)
0 (E)] sin[m2τ

(g)
0 (E)]

1 + exp[−m2x
(g)
0 (E)] cos[m2τ

(g)
0 (E)]

}
, (47)

which is the analog of the phase φ(τ ) in (27) but evaluated
here at the complex saddles βg (E). It is numerically found to
be well approximated by

φg (E) = ∓2μgE
1/3. (48)

For the determination of the direction of steepest descent,
we proceed as follows. From a given SP (x0, τ0), we define a
straight line in the direction α by

β(r, α) = (x0 + iτ0) + reiα. (49)

We then calculate for each α the curvature along r by

Kr (E, α) = Re
∂2S(E, β(r, α))

(∂r )2

∣∣∣∣
E,α

. (50)

This becomes a periodic function whose minimum αg ∈
(0, 2π ) for each generation yields the direction of steepest
descent with a maximum absolute value of the (negative)

curvature. The resulting Kr can then be numerically fitted by
the equation

Kr (E, αg ) = −κgE
5/3, (51)

with the values κg given in Table I. For a SP at τg with phase
αg , the symmetry partner at −τg has the phase π − αg due to
the antisymmetry of S(E, β ) with respect to the real axis.

All the above functions with the constants in Table I,
representing the solutions of the SP equations (39) and (40),
will henceforth only be used for integer values of the energy
variable E = n. It remains a challenge for future research to
find analytical expressions for these constants.

C. Semiclassical trace formula for δ P (n)

We are now equipped for doing the approximate Gaus-
sian integrals over the complex saddles which go exactly as
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FIG. 14. Result of the trace formula (53) (blue line) versus the
exact δP (n) = P (n) − Pas (n) (red stars) in two regions of large n.

explained in Appendix B. Hereby, for the symmetry partners
of each generation the phases exp[iτ (g)

0 (E = n)] in (44) and
φg (E = n) in (48), together with the phases ± exp(±iαg )
coming from the Gaussian integrals along r using (49), com-
bine to 2 cos[nτg − 3μgn

1/3 + ϕg], with the constant Maslov
index ϕg given by

ϕg = αg − π/2, (52)

which is also listed in Table I. We thus arrive at the semiclas-
sical trace formula for δP (n),

δP (n) =
∑

0<τg<π

Ag (n) cos[nτg − 3μgn
1/3 + ϕg], (53)

which is the central result of our paper. Hereby, the amplitudes
Ag (n) are given by

Ag (n) = 2

(4πκg )1/2
n−5/6e3λgn

1/3
. (54)

Note that A0(n) is identical to P (0)
as (n) given in Eq. (36).

Figures 14 and 15 show the results of the trace formula
(53) (lines) compared to the exact δP (n) = P (n) − Pas (n)
(stars) in four ranges of n. The agreement between the two
curves is excellent in all regions of n, the semiclassical results
reproducing perfectly both the rapid oscillations of the exact
δP (n) and their beating amplitude.

In the calculations for these results, the generations 1–10
have been included. However, nothing changes visibly in the
results for n � 4000 if we only include the two leading gen-
erations 1 and 2. While this might be a surprise at first sight,
it can be explained by the values of the constant λg which
regulate the exponential growth of the amplitudes Ag (n).
These are clearly higher for generations 1 and 2 than for the
others.
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n
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n

FIG. 15. Result of the trace formula (53) (blue line) versus the
exact δP (n) = P (n) − Pas (n) (red stars) in two regions of small n.

The relative weights of the generations can be understood
from Fig. 16, where we plot the amplitudes Ag (n) on a log-
arithmic scale. The long-dashed top line gives the amplitude
of generation zero, which is identical to P (0)

as (n). The solid
and dotted lines give, from top to bottom, the amplitudes
of the generations 2 (solid), 1 (solid), 6+7 (dotted), 3+4+5
(solid), 8 (dotted), 10 (solid), and 9 (dotted). Note that these
amplitudes follow a slightly different ordering than that of
the generations listed in Table I. The amplitudes of the gen-
erations 3 and higher are seen to be smaller than those of
generations 1 and 2 by two to three orders of magnitudes for
n � 5000. These in turn are smaller than Pas (n) by two to
three orders of magnitude, demonstrating the relative small-
ness of the oscillating part.

