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Self-consistent field theory of density correlations in classical fluids
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More than half of a century has passed since the free energy of classical fluids defined by second Legendre
transform was derived as a functional of density-density correlation function. It is now becoming an increasingly
significant issue to develop the correlation functional theory that encompasses the liquid state theory, especially
for glassy systems where out of equilibrium correlation fields are to be investigated. Here, we have formulated a
field theoretic perturbation theory that incorporates two-body fields (both of density-density correlation field and
its dual field playing the role of two-body interaction potential) into a density functional integral representation of
the Helmholtz free energy. Quadratic density fluctuations are only considered in the saddle-point approximation
of two-body fields as well as the density field. We have obtained a set of self-consistent field equations with
respect to these fields, which simply reads a modified mean-field equation of density field where the bare
interaction potential in the thermal energy unit is replaced by minus the direct correlation function given in the
mean spherical approximation. Such replacement of the interaction potential in the mean-field equation belongs
to the same category as the local molecular field theory proposed by Weeks and co-workers in a series of papers
[e.g., Rodgers et al., Phys. Rev. Lett. 97, 097801 (2006); Remsing et al., Proc. Natl. Acad. Sci. USA 113, 2819
(2016)]. Notably, it has been shown that even the mean-field part of the free energy functional given by the
self-consistent field theory includes information on short-range correlations between fluid particles, similar to
the formulation of the local molecular field theory. The advantage of our field theoretic approach is not only that
the modified mean-field equation can be improved systematically, but also that fluctuations of two-body fields
in nonuniform fluids may be considered, which would be relevant especially for glass-forming liquids where
heterogeneous out-of-equilibrium correlations are to be investigated.
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I. INTRODUCTION

The liquid state theory (LST) has investigated constituent
particle arrangement, or particle-particle correlations, on a
molecular scale [1,2]. As a consequence, various approximate
forms of correlation functions have been obtained from a
couple of equations between the direct correlation function
c(r ) and the total correlation function h(r ) [or the radial
distribution function g(r ) ≡ h(r ) − 1] that depend on the
separation distance r between particles: the Ornstein-Zernike
(OZ) equation and an approximate form of the closure rela-
tion such as the mean spherical approximation (MSA) and
hypernetted chain (HNC) closures [1–10]. A great deal of
knowledge on correlation functions, gained by the LST, has
been incorporated into field theories, or coarse-grained theo-
ries described by fields as collective variables [11–80].

We can find a variety of relationships between the LST
and the field theories for describing the liquid state. To
compare them, Table I classifies the previous field theories
into three groups: functional theory, variational theory (VT),
and functional-integral (FI) representation. First, the func-
tional theory investigates the free energy functionals defined
by the Legendre transforms, and is further divided into the
density functional theory (DFT) [11–14] and the correlation
functional theory (CFT) [15–20] depending on the type of
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the Legendre transforms [20]. Second, the VT is based on
the Gibbs-Bogoliubov inequalities [1,2,21,22] and aim to
optimize the free energy functional via tuning the two-body
interaction potential of a reference system. The difference in
the reference system used leads to different bounds: we have
the VT based on the upper bound [21–31], and that on the
lower bound [1,32,33,80]. Last, the FI representations of the
free energy functional integrate over the fields such as the
one-body potential [34–43] and density fields [42,44–56].

As seen from the second column of Table I, it is only the
CFT that produces by itself the above correlation functions (or
the OZ equation and the approximate closure relation) without
requiring the input from the LST [15–20]. Correspondingly,
the third column of Table I lists what kind of reference
systems have been set in developing the field theories. When
we consider a reference system of non-ideal gas, the bare
interaction potential v(r ) needs to be divided into two parts:

βv(r ) = u(r ) + w(r ), (1)

where β denotes the inverse of the thermal energy kBT , and
u(r ) corresponds to the interaction potential in the kBT unit
of a reference fluid that we adopt. Hard sphere fluids are
one of the reference systems commonly used [1,2,24–28],
and another well-known prescription for such potential sep-
aration has been provided by the systematic Weeks-Chandler-
Andersen (WCA) perturbation theory for uniform fluids
[1,2,29–31], which has been successful for the interaction
potentials with minima such as the Lennard-Jones potential.
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TABLE I. Comparison between a variety of field theories that consists of the functional theories of density and correlation fields [11–20],
the variational theories based on the upper and lower bounds [1,21–33], and the functional integral forms of one-body potential and density
fields [34–56]. To clarify the relationship between the field theories and the LST, the second and third columns describe the uses of density-
density correlation functions and reference fluids from the LST, respectively.

Theoretical type Correlation functions as input Reference system

Density functional Required Ideal gas
(e.g., direct correlation function)

Correlation functional Not required Ideal gas
Variational approach based Required Non ideal gas

on the upper bound (e.g., radial distribution function) (e.g., hard sphere)
Variational approach based Required Mimic system

on the lower bound (e.g., direct correlation function)
Functional integral of Required Ideal and non-ideal gases

one-body potential field (e.g., structure factor) (e.g., hard sphere)
Functional integral of Required Ideal and non-ideal gases

density field (e.g., structure factor) (e.g., hard sphere)

Turning our attention to interfacial phenomena, including
adsorption and wetting in nonuniform systems, the DFT in-
corporates attractive interactions, extracted from the above
potential separation, in the mean-field approximation that
neglects short-range correlations [11–14,57–59]. Modern in-
tegral equation theories for inhomogeneous fluids provide
an alternative approach to the DFT; however, they usually
suffer from problems of thermodynamic consistency [1–5].
Another promising approach is local molecular field theory
developed by Weeks and co-workers [59–62]. Extending the
idea of the above WCA theory for uniform fluids not only to
nonuniform systems but also to the separation of interaction
potentials without minima, the local molecular field theory
has demonstrated that modified mean-field equation (MMF
equation) is relevant to the description of various nonuniform
fluids, including density distribution of counterions (inho-
mogeneous Coulomb fluids of point charges) in the strong
coupling regime and electrostatics in models of confined
water [59–62].

In terms of the potential separation, the local molecular
field theory has the following implication. There has been a
problem that all species of fluids cannot set the reference sys-
tem based on the conventional treatments mentioned above:
it is hard to find a reference system for pure hard sphere
fluids themselves, and also the WCA separation is unavail-
able for the two-body potential with neither minimum nor a
characteristic length of the potential profile such as the pure
Coulomb interaction. Nevertheless, the local molecular field
theory suggests that we can successfully divide various bare
interaction potentials βv(r ), including hard core potential and
pure Coulomb potential, into strong short-ranged reference
parts u(r ), and slowly varying long-ranged perturbation con-
tributions w(r ).

