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Examples of renormalization group transformations for image sets

Samuel Foreman*

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
and Computational Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Joel Giedt†

Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA

Yannick Meurice‡

Department of Physics and Astronomy, 514 Van Allen Hall, The University of Iowa, Iowa City, Iowa 52242, USA

Judah Unmuth-Yockey§

Department of Physics, Syracuse University, Syracuse, New York 13244, USA

(Received 10 August 2018; published 26 November 2018)

Using the example of configurations generated with the worm algorithm for the two-dimensional Ising model,
we propose renormalization group (RG) transformations, inspired by the tensor RG, that can be applied to sets
of images. We relate criticality to the logarithmic divergence of the largest principal component. We discuss the
changes in link occupation under the RG transformation, suggest ways to obtain data collapse, and compare with
the two-state tensor RG approximation near the fixed point.
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I. INTRODUCTION

Machine learning (ML) is a general framework for recog-
nizing patterns in data without detailed human elaboration
of the rules for doing so. As an example, a very general
function, with many parameters (for example, thousands or
millions) can be optimized on a training set, where the desired
output is known. The problem is typically nonconvex and
plagued by overfitting problems, and so advanced methods are
necessary in order to get reliable answers. One tool that has
been exploited is principal component analysis (PCA), which
reduces the dimensionality of the data to the most important
“directions.” Immediately the practitioner of renormalization
group (RG) methods recognizes an analogy, since the RG
techniques are also supposed to identify the most important
directions in an enlarged space of Hamiltonians. One of the
motivations of the present research is to make this analogy
more concrete.

A number of papers [1–3] attempt to draw a connection
between deep learning and the RG as it appears in physics.
However, the analogies between RG flow and depth in a
neural network would be strengthened if one could determine
conditions under which fixed points can be identified. It would
be helpful to show more explicitly how passing from one
level to another in a neural network genuinely translates to a
renormalization group transformation. There have been steps
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in the direction of making a full connection. For instance, in
Ref. [2] the principle of causal influence is emphasized. That
is, when descending in depth, only neighboring nodes should
influence the outcome of a lower level node. We have also im-
plemented this in a simple training scheme in earlier work [4].
It can be called “cheap learning” because far fewer variational
parameters are involved due to the constraints of locality. In
[3] it is emphasized that deep neural networks outperform
shallower networks for reasons which may ultimately be un-
derstood in terms of the power of the renormalization group.
Other topics related to machine learning, such as principal
component analysis [5], have been previously interpreted in
terms of the renormalization group (in this case momentum
shells). Machine learning has also been used to identify phase
transitions in numerical simulations [6–9].

RG transformations are usually defined in a space of cou-
plings and/or Hamiltonians, but typically, it is not possible
to write down Hamiltonians directly associated with image
sets. In this article we propose RG transformations that can
be applied to a specific set of images, but which could be
generalized for other image sets, and can also be understood
analytically without any graphical representation. We use the
well-studied example of the two-dimensional Ising model
on a square lattice. The spin configurations generated with
importance sampling provide images with black and white
pixels. They have features that can be used to attempt to
recognize the temperature used to generate them. However,
constructing blocked Hamiltonians in configuration space is a
difficult task which involves approximations that are difficult
to improve. In other words, it is very difficult to explicitly
construct the exact RG transformation mapping the original
couplings among the Ising spins into coarse-grained ones.
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A better control of the RG transformation can be achieved
by using the tensor renormalization group (TRG) method
[10–16]. The starting point for this reformulation is the char-
acter expansion of the Boltzmann weights, which is also used
in the duality transformation [17]. This leads to an exact
expression of the partition function as a sum over closed paths
which can be generated with importance sampling using the
worm algorithm [18] and then pixelated. These samples will
be our sets of images indexed by the temperature used to
generate them. The procedure is reviewed in Sec. II.

The goal of a RG analysis is to study systems with large
correlation lengths in lattice spacing units and iteratively
replace them by coarser ones with a larger effective lattice
spacing. This process is useful if we can tune a parameter such
as the temperature towards its critical value. Typical image
sets, such as the MNIST data, can be thought as “far from
criticality,” and the use of RG methods for such a data set may
be of limited interest [4]. Criticality may sometimes refer to
the choice of parameters used in data analysis [19]. It seems
crucial to introduce a systematic way to deal with the concept
of criticality in ML.