106
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1024

1030

A
g(
n)

0 30000 60000 90000 120000 150000
n

FIG. 16. Semiclassical amplitudes Ag (n) for the generations
(from top to bottom) 0, 2, 1, 6+7, 3+4+5, 8, 10, and 9 (see the
text for details).
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FIG. 17. Result of trace formula (53) around n = 80 for increasing numbers of generations included. Dashed line (red): generations 1 and
2; dotted line (green): generations 1–7; solid line (blue): generations 1–10. The stars (black) show the exact δP (n).

The relative importance of the higher generations around
n ∼ 80 can be studied in Fig. 17. Even here the generations
1 and 2 produce the essential beating part of δP (n). The
inclusion of higher generations successively improves the
semiclassical values of δP (n), although their contributions
are rather small and the convergence to the exact values
is not as good as for n � 500. Together, these two figures
demonstrate the overall rapid convergence of the trace formula
upon summing over the generations g.

We conclude that the oscillations in δP (n) are dominated
everywhere by the orbits of generations 1 and 2 with fre-
quencies 4 and 5, which are members of the PT (3,4,5).
The contributions from all higher generations are practically
negligible for n � 4000 and still very small around n ∼ 500.

In order to understand the beat structure, one must realize
that when changing the variable E to n and studying δP (n)
as a function of n, the roles of the periods τg and frequen-
cies 2π/τg interchange their roles. The terms cos(nτg + · · · )
in (53) have, as functions of n, the (approximate) periods
2π/τg and hence frequencies τg . In the region where the beat
structure is dominant, the period of the rapid oscillations is
roughly that of the orbit with the largest amplitude1 (i.e., τ2

with frequency 4), while the beat comes from the difference in
their frequencies: The period �n = 20 of the beat is nothing
but one over the inverse frequency difference 1/f2 − 1/f1 =
1/4 − 1/5 = 1/20.

For n � 100 000, the beat structure fades away and the
oscillations are practically given by the orbits of frequency
4 alone, as shown in Fig. 18 for n near 160 000. The exact
values δP (n), shown by the stars, exhibit practically no more
beating amplitude. This is due to the fact that the amplitude
of generation 2 here is nearly two orders of magnitude larger
than that of generation 1. From this result we can give the rate

1The superposition of two cos functions a1 cos(x1) + a2 cos(x2)
with different periods and similar but not equal amplitudes a1 > a2

yields a beat structure where the rapid oscillation is governed by the
period of the component with the larger amplitude (i.e., a1). (Only
for a1 = a2 the rapid oscillation has the average period of the two
components.)

of disappearance of the relative oscillations as

∣∣∣∣ δP (n)

Pas (n)

∣∣∣∣ ∼ A4/A0 ∼ 2
√

κ0/κ2e
−3(λ0−λ2 )n1/3

∼ 1.9187e−0.258 66n1/3
for n → ∞. (55)

In the region n � 100 000, the truncated series of three
SP corrections in (37) does not converge fast enough; this
shows up in the numerical results by a slight asymmetry of
the numerical δP (n) with respect to its average which ought
to be zero. We found that a renormalized value c̃3 = 0.025 of
the coefficient c3 given in (A26) makes up for this asymmetry,
yielding with (37) a correct average value Pas (n) for all n up
to the limit n = 160 000 of our database.

The above results, demonstrating the absolute dominance
of the f = 4 orbit for n → ∞, the leading role of the orbits
with f = 4 and f = 5, creating the beating pattern, in the
range 4000 ∼< n ∼< 100 000, and the role of other orbits with
higher frequencies in the range 100 ∼< n ∼< 4000, are in perfect
agreement with the Fourier transforms shown in Fig. 6, which
were obtained using Eq. (38) with the corresponding cutoffs
in the n summation.
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n

FIG. 18. Result of (53) (blue line) using only the pair of orbits
of generation 2 (with f2 = 4), in the region near n = 160 000. The
exact δP (n) = P (n) − Pas (n) are shown by the red stars. Note that
the beat structure in the exact δP (n) has practically disappeared.
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VI. SUMMARY