In the MMF equation of the local molecular field theory,
we use the long-ranged part w(r ), instead of the original
one βv(r ), after choosing an optimal separation where the
short-ranged potential u(r ) reproduces short-range correla-
tions between the original fluid particles interacting via βv(r )
[57–62]. With the use of w(r ), the MMF equation has
been found to precisely describe the inhomogeneous density

distribution ρ(x) at the position x as follows [57–62]:

ln

{
ρ(x)

ρB

}
= −βφR (x),

βφR (x) = βφ(x) +
∫

dy {ρ(y) − ρB}w(|x − y|), (2)

where ρB denotes the bulk density, and φ(x) the external field
which, for example, arises from a fixed solute.

The success of the MMF equation (2) indicates that there is
a criterion for separating every interaction potential into two
parts without setting a priori any reference fluid; at present,
however, the function form of u(r ) [or w(r )] has been chosen
on an ad hoc basis, and the adjustable parameter for the
potential separation has been tuned to create a mimic system
of particles interacting via u(r ) that can reproduce the radial
distribution function g(r ) of the true system. In addition, it has
been shown that the above mean-field DFT formally derives
Eq. (2) using a given separation of the interactions potential,
and yet loses the information on short-range correlations in
mimic system of particles interacting via the short-ranged
potential u(r ) [57–59].

Thus, this paper purposes both to validate such a modi-
fication of the mean-field equation field theoretically while
considering short-range correlations, and to develop a sys-
tematic method of the potential separation that is available
for any fluids, including hard spheres and Coulomb fluids of
point charges. We focus on the extension of the CFT to the
FI form so that the field theoretic perturbation theory in the
saddle-point (SP) approximation may apply to the description
of fluctuating correlation fields in nonuniform liquids.

Such a field theoretic framework is increasingly becoming
significant especially for glass-forming liquids where out-
of-equilibrium correlations are to be investigated [63–79].
For example, the freezing of density fluctuations at the dy-
namical glass transition has been successfully reproduced by
the replicated HNC approximation formulated in terms of a
correlation function between two replicas which is related to
an order parameter as an indicator of this transition [67–70].
Also, there are several issues to be addressed: On one hand,
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it remains controversial as to whether or not density-density
correlations in hard-particle packings toward jamming follow
the behavior expected for random hyperuniform materials
having an anomalous suppression of long-range density fluc-
tuations [71–74]. On the other hand, ongoing development
of simulation techniques raises the possibility that radial
distribution functions g(r ) representing short-range correla-
tions on a molecular scale are distinct for fluid and jammed
states at the same density [75]. A combined approach of
simultaneously considering short-and long-range correlations
is therefore needed.

Our field theoretic formulation is to incorporate the FI
of two-body fields (density-density correlation field and its
dual interaction potential field) into the density FI (D-FI)
representation, and determine the appropriate interaction po-
tential of the long-ranged part w(r ), instead of u(r ), in the
opposite direction of the local molecular field theory. We
evaluate the FI representation of density and two-body fields
(the DT-FI form) in the SP approximation, thereby providing
a set of self-consistent equations, equivalent to the MMF
equation (2).

The remainder of this paper is organized as follows. In
Sec. II, we formulate the Helmholtz free energy of the
canonical system using both the VT based on the lower
bound [1,32,33,80] (the fourth row in Table I) and the FI
form of the one-body potential field based on the Hubbard-
Stratonovich (HS) transformation [34–43] (the fifth row in
Table I) for the purpose of describing some problems that
are faced in separating the interaction potential. In Sec. III,
it is demonstrated that an extra term remaining in the D-FI
form creates inconsistency with the mean-field approximation
based on the HS transformation, particularly in the canonical
system. In Sec. IV, we address the fundamental issue of the
D-FI form by introducing the FIs of two-body fields (both
density-density correlation field and its dual field playing the
role of two-body interaction potential). Section V validates the
DT-FI representation via investigating a set of self-consistent
field equations with respect to the above two-body fields. It is
to be noted that the SP method of the DT-FI is valid for any
system, including hard sphere fluid and point charge system
with purely Coulombic interactions (or the one component
plasma with no hard core interactions). In Sec. VI, the DT-FI
theory in the mean-field approximation is compared both with
the VT based on the lower bound [1,32,33,80] that optimizes
a trial free energy functional by its maximization, and with
the VT based on the upper bound (or the WCA perturbation
theory) [21–31].

II. THREE REQUIREMENTS FOR VALIDATING THE
MODIFIED MEAN-FIELD (MMF) EQUATION FIELD

THEORETICALLY

There are some problems that arise when we separate the
interaction potential without setting a priori any reference
system. To see this, we first write down the Helmholtz free
energy of the canonical system that consists of N -particles
interacting via the two-body interaction potential v(|xi − xj |)
between the ith and the j th particles located at xi and xj ,
respectively. It is convenient to introduce the instantaneous

density-density correlation function Gρ̂ such that

Gρ̂ (x, y) = ρ̂(x)ρ̂(y) − ρ̂(x)δ(x − y), (3)

where

ρ̂(x) =
N∑

i=1

δ(x − xi ). (4)

The instantaneous density-density correlation function Gρ̂ al-
lows to express the interaction energy U{ρ̂; βv} of the simple
form as follows:

βU{ρ̂; βv} = 1

2

∫∫
dxdy Gρ̂ (x, y)βv(|x − y|)

+
∫

dx βφ(x)ρ̂(x). (5)

The Helmholtz free energy F in the kBT unit is given by the
configurational integral of N -particle positions, {x1, . . . , xN },
as

e−F {βv} = Tr exp[−βU{ρ̂; βv}]

Tr ≡ �−3N

N !

∫
dx1 · · ·

∫
dxN (6)

with the de Broglie wavelength �.
The VT based on the lower bound [1,32,33,80] uses a

variational functional L{w; g} that depends on an arbitrary
two-body interaction potential w to be optimized relying on
the lower bound of the true Helmholtz free energy F {βv},
instead of the usual upper bound. In the potential separation
such that Eq. (1), we have a Helmholtz free energy F {w} of a
soft-core system interacting via unknown interaction potential
w. The Gibbs-Bogoliubov inequality states that the addition of
a residual interaction energy provides the lower bound of the
true free energy F {βv} for a uniform liquid with the volume
of V and the smeared density of ρ ≡ N/V [1,32,33,80]:

L{w; g}
N

≡ F {w}
N

+ ρ

2

∫
drg(r )u(r ) � F {βv}

N
, (7)

where φ = 0 in Eq. (5) and g(r ) represents the exact radial
distribution function of the true system. Maximization of
L{w; g} with respect to w yields

1

N

(
δF {w}

δw

)∣∣∣∣
w=w∗

= ρ

2
g(r ),

Lmax{w∗; g}
N

= �2{g}
N

+ ρ

2

∫
drg(r )βv(r ), (8)

where the correlation functional �2{g} is the second Legendre
transform of F {w}:

�2{g}
N

= F {w∗}
N

− ρ

2

∫
drg(r )w∗(r ). (9)

In the SP approximation of F {w}, maximization of L{w; g}
with respect to w yields the OZ-like equation [32,80]

h(r ) = −w∗(r ) − ρ

∫
dr′w∗(|r − r′|)h(r ′), (10)

implying that

w∗(r ) = −c(r ). (11)
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It is to be noted that the inequality (7) requires the exact form
of h(r ) [or g(r )]. Conversely, any approximate form of c(r )
may be used in the VT based on the lower bound even though
the equality (11) is verified within the SP approximation of
F {w}. In other words, the VT based on the lower bound
lacks the capability to specify the approximation of the closure
relation [1,32,80].