The PCA is a standard method to analyze sets of images. In
configuration space, the PCA analysis is identical to the study
of the spin-spin correlation matrix. In particular, the largest
eigenvalue λmax is directly connected to the magnetic suscep-
tibility which diverges at criticality [7]. In the loop representa-
tion (worms), we will show that λmax diverges logarithmically
at criticality with a constant of proportionality which can be
estimated quite precisely (3/π ). This is explained in Sec. III.
More generally, it seems reasonable to identify the criticality
with the divergence of λmax.

The advantage of rewriting the high-temperature expansion
in terms of tensors is that it allows a very simple block-
ing (coarse-graining) procedure where a group of sites is
replaced by a single site. In the TRG approach the blocking
procedure is local. This leads to simple and exact coarse-
graining formulas because we can separate the links into two
categories: those links that are inside the blocks and integrated
over, and those outside the blocks which are kept fixed and
communicate between the blocks [13]. The main goal of this
article is to relate blocking procedures that can be applied
to sets of pixelated images in order to approximate TRG
transformations. A short summary of the TRG procedure is
given in Sec. IV.

Having defined criticality, the next step is to define a RG
transformation for sets of “legal” loop configurations, also
called “worm configurations” later, sampled at various tem-
peratures. In Sec. V, we propose a family of transformations
which replaces two parallel links in a block by a single link
carrying a specific value x. We call this procedure 1 + 1 → x

hereafter. In the case 1 + 1 → 0, the blocked images follow
the same rules (for legal configurations) as the original ones.
There is a clear analogy with the two-state approximation
of the TRG method. In the two-state TRG approximation,
the average fraction of occupied links shows a characteristic
crossing at a critical point and a collapse when the distance
to the critical point is appropriately rescaled at each iteration.
The average fraction of occupied links in the blocked worm
configurations (with 1 + 1 → 0) shows a somewhat simi-
lar behavior in the low-temperature phase. However, on the

high-temperature side, we observe a “merging” rather than a
crossing. In Sec. VI, we provide explanations for the similari-
ties and differences between the two procedures.

In Sec. VII we discuss an approximate two-state TRG
method to calculate the average number of bonds through
several iterations. The worm configurations can be directly
connected to spin configurations using duality [17]: they
are the boundary of the positive spin islands. This suggests
that the methods discussed here could be applied to generic
images. Boundaries of generic grayscale pictures can be de-
fined by converting the picture to black and white pixels. A
grayscale picture with gray values between 0 and 1 can be
converted into an Ising spin configuration by introducing a
“graycut” below which the value is converted to 0 (spin down)
and above which the value is converted to 1 (spin up). It is then
possible to construct the boundaries of the spin-up domains.
This is illustrated in Fig. 1. Possible applications are briefly
discussed in the Conclusions and illustrated with the CIFAR
database in Appendix B.

II. FROM LOOPS TO IMAGES

In the following we consider the two-dimensional Ising
model with spins σi = ±1 on a square lattice. The partition
function reads

Z =
∑
{σi }

eβ
∑

〈i,j〉 σiσj , (1)

where 〈i, j 〉 denotes nearest neighbor sites on the square
lattice. In some occasions we will use the notation T = 1/β

for the temperature. The partition function can be rewritten by
using the character expansion [17]

exp(βσ ) = cosh(β ) + σ sinh(β ) (2)

and integrating over the spins. Factoring out the cosh(β ), each
link can carry a weight of 1 when unoccupied or t ≡ tanh(β )
when occupied. The integration over the spins guarantees that
an even number of occupied links is coming out of each site
[17]. The set of occupied links then form a “legal graph” with
Nb occupied links. The partition function can then be written
as sum over such legal graphs. If N (Nb ) denotes the number
of legal graphs with Nb links we can write

Z = 2V (cosh(β ))2V
∑
Nb

tNbN (Nb ). (3)

Using the fact that tanh(β ) = exp(−2β̃ ), with β̃ the inverse
dual temperature, Eq. (3) has the same form as a spectral
decomposition using a density of states and a Boltzmann
weight (with 2Nb playing the role of the energy). Details of
this reformulation can be found in Appendix A 1.