We have investigated the number P (n) of partitions of
an integer n into sums of distinct squares (here called F2
partitions) using semiclassical and quantum statistical meth-
ods. After some formal definitions in Sec. II leading to the
integral representation (24) of P (n), we have in Sec. III
derived the asymptotic smooth function Pas (n) using the
stationary-phase method like in Refs. [1,9], obtaining not only
its leading part but also higher-order contributions from the
so-called saddle-point corrections which lead to the correct
limit P (n)/Pas (n) → 1 for n � 10 000. A general method
for obtaining the latter for arbitrary systems is given in Ap-
pendix A. The smooth part Pas (n) is then used to define the
oscillating part as δP (n) = P (n) − Pas (n).

The oscillations in δP (n), with a prominent beat structure
for n � 100 000, have been analyzed in Sec. IV through the
Fourier spectrum of the F2 partition density. The most promi-
nent frequencies were found to be integer valued and belong to
the lowest Pythagorean triples of integers (m,p, q ) with m2 +
p2 = q2, namely, (3,4,5) and (5,12,13). Several pairs (p, q )
of higher PTs (m,p, q ) can also clearly be seen in the Fourier
spectrum. We recall that such triples can only occur in square
partitions, since Fermat’s last theorem [4] asserts that only
squares of integers may be written as sums of two (or more)
other squares. It is therefore a particularity of the F2 partitions
that the presence of PTs causes the beating oscillations; our
Fourier spectra give clear evidence of this PT dominance.

In the semiclassical theory of quantum densities of states,
oscillations are related to sums over periodic functions whose
arguments involve the actions of classical periodic orbits
[5,6]. This has been born out quantitatively for the dynamical
system of F2 partitions in Sec. V, in which we have derived
a semiclassical trace formula for δP (n) by exploiting the
analytical structure of the partition function Z(β ) [Eq. (13)] in
the complex plane. We have evaluated the exact integral (24)
for P (n) approximately by deforming the integration contour
so as to pass over some selected saddles in the complex β

plane, corresponding to the most prominent Fourier peaks,
and by locally using stationary-phase integration over these
saddles. This leads to the trace formula (53) as the central
result of our paper.

The numerical results of (53) reproduce the exact δP (n)
very accurately all the way from n ∼ 500 to the upper limit
n = 160 000 of our database. For the smallest n, up to ten
generations of orbits, some of them with frequencies belong-
ing to the PT (5,12,13), have been included to reach good
agreement. For n � 4000, δP (n) is completely determined
by the orbits with the frequencies 4 and 5 belonging to
the smallest PT (3,4,5). The period of the rapid oscillations
is hereby governed by the orbits with the larger amplitude
(generation 2, frequency f2 = 4), while the beat period �n =
20 is one over their inverse frequency difference: 1/f2 −
1/f1 = 1/4 − 1/5 = 1/20. The contributions from all higher
generations are negligible for n � 4000 and still very small
around n ∼ 1000. For n � 100 000, the beat structure fades
away and the oscillations are given by the orbits of frequency
4 alone.

In combination with the Fourier spectra, these results
demonstrate an important role of PTs in establishing the

beating oscillations in the F2 partitions P (n). In some prelim-
inary statistical studies, we have counted the number IN (n) of
pairs of integers belonging to PTs present in distinct square
partitions PN (n) restricted to N summands. We found that for
N � 20, the functions IN (n) exhibit the same oscillations as
those in the unrestricted F2 partitions P (n) and the Fourier
spectra of the PN (n) are practically identical to those shown
in this paper.
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APPENDIX A: STATIONARY-PHASE INTEGRATION:
HIGHER-ORDER CONTRIBUTIONS

In this Appendix we briefly resume the method of
stationary-phase integration including saddle-point correc-
tions at higher order for a real saddle, closely following
Ref. [12].