Next, we would like to see the conventional field the-
ory based on the Hubbard-Stratonovich (HS) transformation
[34–43]. As shown in the literature [34–43] (see also
Appendix A), the SP equation of the HS form yields a mean-
field equation as follows:

ln

{
ρmf (x)

ρB

}
= −ψmf (x),

ψmf (x) = βφ(x) +
∫

dyρmf (y)βv(|x − y|) + α∗,

ρmf (x) = Ne−ψmf (x)∫
dx e−ψmf (x)

, (12)

where φ(x) denotes the actual external field, the constant
term α∗ arises from the conservation of particle number, and
ρB = N/

∫
dx e−ψmf (x) the bulk density as before. Equation

(12) has been known to be the Poisson-Boltzmann equation
when v(|x − y|) is set to be the pure Coulomb potential
v(|x − y|) ∼ 1/|x − y|. For the singular hard core potential,
on the other hand, the HS representation is invalid and
the associated mean-field equation (12) is irrelevant to find
the density distribution ρmf . Hence, the field theories have
adopted perturbation forms around a non-ideal gas such as
hard sphere fluid for taking into account the short-range
correlations due to the hard-core interaction as input, which is
traced back to the Hubbard-Schofield transformation [36–41]
(not the Hubbard-Stratonovich one).

Our focus, however, is on the development of the field
theoretic method that replaces the total of the bare interaction
potential v in Eq. (12) by an appropriate interaction potential
as given by Eq. (2). In Appendix A, we show that incorpora-
tion of two-body fields into the HS form yields a mean-field
equation modified as

ln

{
ρ ′

mf (x)

ρB

}
= −ψ ′

mf (x),

ψ ′
mf (x) = βφ(x) −

∫
dy ρ ′

mf (y)W ∗(|x − y|) + α∗,

ρ ′
mf (x) = Ne−ψ ′

mf (x)∫
dx e−ψ ′

mf (x)
, (13)

where −W ∗ corresponds to w in Eq. (2); however, the inter-
action potential −W ∗ cannot be fixed within the SP approxi-
mation of two-body fields (see Appendix A).

We have seen so far that both treatments of the VT based
on the lower bound and the HS form with two-body fields
introduced are unable to provide the closure relations for
specifying the approximate form of the optimized interaction
potential (w∗ or −W ∗): while the radial distribution function
g(r ) in the VT is not a variable function but is fixed at that of
the true system and the associated direct correlation function
c(r ) should in principle be exact, the SP approximations of

two-body fields in the HS representation give inconsistent
results of −W ∗ (see Appendix A for the details). In order
to validate the MMF equation, such as Eq. (13) with the
interaction potential −W ∗ determined, we need to develop a
new field theory that satisfies the following requirements:

(R1) Whether a potential separation is performed or not,
the obtained mean-field equation has the same form as
Eqs. (2), (12), and (13).

(R2) In the SP approximation of the Helmholtz free en-
ergy, the optimized interaction potential [w∗(r ) or −W ∗(r )] in
the kBT -unit is given by minus the direct correlation function,
similarly to the OZ-like equation (10).

(R3) The DT-FI representation itself provides an approx-
imate closure relation in addition to the OZ-like equation, as
well as the CFT.

This paper demonstrates that these requirements are met
by starting with the D-FI representation [42,44–56], instead
of the HS transformation.

III. DENSITY FUNCTIONAL INTEGRAL (D-FI)
REPRESENTATION

A. The SP approximation of one-body potential field ψ

As found from Appendix A, the FI representation of Eq. (6)
is given by

e−F {βv} =
∫

Dψ

∫
Dρ �N

× Tr e
∫

dxiψ (x){ρ̂(x)−ρ(x)}−βU{ρ;βv}

=
∫

Dψ

∫
Dρ �N e−β[U{ρ;βv}−T S{ρ;ψ}], (14)

where �N = δ[
∫

dx ρ(x) − N ], the interaction energy
U{ρ; βv} now depends on the ρ-field and S{ρ; ψ} denotes
the entropic contribution expressed as

− S

kB

{ρ; ψ} =
∫

dxiψ (x)ρ(x) − ln
{
Tr e

∫
dxiψ (x)ρ̂(x)

}
=

∫
dxiψ (x)ρ(x) − N ln

{∫
dxeiψ (x)

N

}
− N.

(15)

Here, we obtain the D-FI representation from integrating out
the one-body potential field ψ (x) in the SP approximation
[44,46–51], though the D-FI theory going beyond the SP
approximation of the ψ-field has been developed [42,52–56].
There are two steps: (i) we obtain the solution of the SP
equation, and (ii) we evaluate the fluctuations around the
SP field in the Gaussian approximation, the so-called SP
approximation.

First, the SP equation yields the relation, δS/δψ |ψ=iψ∗ =
0. The SP field iψ∗ must be purely imaginary [42–55], so that
we have

ρ(x) = Ne−ψ∗(x)∫
dx e−ψ∗(x)

. (16)

Expanding the entropic contribution S around the SP field
up to the quadratic term, the entropic contribution given by
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Eq. (15) is written as

S{ρ; ψ} ≈ S{ρ; iψ∗} +
∫

dx
δS

δψ

∣∣∣∣
ψ=iψ∗

�ψ (x)

+ 1

2

∫∫
dxdy

δ2S

δψ (x)δψ (y)

∣∣∣∣
ψ=iψ∗

�ψ (x)�ψ (y),

(17)

where −S/kB along the SP path gives the ideal entropy term
Sid:

−Sid{ρ}
kB

= − S

kB

{ρ; iψ∗}

=
∫

dx{ρ(x) ln ρ(x) − ρ(x)}, (18)

the second term on the right-hand side (rhs) of Eq. (17)
vanishes due to the SP equation (16), and �ψ (x) in the last
term on the rhs of Eq. (17) is now the complex fluctuation
field: �ψ = �ψR + i�ψI . In Eq. (17), the second derivative
of S arises from the second term in the second line of Eq. (15),
providing