As shown in Appendix A 2, we can use derivatives of the
logarithm of the partition function to relate 〈Nb〉 to the average
energy and the bond number fluctuations,〈

�2
Nb

〉 ≡ 〈(Nb − 〈Nb〉)2〉, (4)

to the specific heat per site. From the logarithmic singularity
of the specific heat we find that〈

�2
Nb

〉
/V = − 2

π
ln(|T − Tc|) + regular. (5)
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FIG. 1. (a) Picture of an eye with 4096 pixels, (b) black and
white version with a graycut at 0.72, and (c) boundaries of the black
domains.

In the following we use interchangeably the “bond” terminol-
ogy, for instance, in Nb as in [18] and the link terminology
more common in the lattice gauge theory context. In all our
numerical simulations we use periodic boundary conditions,
which guarantees translation invariance.

We will show in Sec. IV that the new form of the partition
function in Eq. (3) can also be written in an equivalent way

as a sum of products of tensors with four indices contracted
along the links of the lattice.

The contributions to Eq. (3) can be sampled using a worm
algorithm [18] outlined in Appendix A 3. Using this algo-
rithm, we generated multiple configurations at each temper-
ature (Nconfigs ≈ 10, 000) which are then used for averaging.
For example, we can calculate the average number of occu-
pied bonds at a particular temperature by averaging over all
configurations.

Using a legal graph (worm configuration), we can construct
an image by introducing a lattice of 2L × 2L pixels with a
size of one-half lattice spacing. One-quarter of these pixels
are attached to the sites, one-quarter to the horizontal links,
and one-quarter to the vertical links. The remaining quarters
are in the middle of the plaquettes and always white. In this
representation, each site, link, and plaquette is designated an
individual pixel, where occupied links and their respective
endpoints are colored black. An example of this representation
is shown in Fig. 2.

We can then flatten each of these images into a vector v ∈
R4V , with vi ∈ {0, 1}. This allows us to write the number of
occupied bonds in a single configuration Nb as∑

j=bonds

vj = Nb . (6)

III. PCA AND CRITICALITY

Having now sets of images for a range of temperatures,
we can apply PCA [20]. PCA isolates the “most relevant”
directions in the dataset. PCA is simply the computation of the
eigenvalues λα and eigenvectors uα of the covariance matrix
for a dataset with N configurations corresponding to a given
temperature {vn}Nn=1:

Sij = 1

N

N∑
n=1

(
vn

i − v̄i

)(
vn

j − v̄j

)
. (7)

In this equation, each sample vj is a vector in R4V , labeled by
the indices i, j = 1, . . . , 4V . The PCA extracts solutions to

Suα = λαuα (8)

and orders them, in descending magnitude of λα , which are
all non-negative. The usefulness of PCA is that one can
approximate the data (see, for instance, the discussion in [20])
by the first M principal components.

Illustrations of the PCA for the MNIST data can be found
in Sec. 4 of Ref. [4], where we show the eigenvectors corre-
sponding to the largest eigenvalues and the approximation of
the data by subspaces of the largest eigenvalues of dimensions
10, 20, etc.

It should be noted that the PCA is an analysis that can
be performed for each temperature separately and is not
obviously connected to the closeness to criticality. However,
we were able to find a relation between the largest PCA
eigenvalue denoted λmax and the logarithmic divergence of the
specific heat, namely,

λmax � 3
2

〈
�2

Nb

〉
/V � − 3

π
ln(|T − Tc|). (9)
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FIG. 2. (a) Legal worm configuration on an L × L lattice with periodic boundary conditions, and (b) its equivalent representation as a
2L × 2L black and white pixel image.

This property was found by an approximate reasoning shown
in Appendix A 2 and relies on two assumptions. The first one
is that the eigenvector associated with λmax is proportional
to 〈v〉, which is invariant under translation by two pixels
in either direction. The second assumption is that in good
approximation we can neglect the contributions from sites that
are visited twice (four occupied links coming out of one site).
Numerically, only 4% of sites are visited twice near the critical
temperature, which justifies the second assumption. Figure 3
provides an independent confirmation of the approximate
validity of Eq. (9).