Consider an integral of the form

g(E) = 1

2πi

∫ ε+i∞

ε−i∞
dβ eS(E,β ), (A1)

where S(E, β ) is the entropy function defined in (30). In
order to derive an asymptotic form gas (E) valid for large
E, we use the method of stationary phase by expanding the
exponent S(E, β ) around a SP. For convenience we denote
the derivatives of S here by

Sn(β ) = ∂nS(E, β )

∂βn
, (A2)

omitting the argument E which for the present development
is just a parameter. We assume that there exists a real SP β0 so
that

S1(β0) = 0, β0 > 0. (A3)

Taylor expanding the entropy S(E, β ) about β0, we have

S(E, β ) = S(E, β0) + S2(β0)
(β − β0)2

2
+ R(β ), (A4)

where

R(β ) =
∞∑

m=3

Sm(β0)
(β − β0)m

m!
. (A5)

Hence we obtain an asymptotic form

gas (E) = eS(E,β0 )

2πi

∫ ε+i∞

ε−i∞
dβ eS2(β0 )[(β−β0 )2/2!]eR(β ). (A6)

Without loss of generality, we can choose ε = β0 and define
the variable

u = (β − β0)/i. (A7)

052131-12



SEMICLASSICAL ANALYSIS OF DISTINCT SQUARE … PHYSICAL REVIEW E 98, 052131 (2018)

Expanding the exponential of R under the integral, we find

gas (E) = eS(β0 )

2π

∫ ∞

−∞
du e−S2(β0 )u2/2

×
[

1 + R(u) + R2(u)

2!
+ R3(u)

3!
+ · · ·

]
. (A8)

This leads to Gaussian integrals over u such that only even
powers of u contribute, leaving g(E) real, as it should be.
Collecting the even powers of u, we get

gas (E) = eS(β0 )

2π

∫ ∞

−∞
due−S2(β0 )u2/2

×
⎡
⎣1 +

∞∑
m=2

(−1)mu2m
∑
{k}

k∏
i=1

(
Sni

ni!

)mi
(

1

mi!

)⎤
⎦,

(A9)

where the sum over {k} implies the constraints

2m = m1n1 + m2n2 + · · · + mknk, ni � 3, k � 1,

(A10)

which is the allowed number of partitions of 2m into k parts
with repetitions allowed through the power mi . All such
partitions contribute at order 2m in u. The integration is now
straightforward, since the basic integrals needed are simply∫ ∞

−∞
du e−au2

u2m = (2m − 1)!!

2mam

√
π/a. (A11)

With this we obtain a result that formally contains SP correc-
tions to all orders:

gas (E) = eS(β0 )

√
2πS2(β0)

⎡
⎣1 +

∞∑
m=2

(−1)m
(2m − 1)!!

Sm
2

×
∑
{k}

k∏
i=1

(
Sni

ni!

)mi
(

1

mi!

)⎤
⎦. (A12)

This is a series with 1/S2
2 as the expansion parameter. Even

though this result is written to all orders, we note that it is an
asymptotic series obtained by Taylor expansion of the entropy
around a point β = β0. Hence, depending on the system under
consideration, truncation of the series must be handled with
care.

We now use Eq. (A12) to obtain the SP corrections to the
asymptotic F2 partition density given in (35). To leading order
we have

S(E, β ) = βE + D√
β

− 1

2
ln(2), (A13)

and at the real SP β0 we have

E = D

2β
3/2
0

, β0 =
(

D

2E

)2/3

. (A14)

The derivatives of S(E, β0) are given by

Sn = (−1)n
(2n − 1)!!D

2nβ
(2n+1)/2
0

, n � 2, (A15)

TABLE II. Contributing terms at each order in powers of β0.
Note that ni � 3 and hence the saturation occurs when all or most
of Sn are equal to 3.