δ2(−S/kB )

δψ (x)δψ (y)

∣∣∣∣
ψ=iψ∗

= Ne−ψ∗(x)∫
dx e−ψ∗(x)

δ(x − y) − Ne−ψ∗(x)∫
dx e−ψ∗(x)

{
e−ψ∗(y)∫
dy e−ψ∗(y)

}
= γρ(x)δ(x − y) − Gρ (x, y)

N
, (19)

where γ = 1 − 1/N , and the second terms in the second and
third lines of Eq. (19) correspond to correction terms due to
the canonical system and is not negligible especially for x �=
y. Combining Eqs. (17)–(19), we obtain

− S

kB

{ρ; ψ} ≈ −Sid{ρ}
kB

+ 1

2

∫∫
dx γρ(x)�ψ (x)2

− 1

2N

∫∫
dxdyGρ (x, y)�ψ (x)�ψ (y).

(20)

The last two terms on the rhs of Eq. (20) indicate that the
SP configurations are different between the cases of x = y
and x �= y: For x = y, the local minimum and maximum are
located at the SP filed along the real and imaginary fields
(�ψR and �ψI ), respectively, and vice versa for x �= y.

B. On the requirement (R1)

Based on the requirement (R1) described at the end of
Sec. II, we compare the SP path of the ρ-field in the D-FI
form of Eq. (14) with Eq. (12) obtained from the HS form. It
is verified below that Eq. (12) is equivalent to the following
relation [45–50]:

δ

δρ

{
β(U − T Sid ) − λ

(∫
dx ρ(x) − N

)}∣∣∣∣
ρ=ρmf

= 0,

(21)

where the constraint �N is considered using the Lagrange
multiplier λ. Since β(U − T Sid ) in Eq. (21) is written as

β(U − T Sid )

= 1

2

∫∫
dxdy ρ(x)ρ(y)βv(|(x − y|)

+
∫

dx {βφ(x)ρ(x) + ρ(x) ln ρ(x)} − N − N

2
βv(0),

(22)

we have

ln ρmf (x) = −βφ(x) −
∫

dy βv(|x − y|)ρmf (y) + λ − 1.

(23)

Furthermore, comparison between Eqs. (2) and (23) indicates
that Eq. (23) becomes similar to Eq. (2) when

λ − 1 = ln ρB +
∫

dy βv(|x − y|)ρB,

ρB = N∫
dx e−βφR (x)

,

βφR (x) = βφ(x) +
∫

dy {ρmf (y) − ρB}βv(|x − y|), (24)

where we have introduced the symbol βφR in order to rep-
resent the effective external field instead of ψmf , other than
Eq. (12), so that it is clarified that the effective external field
depends not on ψ as a field variable in the HS form, but on ρ.
Combining Eqs. (23) and (24), we have

ln

{
ρmf (x)

ρB

}
= −βφR (x),

βφR (x) = βφ(x) +
∫

dy {ρmf (y) − ρB}βv(|x − y|),
(25)

similarly to the mean-field equation (12) in the HS form and
to the LMF equation (2), though βv needs to be replaced by w

in Eq. (2). It is also noted that the Lagrange multiplier given
by Eq. (24) actually assures the constraint �N :∫

dx ρmf (x) = N,

ρmf (x) = ρBe−βφR (x) = Ne−βφR (x)∫
dx e−βφR (x)

, (26)

as found from Eq. (25).
The above discussions reveal that the present form of the

D-FI does not meet the first requirement (R1), contradicting
the conventional field theory: discrepancy between the HS
form and the D-FI representation necessarily exists unless the
last two terms on the rhs of Eq. (20) somehow disappear. In
what follows, we demonstrate that a solution to this problem
of (R1) results in satisfying the other requirements (R2) and
(R3).
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IV. TWO-BODY FIELDS INCORPORATED
INTO THE D-FI REPRESENTATION

A. Constraints on the instantaneous
density-density correlation field

Before addressing the above extra terms in the entropic
contribution of Eq. (20), let us incorporate the instantaneous
density-density correlation field G = Gρ into the D-FI form.
What is lacking in introducing the density-density correlation
field G [see Appendix A in Eq. (A9)] is to ensure the positivity
that G � 0; while the positivity, ρ � 0, of the density field in
the D-FI representation is satisfied as a result of the existence
of the logarithmic term in Sid, the FI range of both the ρ- and
G-fields has no restriction and it is indispensable to fix the
sign of G in a natural way so that we can develop a DT-FI
representation that is physically relevant. To resolve the sign
problem, we relate the correlation field G in Eqs. (A9) and
(A10) to the auxiliary field M for x �= y:

G(x, y) = M2(x, y) � 0 (x �= y). (27)

Furthermore, the inherent definition of the bare correlation
function Gρ̂ given by Eq. (3) imposes the restriction that
G(x, y) = 0 at x = y.

To take into account these constraints, we introduce the
identity

1 =
∫

DG

∫
DM | detM|

×
∏

x( �=y)

∏
y

δ

[M2(x, y)

2
− G(x, y)

2

]
×

∏
x

δ[G(x, x)]
∏

x

∏
y

δ[G(x, y) − Gρ (x, y)],

=
∫

DG

∫
DW

∫
DM | detM|

×
∏

x( �=y)

∏
y

δ

[M2(x, y)

2
− G(x, y)

2

]
δ[G(x, x)]

× exp

[∫∫
dxdy

iW (x, y)

2
{G(x, y) − Gρ (x, y)}

]
,

(28)

through which it is satisfied that G(x, y) � 0 (x �= y) and
G(x, x) = 0. In Eq. (28), we have used that the b-field as a
function of a such that f (a) = b has the following relation:

1 =
∫

Db
∏

x

δ[b(x) − b̂(x)]

=
∫

Da

∣∣∣∣ det
δf (a)

δa

∣∣∣∣ ∏
x

δ[f [a(x)] − b̂(x)]. (29)

Equation (14) multiplied by the rhs of Eq. (28) leads to the
following form:

e−F {βv} =
∫

DW

∫
DM

∫
Dψ

∫
Dρ �N | detM|e−L,

L{ρ; ψ} = β[U{ρ; iW } − T S{ρ; ψ}]
+ 1

2

∫∫
x �=y

dxdyM2(x, y){βv(|x−y|)−iW (x, y)}.