IV. TRG COARSE GRAINING

So far we have sampled the legal graphs of the high-
temperature expansion of the Ising model using the worm

FIG. 3. λmax and 3
2 〈�2

Nb
〉/V (per unit volume) vs T , illustrating

the relation between the eigenvalue corresponding to the first prin-
cipal component and the logarithmic divergence of the specific heat.
The inset shows a qualitative agreement near the critical temperature.

algorithm. An alternative approach is to use a tractable
real-space renormalization group method known as the
TRG [12–16].

In order to understand what we want to accomplish by
blocking the loop configuration, it is useful to first understand
the evolution of a tensor element using the TRG method. The
tensor formulation used here connects easily with the worm
formulation used in this paper. After the character expansion
has been carried out, one is left with new integer variables
on the links of the lattice with constraints on the sites which
guarantee the sum of the link variables associated with that
site is even. Therefore we build a tensor using this constraint
and the surrounding link weights. The tensor has the form

T
(i)
xx ′yy ′ (β ) = [tanh(β )](nx+nx′ +ny+ny′ )/2

× δnx+nx′ +ny+ny′ ,0 mod 2. (10)

Here the notation being used is that this tensor is located at the
i th site of the lattice, nμ̂ is the integer variable, taking value
0 or 1, on an adjacent link, and the Kronecker delta, δi,j , is
understood to be satisfied if the sum is even. By contracting
these tensors together in the pattern of the lattice, one recreates
the closed-loop paths generated by the high-temperature ex-
pansion and can exactly match those paths which are sampled
by the worm algorithm.

Using these tensors one can write a partition function for
the Ising model that is exactly equal to the original partition
function,

Z = 2V (cosh(β ))2V Tr
∏

i

T
(i)
xx ′yy ′ , (11)

where Tr means contractions (sums over 0 and 1) over the
links.

The most important aspect of this reformulation is that it
can be coarse-grained efficiently. The process is illustrated in
Fig. 4, where four fundamental tensors have been contracted

052129-4



EXAMPLES OF RENORMALIZATION GROUP … PHYSICAL REVIEW E 98, 052129 (2018)

FIG. 4. Illustration of the tensor blocking discussed in the text.
Each dot is a tensor at a lattice site with four lines coming out, each
representing a tensor index. Lines connecting dots represent tensor
contractions.

to form a new “blocked” tensor. This new tensor has a squared
number of degrees of freedom for each new effective index.
The partition function can be written exactly as

Z = 2V (cosh(β ))2V Tr
∏
2i

T
′(2i)
XX′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the
lattice spacing of the original lattice. In practice, this exact
procedure cannot be repeated indefinitely and truncations
are necessary. This can be accomplished by projecting the
product states into a smaller number of states that optimizes
the closeness to the exact answer. A two-state projection is
discussed in [13] and will be followed hereafter. Note that in
this procedure, T0000 is factored out and the final expression
for the other blocked tensors is given in these units. For
definiteness we consider T1100, which in the microscopic
formulation is the weight associated with a horizontal line

in a loop configuration. By looking at the fixed point equa-
tion [13], one can see that there is a high-temperature fixed
point where all the tensor elements except for T0000 are zero
and a low-temperature fixed point where all the tensor ele-
ments are 1. In between these two limits, there is a nontrivial
fixed point illustrated by the crossing of iterated values of
T1100 in Fig. 5. Note that because of the two-state approxi-
mation, the critical temperature Tc is slightly higher than the
exact one [13]. To be completely specific, the exact Tc for
the original model is 2/ ln(1 + √

2) = 2.269..., while for the
two-state projection with the second projection procedure of
Ref. [13] it is 1/0.394 867 8 = 2.532 49... .

It is easy to relate the properties of the iterated curves near
the nontrivial fixed point using the linear RG approximation.
Below we just state the results; for details and references see
[13]. With the blocking procedure used, the scale factor is b =
2. The eigenvalue in the relevant direction is λ = b1/ν = 2
since ν = 1. In Fig. 5(a), one can see that the height

δT1100 ≡ T1100 − T ∗
1100 (12)

(where T ∗
1100 is the value at the fixed point) nearly doubles

each time the blocking procedure is performed, making the
slope twice as large each time. A nice data collapse can be
reached by offsetting this effect by rescaling the horizontal
axis each iteration by λ = 2 as shown in Fig. 5(b). In nu-
merical calculations, we start with a finite L (64 in Fig. 5)
and then after 	 iterations, we are left with an effective size
Leff = L/b	.