M = (m − k)/2 m k ni Terms

1/2 2 1 4 S4/S
2
2

1/2 3 2 3,3 S2
3/S

3
2

1 3 1 6 S6/S
3
2

1 4 2 4,4 S2
4/S

4
2

1 4 2 5,3 S3S5/S
4
2

1 5 3 4,3,3 S4S
2
3/S

5
2

1 6 4 3,3,3,3 S4
3/S

6
2

3/2 4 1 8 S8/S
4
2

3/2 5 2 7,3 S7S3/S
5
2

3/2 5 2 6,4 S6S4/S
5
2

3/2 5 2 5,5 S2
5/S

5
2

3/2 6 3 6,3,3 S6S
2
3/S

6
2

3/2 6 3 5,4,3 S5S4S3/S
6
2

3/2 6 3 4,4,4 S3
4/S

6
2

3/2 7 4 5,3,3,3 S5S
3
3/S

7
2

3/2 7 4 4,4,3,3 S2
4S

2
3/S

7
2

3/2 8 5 4,3,3,3,3 S4S
4
3/S

8
2

3/2 9 6 3,3,3,3,3,3 S6
3/S

9
2

with the expansion parameter

S2 = 3!!D

22β
5/2
0

. (A16)

For our purposes it is more convenient to have β0 (or
E−2/3) as the expansion parameter rather than 1/S2. To
achieve this order by order, consider a typical term in the
expansion given in Eq. (A12) of the form

Sn1Sn2 · · · Snk

Sm
2

∝ (β0)5m/2−(2n1+1)/2−(2n2+1)/2−···−(2nk+1)

= (β0)M. (A17)

For counting and collecting the powers in β0 it is convenient
to set mi = 1 and allow repetitions of ni . Imposing the con-
straints (A10), we have

M = 5m

2
− (n1 + n2 + · · · + nk ) − k

2
= m − k

2
, ni � 3,

(A18)

since

n1 + n2 + · · · + nk = 2m. (A19)

Here M is the power of β0 in the series and k is the number
of terms in the product that contribute to a given power M

which may be more than one. Since m � 2 and k � 1, the
lowest power is M = 1/2. In Table II we give the relevant
contributions up to M = 1/2, 1, 3/2.

The table lists all the terms which contribute at a particular
order in β0. Putting in the numerical factors from integration
as given in Eq. (A12) and collecting terms at each order,
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we obtain

gas (E) = eS(β0 )

√
2πS (2)

{
1 +

[
3!!(S4/4!)

(S2)2
− 5!!(S3/3!)2

2!(S2)3

]

+
[
−5!!(S6/6!)

(S2)3
+ 7!![(S3S5/3!5!) + (S4/4!)2/2!]

(S2)4
− 9!!(S3/3!)2(S4/4!)/2!

(S2)5
+ 11!!(S3/3!)4/4!

(S2)6

]

+ 7!!S8

(S2)4
− 9!![(S7S3/3!7!) + (S6S4/6!4!) + (S5/5!)2/2!]

(S2)5

+ 11!![(S6/6!)(S3/3!)2/2! + (S5S4S3/5!4!3!) + (S4/4!)3/3!]

(S2)6

− 13!![(S5/5!)(S3/3!)3/3! + (S4S3/4!3!)2/2!2!]

(S2)7
+ 15!![(S4/4!)(S3/3!)4/4!]

(S2)8
− 17!![(S3/3!)6/6!]

(S2)9
− · · ·

}
. (A20)

Substituting for Sn from Eq. (A15), we finally get the desired
series of contributions

gas (E) = eS(β0 )

√
2πS (2)

[
1 − C1

(√
β0

D

)
− C2

(√
β0

D

)2

−C3

(√
β0

D

)3

− · · ·
]
, (A21)

where

C1 = 5

18
= 5

2 × 32
, C2 = 35

648
= 5 × 7

23 × 34
,

C3 = 665

34 992
= 5 × 7 × 19

24 × 37
. (A22)

Furthermore,
√

β0

D
=

[
1

2D2E

]1/3

, D = 0.678 093 895. (A23)

Substituting for β0, we finally obtain

gas (E) = eS(β0 )

√
2πS (2)

[1 − c1E
−1/3

− c2E
−2/3 − c3E

−1 − · · · ], (A24)

with

c1 = C1

(2D2)1/3
= 0.285 645 648,

c2 = C2

(2D2)2/3
= 0.057 115 405, (A25)

and

c3 = C3

(2D2)3/3
= 0.020 665 371. (A26)