(30)

Going back to Eq. (20), we would like to note that Gρ can be
replaced by M2 thanks to the delta functionals of Eq. (28). It
follows that the potential integral contribution is written as∫

Dψ eS/kB {ρ;ψ} ≈ eSid/kB {ρ}
∫

D(�ψR )e�SR/kB

×
∫

D(�ψI )e�SI /kB ,

�SR

kB

= −1

2

∫
dx ρ(x)�ψ2

R (x),

�SI

kB

= − 1

2N

∫∫
x �=y

dxdyM2(x, y)�ψI (x)�ψI (y),

(31)

where not the approximation but the constraint G(x, x) = 0
imposed by the δ functional in Eq. (28) is considered. The
Gaussian integrations yield∫

Dψ eS/kB {ρ;ψ} = eSid/kB {ρ}det

√
2π

ρ
det

√
2Nπ

|M| , (32)

which reads

|detM|
∫

Dψ eS/kB {ρ;ψ} = eSid/kB {ρ}e− 1
2 ln detρ, (33)

where the determinant term |detM| has been canceled by
the last factor, det(

√
2Nπ/|M|), on the rhs of Eq. (32) and

constant terms have been omitted for simplicity. As shown
previously [46], the correction term (1/2) ln(detρ) is written
as

1

2
ln detρ =

∫
dx lim

a→0

1

2a3
ln(ρla

3),

lim
a→0

1

a3
ln(ρla

3) = lim
a→0

(ρl − ρ + O[a3]) = ρ(x) − ρ,

(34)

where a denotes the lattice constant defined by ρa3 = 1,
we have used the discretized expression of the Gaussian
integration while taking the continuum limit of a → 0, and
the logarithmic expansion have been performed as ln(ρla

3) =
ln{1 + (ρl − ρ)a3} ≈ (ρl − ρ )a3 + O[{(ρl − ρ )a3}2]. It fol-
lows from Eq. (34) that the correction term, (1/2) ln(detρ),
is negligible: (1/2) ln(detρ) = 0.5(N − N ) = 0.

Thus, we obtain

e−F {βv} =
∫

DW

∫
DM

∫
Dρ �N e−L,

L = Amf{ρ; iW }
+ 1

2

∫∫
x �=y

dxdyM2(x, y){βv(|x − y|)

− iW (x, y)},
Amf{ρ; iW } = β{U{ρ; iW } − T Sid{ρ}}, (35)

where the density functional Amf{ρ; iW } is of the form of
the Helmholtz free energy type in the mean-field approxima-
tion. Remarkably, the extra terms arising from the entropic
contribution [see Eq. (31)] vanishes in Eq. (35) due to the
introduction of auxiliary field M.
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A few remarks are in order about the cancellation of the
determinant factor |detM| due to both the SP approximation
of the ψ-field and the introduction to the auxiliary M-field:

(i) The positivity of G(=Gρ ) can be imposed by other
functions such that eM = G; the present relation M2 = G,
however, has been found appropriate for the SP approximation
of the ψ-field.

(ii) The determinant factor |detM| in Eq. (28) has been
canceled due to the extra terms given by Eq. (31) but would
inevitably remains in the SP equation of the HS form even if
the auxiliary field M is introduced for ensuring the positivity
of G, which is the reason why we have adopted the D-FI
representation instead of the HS form.

(iii) We have neglected higher order contributions to the
DT-FI form (35) beyond the SP approximation of the ψ-field,
which implies that the expression of the DT-FI varies in
accordance with the approximations of the ψ-field; we should
try to improve the accuracy in terms of both the ψ-and ρ-fields
when going beyond the SP approximation along the line of
previous formulations [52–56].

These clarify that the D-FI form of the canonical system
has prescribed the DT-FI representation, the hybrid field
theory of the density and two-body fields, that allows to
impose the constraints on density-density correlation field
[i.e., G(x, y) � 0 (x �= y) and G(x, x) = 0]. In the first step,
we will evaluate the ρ-field within the SP approximation of
the DT-FI representation, according to the last remark made
above.

B. The Helmholtz free energy functional prior
to optimization of two-body fields

Equation (35) implies that the MMF equation (13) can be
obtained from the SP equation with respect to the ρ-field:

δAmf{ρ; iW }
δρ

∣∣∣∣
ρ=ρ∗

= 0, (36)

which actually reads

ln

{
ρ∗(x)

ρB

}
= −βφR (x),

βφR (x) = βφ(x)

+
∫

dy {ρ∗(y) − ρB}iW (|x − y|),

ρ∗(y) = Ne−βφR (y)∫
dy e−βφR (y)

, (37)

similarly to Eq. (25). In the SP approximation of the ρ-field,
we consider the quadratic density fluctuation term around ρ∗:

Amf{ρ; iW }

≈ Amf{ρ∗; iW }+ 1

2

∫∫
dxdy

{
iW (x, y)+δ(x − y)

ρ∗(x)

}
×�ρ(x)�ρ(y), (38)

where �ρ = ρ − ρ∗.
The Gaussian integration over the �ρ-field yields

e−βF {βv} =
∫

DW

∫
DM e−LRPA ,

LRPA = A{ρ∗; iW } + 1

2
ln det

{
iW (x, y) + δ(x − y)

ρ∗(x)

}
+ 1

2

∫∫
x �=y

dxdyM2(x, y){βv(|x − y|)

− iW (x, y)}. (39)

While the functional of LRPA is similar to the conventional
free energy functional in the random phase approximation
(RPA) of the LST [1,6–10,24–28], both of the correlation
field M2 and the two-body interaction potential field iW are
arbitrary in Eq. (39) and remains to be determined.

C. Self-consistent equations of two-body
fields and associated results

It is necessary to evaluate the FIs of two fields, M and W ,
for obtaining the final form of the Helmholtz free energy from
Eq. (39). In this paper, we limit our discussion both to the SP
paths of M and W and to the use of the functional of the RPA
type (the RPA functional) given by Eq. (39):

δLRPA

δM

∣∣∣∣
M=M∗

= 0, (40)

δLRPA

δW

∣∣∣∣
W=iW ∗

= 0, (41)

where the solution of W has been set to be purely imaginary
(W = iW ∗) so that iW = −W ∗ may provide real field as an
optimized two-body potential physically meaningful.