The remainder of the paper will be dedicated towards
obtaining data collapse for 〈Nb〉, calculated with successive
blockings.

V. IMAGE COARSE GRAINING

In an attempt to explicitly connect the ideas from RG
theory to similar concepts in machine learning, we will im-
plement a coarse-graining procedure directly on the images
but in a way inspired by the TRG construction of Sec. IV. The

FIG. 5. (a) T1100 vs T − T (2s )
c for six successive iterations of the blocking transformation, beginning with an initial lattice L = 64. (b) T1100

vs (T − T (2s )
c )/Leff illustrating the data collapse, where T (2s )

c is the critical temperature of the two-state projection, beginning at iteration 0 on
an L = 64 lattice.
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FIG. 6. Illustration of an elementary block in the image con-
sisting of four sites, four internal bonds (red), eight external bonds
(green), and four blocked external bonds (blue).

construction relies on visual intuition and will be reanalyzed
in the TRG context in Sec. VII.

As in the TRG coarse-graining procedure, the image is first
divided up into blocks of 2 × 2 squares, as shown in Fig. 6.
Each of these 2 × 2 squares is then replaced, or “blocked,” by
a single site with bonds determined by the number of occupied
external bonds in the original square. In doing so, we reduce
the size of each linear dimension by a factor of 2, resulting in a
new blocked configuration whose volume is one-quarter of the
original. In particular, if a given block has exactly one external
bond in a given direction, the blocked site retains this bond in
the blocked configuration. This seems to be a natural choice.
However, if a given block has exactly two external bonds in a
given direction, we can consider several options. The simplest
option is to neglect the double bond entirely, and we denote
this blocking scheme by “1 + 1 → 0.” This approach respects
the selection rule (conservation modulo 2) and has the advan-
tage of maintaining the closed-path restriction. In other words,
with the 1 + 1 → 0 option, the blocked image corresponds
to a legal graph and the procedure can be iterated without

introducing new parameters. This procedure is illustrated for
a specific configuration on a 16 × 16 lattice in Fig. 7.

Alternatively, we can include this double bond in the
blocked configuration and give it some weight m between 0
and 2. The examples of m = 1 and 2 are denoted “1 + 1 → 1”
and “1 + 1 → 2,” respectively, and are shown in Fig. 16.
This blocking procedure introduces new elements, and itera-
tions require more involved procedures. This is not discussed
hereafter.

VI. PARTIAL DATA COLLAPSE FOR BLOCKED IMAGES

In this section, we study the properties of 〈Nb〉 obtained for
successive blockings with the 1 + 1 → 0 rule, starting with
configurations on a 64 × 64 lattice. A first observation is that
the 1 + 1 → 0 blocking preserves the location of the peak of
the fluctuations 〈�2

Nb
〉. In addition, it is possible to stabilize

this quantity for a few iterations by dividing by Veff ln(Leff ).
This is illustrated in Fig. 8. However, a very different scaling
appears for the last two iterations, which may be due to the
very short effective sizes (4 and 2). This indicates the last two
iterations are very different from the previous ones.

We now consider 〈Nb〉 for successive iterations. The results
are shown in Fig. 9. We see that in the low-temperature
side, the curves sharpen in a way similar to T1100 in Fig. 5.
However on the high-temperature side, we observe a merging
rather than a crossing. This can be explained as follows. In
the high-T regime occasionally a single loop, the size of a
plaquette, forms. This is due to other configurations being
highly suppressed. With the 1 + 1 → 0 rule, one out of four
possible plaquettes becomes a larger plaquette, which exactly
compensates the change in Veff , which is also reduced by a
factor of 4. There are four kinds of plaquettes (see Fig. 7):
those inside the blocks (they disappear after blocking), those
between two neighboring blocks in the vertical or horizontal
direction (these are double links between the blocks and so
they disappear with the 1 + 1 → 0 rule), and finally, those
which share a corner with four blocks (they generate a larger
plaquette). This last type can be seen at coordinate (4, 12) in
Fig. 7.