APPENDIX B: ASYMPTOTIC EVALUATION
OF THE AIRY FUNCTION

We derive here the asymptotic expressions of the real-
valued Airy function Ai(z), both for large positive and neg-
ative real z, using the stationary-phase method, as an illustra-
tion of the method used in the main text. In Ref. [13] this was
done for integrals over the Airy function; here we do it for

the Airy function itself. Its complex integral representation is
given by

Ai(z) = 1

2πi

∫
C

dβ eS(z,β ), β = x + iy, (B1)

with

S(z, β ) = −zβ + 1
3β3. (B2)

Here C is a contour along the imaginary β axis, i.e., from
y = −∞ to y = +∞, at a finite distance x = ε > 0 (see also
Fig. 1 in Ref. [13]). Let us split the function S(z, β ) into its
real and imaginary parts

S(z, β ) = X(x, y) + iY (x, y) (B3)

so that

X(x, y) = −zx + 1
3x3 − xy2,

Y (x, y) = −zy − 1
3y3 + x2y. (B4)

(We ignore the argument z, which is a parameter in the real
functions X and Y .) It is easy to see that the Cauchy-Riemann
(CR) conditions are fulfilled for X and Y :

∂X

∂x
= ∂Y

∂y
= −z + x2 − y2 (B5)

and
∂X

∂y
= −∂Y

∂x
= −2xy. (B6)

Therefore, S(z, β ) is analytic in the whole complex β plane;
it has no poles. [The shaded areas in Fig. 1 of [13] are those
in which Re β3 < 0 so that the integrand of (B1) vanishes at
both ends of the contour C.]

Like in [13], we evaluate (B1) approximately in the
stationary-phase approximation. To that purpose we solve the
SP equation and look for solutions in the complex plane,

∂S

∂β

∣∣∣∣
β0

= −z + β2
0 = 0 ⇒ β2

0 = z. (B7)

For z > 0, we have one real solution β0:

β0 = √
z ⇒ x0 = √

z, y0 = 0. (B8)

(We can neglect the negative root of z for the reason given
at the end of Sec. 1 below.) For z < 0, we have a pair of
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imaginary solutions β1,2:

β1,2 = ±ai ⇒ x1,2 = 0, y1 = a, y2 = −a, a = +
√

|z|.
(B9)

We now approximate the integration by the stationary-
phase method, obtaining thereby the asymptotically leading
contributions from the regions near the saddle points. For
z > 0 we use the real saddle point β0 and for z < 0 the two
complex-conjugate saddle points β1,2. This is also shown and
explained by Balazs et al. [13]. These authors investigated
integrals over the Airy function. Our present case, the Airy
function itself, corresponds to setting n = −1 in their treat-
ment. Although they exclude negative values of n, their results
apply also for n = −1; the complex saddles then lie on the
imaginary t axis as shown below.

1. Case z > 0: Exponential tail of Ai(z)

We first look at z > 0 and derive the asymptotic expression
of Ai(z) for z � 0, which is found from SP integration over
the real saddle at β0 = x0 = z. We find that the curvature of
ReS = X(x0, y) is negative in the y direction,

∂2X

∂y2

∣∣∣∣
y0=0

= −x0 = −z, (B10)

(and, due to the CR conditions, positive in the x direction), so
a straight-line contour along the imaginary axis with x0 = z

will lead to a maximum of ReS at y0 = 0. We thus choose the
contour C0 as

β = √
z + it, t ∈ (−∞,+∞). (B11)

Expanding S(z, β ) along this contour up to order t2, we get

S0(z, β ) = −z(
√

z + it ) + 1
3 (

√
z + it )3

= − 2
3z3/2 − √

zt2 + . . . , (B12)

and the integral (B1) yields the result

Ai(z) ∼ 1

2πi
e−(2/3)z3/2

∫ +∞

−∞
i dt e−√

zt2

= 1

2
√

πz1/4
e−(2/3)z3/2

, z � 0, (B13)

which is exactly the leading term of Eq. (10.4.59) in [10].
A note concerning the sign of

√
z is in order. In principle,

we have two real roots of (B7) for z > 0: β0 = ±√
z. How-

ever, if we integrate over the saddle x0 = −√
z and y0 = 0

as above, we obtain a result like (B13) but with the diverging
exponential e(2/3)z3/2

. This corresponds to the associated Airy
function Bi(z) [10], which has the same integral representa-
tion as (B1) with an appropriately chosen contour C.