Equation (40) reads

M∗(x, y){βv(|x − y|) − iW (x, y)} = 0, (42)

which holds for any approximations to the DT-FI including
the above RPA. Equation (41), on the other hand, is rewritten
by assuming the existence of the following function k(x, y):

M∗(x, y)2 − ρ∗(x)ρ∗(y) = ρ∗(x)ρ∗(y)k(x, y) (43)

with use of which Eq. (41) reads when using the approximate
form (39):

k(x, y) = W ∗(x, y) +
∫

dz k(x, z)ρ∗(z)W ∗(z, y), (44)

similarly to the OZ-like equation (10) in the case of nonuni-
form fluids (see Appendix B for the detailed derivation). It
follows that the two-body fields can be related to the correla-
tion functions [the total correlation function h∗(r ), the radial
distribution one g∗(r ), and the direct correlation one c∗(r )]
such that

k(x, y) = h∗(|x − y|),
M∗(x, y)2 = ρ∗(x)ρ∗(y)g∗(|x − y|), (45)

W ∗(x, y) = c∗(|x − y|),
where the superscript * denotes that these correlation func-
tions are defined solely by the relations (42) and (44).
Equation (45) transforms Eq. (42) to the relation√

g∗(r ){βv(r ) + c∗(r )} = 0, (46)

which has the same solution as that of the MSA closure
relation: g∗(r ) = 0 for r � σeff and βv(r ) + c∗(r ) = 0 for
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r > σeff with σeff denoting the effective diameter, as well as
the MSA [1–10].

To summarize, the RPA functional (39) leads to a set of
self-consistent equations (42)–(46) for the two-body fields,
thereby validating not only the MMF equation but also the
RPA functional that applies to any systems including hard
sphere fluids and Coulomb fluids with no hard core such as the
one component plasma of point charges. The MMF equation
(37) is thus given by

ln

{
ρmf (x)

ρB

}
= −βφR (x),

βφR (x) = βφ(x) −
∫

dy {ρmf (y) − ρB}c∗(|x − y|),
(47)

which is nothing but the LMF equation (2) with setting that
−c∗ = w.

When we consider ρ∗ = ρ in the absence of external
field (φ = 0), the RPA functional (39) combined with the SP
solutions [Eqs. (42)–(46)] of the two-body fields yields

F {βv}
V

= ρ

2
c(0) − ρ2

2

∫
dr c∗(r ) + ρ ln ρ − ρ

+ 1

2

∫
k

ln[1 − ρc∗(k)], (48)

which corresponds to an extended form of the optimized RPA
functional [1,2,6–10,24–28] that requires no reference fluid
and accordingly adds no perturbative interaction potential
[6–10].

It is also to be noted that the interaction energy term
U{ρ∗; −c∗} in the mean-field functional Amf{ρ∗; −c∗}, which
corresponds to the first two terms on the rhs of Eq. (48),
retains the information on the short-range correlations as
found from the expression as follows:

βU{ρ∗; −c∗}
= −1

2

∫∫
dxdy ρ∗(x)ρ∗(y)g∗(|x − y|)c∗(|x − y|)

−1

2

∫
dx ρ∗(x), (49)

where use has made of the following relations due to the OZ-
like equation (44):

h∗(0) = c∗(0) +
∫

dy g(|x − y|)ρ∗(y)c∗(|y − x|)

−
∫

dy ρ∗(y)c∗(|x − y|),

h∗(0) = −1. (50)

Equation (49) reveals that the mean-field free energy func-
tional Amf{ρ∗; −c∗} contains the information on the short-
range correlations through g∗(r ), despite being the mean-field
approximation.

V. COMPARISON BETWEEN THE DT-FI FORM
AND THE VARIATIONAL THEORY BASED ON THE

LOWER AND UPPER BOUNDS

There are a couple of features that is shared by the DT-
FI form and the VT based on the lower bound [1,32,33,80],
which will be described first for uniform fluids in the absence
of external field φ = 0.

In terms of the second Legendre transform, it is seen that
the RPA functional LRPA prior to the optimization, Eq. (39),
has been transformed similarly to the variational functional
L{w; g} given by Eq. (7) in the VT based on the lower bound.
Considering that (M∗)2 = ρ2g∗, the self-consistent equation
(41) reads

1

N

(
δA{ρ; iW }

δW

)∣∣∣∣
W=iW ∗

= ρ

2
g∗,

LRPA

N
= �2{ρ; −W ∗}

N
+ ρ

2

∫
dr g∗(r )βv(r ), (51)

where �2{ρ; −W ∗} is the second Legendre transform of the
functional A{ρ; −W ∗}:

�2

N
= A{ρ; −W ∗}

N
+ ρ

2

∫
dr g∗(r )W ∗(r ). (52)

These expressions (51) and (52) in the DT-FI representation
correspond to Eqs. (8) and (9) in the VT based on the lower
bound, respectively. Hence, the treatments of the variational
functional L{w; g} in the VT is found similar to that of the
above functional LRPA, Eq. (39), in the DT-FI form.

Actually, the maximization of L{w; g} in the VT based
on the lower bound can be regarded as an aspect of the SP
approximation of the W -field in the DT-FI representation. Let
us return to Eq. (39) for calculating the second derivative of
LRPA with respect to W = WR + iWI with setting ρ∗ = ρ:

δ2LRPA

δWδW

∣∣∣∣
W=iW ∗

= Nρ

2{1 − ρW ∗(k)}2
� 0. (53)

The above positivity of the second derivative specifies the SP
configuration of the DT-FI around W = iW ∗ in the complex
functional space as follows: at the SP field, LRPA has either a
local minimum along the real field of WR or a local maximum
along the imaginary field of WI . It is thus found from the
expression (39) that LRPA is identified with the variational
functional L{w; g} when iW is a real function (or W = iWI ).
In other words, the SP approximation of the W -field supports
the VT based on the lower bound [32,80].

The difference is that the M-field (or the density-density
correlation field) in the DT-FI theory can be evaluated to
provide the MSA closure relation, opposing the VT based
on the lower bound where g is not a variable but is fixed,
in principle, at the exact correlation function of the original
system as mentioned before.

Furthermore, it is instructive to compare our result,
Eq. (39), with the expression of the VT based on the upper
bound in the absence of external field, or the WCA per-
turbation theory for uniform liquids [1,2,29–31]. Recalling
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that

u∗ = βv + c∗,

w∗ = −c∗, (54)

g∗u∗ = 0,

in addition to the expression (49) with the superscript ∗
denoting the optimization of these interaction potentials, the
RPA functional given by Eq. (48) is rewritten as

F {βv} = F0{u∗} + �F {w∗}, (55)

F0{u∗}
V

= ρ2

2

∫
dr g∗(r )u∗(r ) + ρ ln ρ − ρ

− 1

2

∫
k

ln[1 + ρh∗(k)], (56)

�F {w∗}
V

= ρ2

2

∫
dr g∗(r )w∗(r ) − ρ

2
, (57)

where use has been made of the following relation [1,6–10]:

ln[1 + ρh∗(k)] = − ln[1 − ρc∗(k)]. (58)

The VT based on the upper bound, on the other hand, explores
the reference interaction potential u∗ that is optimized to
minimize the variational free energy functional given by the
rhs of the inequality that [1,2,21–31]

F {βv} � F0{u} + ρ2

2

∫
dr g0(r )w(r ), (59)

where g0 represents radial distribution function of a reference
system of particles interacting via the reference interaction
potential u. If g∗ is close to the optimized function of g0

and we ignore the last term on the rhs of Eq. (57), it is
allowed to regard Eq. (55) as the minimum of the variational
free energy functional given by the rhs of Eq. (59). These
discussions reveal a connection with the WCA perturbation
theory (or the uniform version of the local molecular field
theory): the mean-field perturbative contribution in our DT-FI
theory [�F {w∗} in Eq. (57)] includes the information on
short-range correlations, similarly to the WCA perturbation
theory [1,2,29–31,59].