FIG. 7. (a) Illustration of the 1 + 1 → 0 blocking procedure discussed in the text, original configuration; (b) introduction of the blocks and
replacement of single or double bonds according to the 1 + 1 → 0 rule; (c) construction of the corresponding blocked image.
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FIG. 8. Fluctuations in the average number of bonds 〈�2
Nb

〉 vs
temperature T under iterated blocking steps beginning with an initial
lattice size of L = 64. The results are scaled by 1/Veff log(Leff ) in
order to demonstrate the data collapse near the critical temperature.
This collapse is especially apparent in the inset, which shows the
results under the first three blocking steps, with Leff = 64, 32, 16,
and 8.

We now attempt to obtain data collapse for 〈Nb〉/Veff by
performing a rescaling of the temperature axis with respect to
the critical value as in Fig. 5. After this rescaling, by a factor
2 at each iteration we observe a reasonable collapse on the
low-temperature side. On the high-temperature side, since the
unrescaled curves merge, the rescaling splits them and there
is no collapse on that side. This is illustrated in Fig. 9.

VII. TRG CALCULATION OF 〈Nb〉
Using the tensor method we were able to calculate 〈Nb〉 to

compare with the worm algorithm. Consider the equation for
〈Nb〉, with Nb = ∑

l nl the sum over bond numbers at every

link:

〈Nb〉 = 1

Z

∑
{n}

(∑
l

nl

)(∏
l

tanhnl (β )

)

×
(∏

i

δ
(i)
nx+nx′ +ny+ny′ ,0 mod 2

)
. (13)

This expression can be seen as 〈Nb〉 = ∑
l〈nl〉, and be-

cause of translation and 90◦ rotational invariance, all 〈nl〉 are
equal. Thus, it is enough to calculate 〈nl〉 for one particular
link (just call it 〈n〉) and multiply it by 2V : 〈Nb〉 = 2V 〈n〉.

To calculate 〈n〉, it amounts to associating an n with one
particular link on the lattice. This alters two tensors on the
lattice such that the two tensors which contain that link as
indices are now defined as

T̃ (1)
nxnx′nyny′ = √

nxTnxnx′ nyny′ (β ), (14)

T̃ (2)
nxnx′ nyny′ = √

nx ′Tnxnx′nyny′ (β ), (15)

where x and x ′ were chosen without loss of generality. It could
just as well have been chosen as y and y ′. One can see that
when these two tensors are contracted along their shared link,
the product picks up a factor of n for that link, which when
combined with the other tensors in the lattice, and divided by
Z, yields 〈n〉.

Knowing the above, one is free to block and construct the
partition function Z and 〈n〉. This can be done by blocking
symmetrically in both directions, or by constructing a transfer
matrix by contracting only along a time slice (i.e., a snapshot
of the system at fixed t). This is shown in Fig. 10. In practice,
contracting to build a transfer matrix is optimum, since one
direction of the lattice is never renormalized and allows the
easy calculation of 〈n〉. What was just described is a method
to calculate 〈n〉 for the original, fine lattice. However, one
can also calculate the same quantity for a coarse lattice. The
actual blocking method is essentially identical, with a small

FIG. 9. (a) Average number of bonds 〈Nb〉 vs temperature T under iterated blocking steps beginning with an initial lattice size of L = 64.
The dashed black line illustrates the high-temperature expansion, showing that the dominant configurations are those consisting of small,
isolated plaquettes. (b) Average number of bonds 〈Nb〉 vs the rescaled temperature (T − 2.269)/Leff under successive blocking steps. Iteration
0 represents the original lattice before blocking, with Leff = 64.
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n
(1)
t n

(2)
t n

(3)
t n

(4)
t

n
(1)
t′ n

(2)
t′ n

(3)
t′ n

(4)
t′

FIG. 10. A pictorial representation of the transfer matrix made
by contracting a fundamental tensor along a single time slice.

difference. Instead of contracting the fundamental tensor to
the desired lattice size, one contracts a blocked tensor to the
desired lattice size.