2. Case z < 0: Oscillations of Ai(z)

We now want to integrate along paths that go over the
imaginary saddles β1,2, in order to find the asymptotic oscil-
lations of Ai(z) for z � 0. To that purpose, let us have a look
at the landscape of ReS(β ) given by Eq. (B2).

Figure 19 shows a plot of ReS(β ) in the complex β plane,
taken for z = −1 (so that a = 1). We clearly see the two

FIG. 19. Surface plot of ReS(β ) [Eq. (B2)] of the Airy function
in the complex β plane for z = −1.

saddles at Imβ1,2 = y1,2 = ±a = ±1 with Reβ1,2 = 0. We
also see that ReS is zero along the imaginary axis and locally
(at y1,2 = ±a) in the x direction around x1,2 = 0, so passing
over the saddles in the y or x direction would lead to a zero
result. Instead, we have (similarly to [13]) to pass over the
lower saddle (at y2 = −a) from the lower right to upper left
and over the upper saddle (at y1 = +a) from lower left to
upper right, connecting the two paths smoothly to the regions
to the right of the imaginary axis where the integrand vanishes
for y → ±∞.

In order to find the directions of steepest descent (or
ascent), we parametrize the contour over the saddles locally
as straight lines and write them in polar coordinates (r, α),

x = r cos α, y = r sin α. (B14)

Let us start at the upper saddle at y1 = +a and x1 = 0. We
define a straight-line contour C1 as

β = ia + reiα, r ∈ (−∞,+∞). (B15)

Along this path, the function S(z, β ) becomes (noting that
−z = a2)

S1(z, β ) = a2(ia + reiα ) + 1
3 (ia + reiα )3

= 2
3 ia3 + iar2e2iα + 1

3 r3e3iα. (B16)

The real part of S1 then is

ReS1(r, α) = X1(r, α) = −ar2 sin(2α) + 1
3 r3 cos(3α).

(B17)

The curvature in the r direction, taken at r = 0, is

K1(α) = ∂2X1

∂r2

∣∣∣∣
r=0

= −2a sin(2α). (B18)

This has a minimum at α = π/4 and a maximum at α =
3π/4. Thus the path of steepest ascent over this saddle is
locally a straight line at the angle α = π/4, with K1(π/4) =
−2a, so that X1(r, α = π/4) has a maximum at r = 0. Along
this direction the action becomes, up to order r2,

S1(z = −a2, r ) 
 2
3 ia3 − ar2. (B19)

Doing the integral over r (taken from −∞ to +∞ to complete
the Gauss integral), and not forgetting that dβ = eiαdr , we get
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the following contribution to (B1):

1

2πi

∫
C1

dβ eS(z,β ) ∼ −i

2
√

πa
e(2/3)ia3+iπ/4. (B20)

At the lower saddle (y2 = −a and x2 = 0), we do exactly
the same, defining the contour C2 through it:

β = −ia + reiα, r ∈ (−∞,+∞). (B21)

Along this path, the function S(z, β ) becomes

S2(z = −a2, r ) = − 2
3 ia3 − iar2e2iα + 1

3 r3e3iα. (B22)

Here the curvature at r = 0 becomes

K2(α) = 2a sin(2α), (B23)

which is maximum at α = π/4 and minimum at α = 3π/4.
Thus we have to go over this saddle in the direction α = 3π/4.
Proceeding as above, we obtain

1

2πi

∫
C2

dβ eS(z,β ) ∼ −i

2
√

πa
e−(2/3)ia3+i3π/4. (B24)

Adding the contributions (B20) and (B24), we obtain the
result

Ai(z) ∼ 1√
π |z|1/4

sin

(
2

3
|z|3/2 + π/4

)
, z � 0, (B25)

which is exactly the leading term of the asymptotic expression
(10.4.60) in [10]. This exercise demonstrates how the use
of the stationary-phase integration over complex saddles can
yield asymptotic expressions for oscillating functions.
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