VI. CONCLUDING REMARKS

We have thus obtained a set of self-consistent equations
that consists of the SP equations regarding one-body and
two-body fields as follows: (i) the MMF equation (47) of the
density field ρ∗, (ii) the OZ-like equation (44) of the interac-
tion potential W ∗, and (iii) the equivalent of the MSA closure
relation (46) of the radial distribution function (M∗)2 =
ρ2g∗. Compared with the local molecular field equation (2)
[59–62] on which we focus, the advantage is that the MMF
equation (47) derived from the DT-FI theory specifies the
long-ranged interaction potential w(r ) in Eq. (2) with minus
the direct correlation function c∗(r ) given in the MSA, and
that we can improve the interaction potential used in the MMF
equation [i.e., w in Eq. (2)] systematically, starting with the
primary approximation performed herein, even though there
is a deviation of our short-ranged potential u = βv + c∗ from
that of the local molecular field theory [32] which has been

adjusted to mimic the short-range correlations of the true
system.

We have also demonstrated that the equation set satisfies
the three requirements, (R1) to (R3), described at the end of
Sec. II. It is the first requirement (R1) that guarantees the
equivalence of the DT-FI theory and the conventional field
theory based on the HS transformation, which has been met
by the result that Eqs. (36) and (37) obtained from the density
functional Amf{ρ; iW } is of the same form as the mean-
field equations (12) and (13) given by the HS representation.
We have also confirmed in section V that the DT-FI theory
is compatible not only with the HS form [34–43] but also
with the VT based on the lower bound [1,32,33,80]. Corre-
spondingly, the second requirement (R2) has been verified
by the derivation of Eq. (45). It is most important that the
SP approximation of the M-field in the DT-FI theory has
generated the equivalent of the MSA closure relation (46)
satisfying the third requirement (R3).

In terms of the free energy functional, the essential result
is represented by Eq. (35). It is found from Eqs. (43) to (48)
that the SP approximations of the DT-FI theory yield, without
the input of the LST, the RPA functional of the Helmholtz
free energy given by Eq. (48). Seemingly, this feature of our
formulation is similar not only to the VT based on the lower
bound [1,32,33,80] but also to the optimized RPA [24–28];
however, the DT-FI theory requires no reference system as
well as the CFT, which is different from the optimized RPA
that is relevant especially to the restricted primitive model
of electrolytes where the knowledge on hard sphere fluids is
input as a reference system [1,2,24–28].

In addition, the Ramakrishnan-Youssouf free energy func-
tional in the DFT [11–14,57] seems to underlie Eq. (47) and to
imply the HNC approximation of the direct correlation func-
tion; however, there are two differences between our results
and the Ramakrishnan-Youssouf representation in the DFT.
First, the DT-FI theory verifies that the MSA of the direct
correlation function should be used in the MMF equation (47),
unlike the conventional discussions in the DFT. Second, our
results have added the logarithmic term [the second term on
the rhs of Eq. (39)] to the mean-field free energy functional
Amf{ρ∗; −c∗}, being of the same form as the Ramakrishnan-
Youssouf free energy functional; it follows that the MSA has
been validated in our formulation.

The relationship between the DT-FI theory and the conven-
tional LST will be made clearer by investigating what approx-
imations should be performed in the field theoretic perturba-
tion around the SP field in order to derive the HNC functional
[6–10,15,16,19,20,80] of the Helmholtz free energy going
beyond the RPA functional, which remains to be addressed
along the line of the recent field theoretic formulation in terms
of the VT based on the lower bound [80]. Furthermore, we
need to clarify the advantage of the DT-FI theory over the LST
through the results that are deviated from the LST due to the
consideration of higher-order correction terms of A{ρ; iW }
including fluctuations of two-body fields (W and G). It is
now well established, both theoretically and experimentally,
that the dynamical glass transition is accompanied by growing
heterogeneity of local correlations, or the critical behavior
of four-point correlation function describing the fluctuations
of two-point correlations [76–79]; therefore, relevant results
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could be obtained from investigating fluctuations of two-body
fields in glass-forming liquids using the present framework.

APPENDIX A: DERIVATION OF EQS. (12) AND (13)

To perform the Hubbard-Stratonovich (HS) transformation
[34–43] of Eq. (6), we first incorporate the density field ρ(x)
into Eq. (6) using the following identity:

1 =
∫

Dρ �N

∏
{x}

δ[ρ(x) − ρ̂(x)],

�N = δ

{∫
dxρ(x) − N

}
, (A1)

where �N has been added to impose the conservation of the
total particle number N on the density field. Equation (6)
multiplied by the rhs of Eq. (A1) is

e−F {βv} =
∫

Dρ �NTr
∏
{x}

δ[ρ(x) − ρ̂(x)]

× exp [−βU{ρ = ρ̂; βv}], (A2)
where the density variable in the interaction energy U is
replaced by the c-number field ρ.

It follows from the Fourier transform of Eq. (A1) that a
one-body potential field ψ , dual to ρ, is created:∏

{x}
δ[ρ(x) − ρ̂(x)] =

∫
Dψ e

∫
dxiψ (x){ρ̂(x)−ρ(x)}. (A3)

Correspondingly, Eq. (A2) is transformed to

e−F {βv} =
∫

Dψ

∫
Dρ

∫
dα eiα{∫ dxρ(x)−N}

× Tr e
∫

dxiψ (x){ρ̂(x)−ρ(x)}−βU{ρ;βv}

=
∫

Dψ

∫
Dρ

∫
dα e−β[U{ρ;βv}−T S{ρ;ψ}]+iα{∫ dxρ(x)−N}.