For example, if one wanted to calculate 〈Nb〉 for a 32 × 32
lattice, one could contract the fundamental tensor along a time
slice with itself five times. This would give a 232 × 232 transfer
matrix which could be used to build the whole partition func-
tion. Now, under a single coarse-graining step the 32 × 32
lattice becomes a 16 × 16 lattice of blocks. Therefore, to build
this, one could contract four fundamental tensors in a block
and consider this a new, effective fundamental tensor. This is
shown in Fig. 4. Then one repeats the same steps to construct
the transfer matrix, however, only contracting four times with
itself to create a matrix representing 16 lattice sites of the
blocked tensor.

To actually calculate 〈n〉 by building the transfer matrix,
one can take the final tensor, prior to contracting the dangling
spatial indices, and multiply by

√
n against the indices nx

and nx ′ . This is shown for the unblocked case in Fig. 11;
however, the procedure is identical for the blocked case once
the blocked tensor has been constructed. This is also the point
where one can choose the level of approximation one will use
in the blocking. For instance, one could choose that the state
|1 1〉 → |0〉 and assign n = 0 to that state. Alternatively, one
could preserve Nb and let |1 1〉 → |2〉 and assign n = 2 to
that state. This procedure was found to agree with the results
obtained by changing the pixels of the worm configurations.

Once the original transfer matrix has been constructed, as
well as the matrix with the insertion of n along a single link,
one can combine these to find 〈n〉. This is done by simple
matrix multiplication:

〈n〉 = 1

Z
Tr [T · · ·T′ · · ·T︸ ︷︷ ︸

Nτ

] (16)

√
nx

√
nx′

FIG. 11. By multiplying the remaining free spatial indices by
√

n

and contracting for periodic boundary conditions in space we form
an “impure” transfer matrix. Combining the resultant matrix with the
original transfer matrix allows one to calculate 〈n〉.

with

Z = Tr [TNτ ]. (17)

Here T represents the transfer matrix built by contracting ten-
sors along a time slice, and T′ represents the single (“impure”)
transfer matrix at a time slice with a single bond multiplied by
n. Since the lattice has Euclidean temporal extent, L = Nτ ,
there are that many matrices multiplied in each case. The
values of 〈Nb〉/Veff obtained with this procedure are shown in
Fig. 12. The rescaling by 2 at each iteration provides a good
data collapse on both sides of the transition.

VIII. CONCLUSIONS

In summary, we have motivated, constructed, and applied
a RG transformation to sets of worm configurations at various
temperatures. This transformation is approximate, and the
coarse-grained configurations are themselves worm config-
urations. This allows multiple iterations. We monitored the
bond density at successive iterations and compared them with
a two-state TRG approximation. We found clear similarities
in the low-temperature side, where data collapse is observed
for both procedures when the distance to the critical point is
rescaled at each iteration. In the high-temperature phase, only
the TRG approximation shows good data collapse.

Can the procedure developed here be applied to the bound-
ary of arbitrary sets of images as illustrated in the Introduc-
tion? The gray cutoff could be used as a tunable parameter.
However, in the limiting cases of a zero (one) gray cutoff
we have uniform black (white) images which are both similar
to the high-temperature phase, and we do not expect a phase
transition. Applications to the CIFAR dataset are discussed in
Appendix B and confirm this point of view.

RG methods have been considered for assisting in image
recognition [21–23]. By mapping from fine to coarse in
several ways, such as the 1 + 1 → 0 and 1 + 1 → 1 in our
approach, one begins to see how the inverse process might
go in replacing a degraded image with a higher resolution
reconstruction. The physics of defining RG transformations
and quantifying scheme dependence then guides such recon-
structions using physical principles, which are expected to
be embedded into real world image characteristics due to
principles of universality.

It should be noted that the TRG procedure is often consid-
ered as a “local update” of the tensor. A more sophisticated
approach consists of using the standard recursion to provide
an environment for subsequent updates [12,24]. An environ-
ment tensor E is propagated backward from the coarse to the
fine scale. An improved version of the initial iteration can
then be performed in an environment. This forward-backward
procedure can be repeated and is very reminiscent of the
procedure proposed by Hinton and Salakhutdinov [25] in the
context of image recognition.