(A4)
In the last line of Eq. (A4), S denotes the entropic contribution
given by

− S

kB

{ρ; ψ}

=
∫

dxiψ (x)ρ(x) − ln{Tr e
∫

dxiψ (x)ρ̂(x)}

=
∫

dxiψ (x)ρ(x) − N ln

{∫
dxeiψ (x)

N

}
− N − C,

(A5)
where use has been made of the Stirling’s approximation
ln N ! ≈ N ln N − N and the constant term C = ln �−3N will
be omitted for simplicity in the following. The Gaussian
integration over the ρ-field in Eq. (A4) yields

e−F {βv} =
∫

Dψ

∫
dα e−H{βv;ψ},

H{βv; ψ} = 1

2

∫
dx

∫
dy ψ̃ (x)(βv)−1(|x − y|)ψ̃ (y)

−N ln

{ {∫ dxeiψ (x)}
N

}
−N−N

2
βv(0) + iNα,

(A6)

using the shifted potential, ψ̃ = ψ − iφ − α.

The SP equation with respect to ψ is

δH {βv; ψ}
δψ

∣∣∣∣
ψ=iψ∗

= 0, (A7)

which reads

ψ̃∗(x) =
∫

dy βv(|x − y|) Ne−ψ∗(y)∫
dye−ψ∗(y)

,

ψ̃∗(x) = ψ∗(x) − φ(x) − α∗, (A8)

where a constant α∗ arises from the constraint �N . Equation
(A8), which is identical to Eq. (12), is the mean-field equation
in the HS form.

Let us further introduce a correlation field G(x, y) into the
HS form using the following identity:

1 =
∫

DG
∏
{x}

∏
{y}

δ

[
G(x, y)

2
− Gρ (x, y)

2

]
, (A9)

whose Fourier transformed representation is given by

1 =
∫

DW

∫
DG

× exp

[∫∫
dxdy

iW (x, y)

2
{G(x, y) − Gρ (x, y)}

]
.

(A10)

Inserting Eq. (A10) into Eq. (A4), the Gaussian integration
over the ρ-field yields

e−F {βv}

=
∫

DW

∫
DG

∫
Dψ

∫
dα det−1/2

[
2π

iW (x, y)

]
× e−H{iW ;ψ}− 1

2

∫∫
dxdy G(x,y){βv(|x−y|)−iW (x,y)}. (A11)

It is to be noted that H{iW ; ψ} is of the same form as
H{βv; ψ}. Since the SP equation with respect to ψ is

δH {iW ; ψ}
δψ

∣∣∣∣
ψ=iψ∗

= 0, (A12)

we have

ψ̃∗(x) =
∫

dy iW (|x − y|) Ne−ψ∗(y)∫
dye−ψ∗(y)

,

ψ̃∗(x) = ψ∗(x) − φ(x) − α∗, (A13)

similarly to Eq. (A8). At the SP field of W = iW ∗, the
interaction potential iW in Eq. (A13) is replaced by −W ∗.

Equation (13) is thus verified. Nevertheless, we immedi-
ately find a few difficulties in dealing with the above rep-
resentation (A11). First, it is necessary to manipulate the
determinant term of det−1/2(2π/iW ) when evaluating the FI
of the W -field. In addition, −W ∗ is eventually brought back to
the original interaction potential [i.e., −W ∗(x, y) = βv(|x −
y|)] in the SP approximation of the G-field, contradicting the
SP equation of W , unless we take into account the contri-
butions due to fluctuations of the interaction potential field
around W ∗.
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APPENDIX B: DERIVATION OF EQ. (44)

Equation (44) is obtained from Eq. (41). We then perform
the functional differentiation of LRPA with respect to W

using the expression (39). Reminding that the logarithmic
correction term in the RPA functional of Eq. (39) is written
as

−1

2
ln det

{
iW (x, y) + δ(x − y)

ρ∗(x)

}
= ln

[∫
D�ρ e

− 1
2

∫∫
dxdy {iW (x,y)+ δ(x−y)

ρ∗ (x) }�ρ�ρ ′
]
, (B1)

it is found that

δ

δW

[
1

2
ln det

{
iW (x, y) + δ(x − y)

ρ∗(x)

}]∣∣∣∣
W=iW ∗

= i

2

[∫
D�ρ (�ρ�ρ ′) e

− 1
2

∫∫
dxdy {−W ∗(x,y)+ δ(x−y)

ρ∗ (x) }�ρ�ρ ′∫
D�ρ e

− 1
2

∫∫
dxdy {−W ∗(x,y)+ δ(x−y)

ρ∗ (x) }�ρ�ρ ′

]

= i

2
〈�ρ�ρ ′〉

= i

2

{
−W ∗(x, y) + δ(x − y)

ρ∗(x)

}−1

, (B2)

where �ρ(x) = �ρ and �ρ(y) = �ρ ′ have been used for
brevity, and 〈O〉 is defined by

〈O〉 ≡
∫

D�ρ O e
− 1

2

∫∫
dxdy {−W ∗(x,y)+ δ(x−y)

ρ∗ (x) }�ρ�ρ ′∫
D�ρ e

− 1
2

∫∫
dxdy {−W ∗(x,y)+ δ(x−y)

ρ∗ (x) }�ρ�ρ ′ . (B3)

We also have

δAmf{ρ∗; iW }
δW

∣∣∣∣
W=iW ∗

= i

2
Gρ∗ . (B4)

Combining Eqs. (B2) and (B4), the SP equation (41) with the
expression (39) is transformed to

M2 = Gρ∗ +
{
−W ∗(x, y) + δ(x − y)

ρ∗(x)

}−1

. (B5)

Introducing the function k(x, y) as given by Eq. (43), Eq. (B5)
reads

ρ∗(x)ρ∗(y)k(x, y)

= −ρ∗(x)δ(x − y) +
{
−W ∗(x, y) + δ(x − y)

ρ∗(x)

}−1

,

(B6)

from which the OZ-like equation (44) is derived as detailed
below.

We make use of the following relation:∫
dy

{
−W ∗(x, y) + δ(x − y)

ρ∗(x)

}−1

×
{
−W ∗(y, z) + δ(y − z)

ρ∗(y)

}
= δ(x − z). (B7)

Performing the same operation on the other terms of Eq. (B6),
we obtain∫

dy ρ∗(x)ρ∗(y)k(x, y)

{
−W ∗(y, z) + δ(y − z)

ρ∗(y)

}
= ρ∗(x)

{
−

∫
dy k(x, y)ρ∗(y)W ∗(y, z) + k(x, z)

}
(B8)

and ∫
dy − ρ∗(x)δ(x − y)

{
−W ∗(y, z) + δ(y − z)

ρ∗(y)

}
= ρ∗(x)W ∗(x, z) − δ(x − z). (B9)

Going back to Eq. (B6), we find that the last term on the rhs
of Eq. (B9) cancels Eq. (B7). Thus it follows from Eqs. (B6)
to (B9) that

k(x, z) = W ∗(x, z) +
∫

dy k(x, y)ρ∗(y)W ∗(y, z), (B10)

which is identical to Eq. (44).
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