A better understanding of RG concepts in machine learning
could enhance physics discovery, especially in the context of
simulation and modeling of physical systems at a fundamental
level [26]. The general idea is to render computational tools
“smart,” i.e., that they would learn features and patterns
without the intervention of a human “assistant” and would,
in the best possible scenario, guide the direction of further
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FIG. 12. (a) 〈Nb〉 vs (T − 2.46) under successive blocking steps calculated using a two-state higher order tensor renormalization group
(HOTRG). (b) 〈Nb〉 vs (T − 2.46)/Leff under successive blocking steps calculated using two-state HOTRG. Note that the value of 2.46 was
determined qualitatively by choosing the value which gave the best resulting data collapse.

simulations. This could accelerate and deepen the process of
understanding and characterizing the complex systems that
are deemed important in pure and applied physics.
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APPENDIX A: TECHNICAL RESULTS

1. Loop representation

We can rewrite the Ising partition function in terms of
bonds between neighboring sites 〈i, j 〉. The allowed bond
configurations are concisely described by concepts in graph
theory, because they form edges (bonds) between neighboring
vertices (sites). Making use of well-known identities allows
for the partition function to be written in the following high-
temperature expansion:

Z = 2|V | cosh|E| β
∑

�∈C(G)

tanh|�| β (A1)

= 2|V | cosh|E| β
∑
|�|

tanh|�| β n(|�|) . (A2)

The notation is as follows. We have a graph G = (V,E) that
describes our lattice, where V are the vertices and E are the
edges, which are the bonds between neighboring sites. If we
restrict ourselves to subgraphs with only the occupied bonds
allowed by the Ising model, then the degree of each vertex is
even. This is the number of bonds emanating from a particular
vertex. The set of edges of such a subgraph is described as

being “Eulerian.” The space of all such sets of edges is known
as the cycle space C(G). The notation |V |, |E|, |�| denotes
the number of elements in each set (cardinality). In the second
line, n(|�|) counts the multiplicity of subgraphs of cardinality
|�| and is zero when |�| does not correspond to a “legal”
subgraph.

We now specialize the presentation to the case of the
two-dimensional Ising model on a square lattice with periodic
boundary conditions. In this case |V | is V = L2, the volume
that we express in lattice units, and |E| = 2V . We introduce
the notation t ≡ tanh(β ) and we call Nb the number of bonds
in a graph (values taken by |�|). With these notations we
recover Eq. (3).

It is this bond formulation that is the basis of both random
cluster algorithms [27] and worm algorithms [18]. In this
paper we utilize the latter. Both of these classes of algorithms
have the benefit of significantly avoiding critical slowing
down. This is essential near the critical temperature Tc.

2. Heat capacity

One striking feature of the second-order transition for the
two-dimensional Ising model is the logarithmic divergence of
the specific heat density at the critical temperature Tc. In this
section, we review the way the specific heat can be calculated
with the worm algorithm and we check our answer with the
exact finite volume expressions [28].

Using the standard thermodynamical formula for the
average energy

〈E〉 = − ∂

∂β
ln Z, (A3)

with the expression Eq. (3) of Z, we get

〈E〉 = − tanh(β )

(
2V + 〈Nb〉

sinh2(β )

)
, (A4)

where we define

〈f (Nb )〉 ≡
∑
Nb

f (Nb )tNbn(Nb )/
∑
Nb

tNbn(Nb ). (A5)
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We can then use

CV = ∂〈E〉
∂T

(A6)

to write

CV

V
= β2

[
2

cosh2(β )
− 4 cosh(2β )

sinh(2β )

〈Nb〉
V

(A7)

+
(

2

sinh(2β )

)2 〈(Nb − 〈Nb〉)2〉
V

]
. (A8)

Since 〈Nb〉
V

� 2 (in two dimensions), the only possibly
divergent part is the variance of Nb per unit volume 〈�2

Nb
〉

defined in Eq. (4). The singularity near Tc is known from
Onsager’s solution:

CV

V
= − 2

π
[ln(1 +

√
2)]2 ln(|T − Tc|) + regular. (A9)

This implies Eq. (5).

3. Monte Carlo implementation

We can proceed to sample the closed-path configuration
space using the worm algorithm [18]. A single Monte Carlo
step is outlined below:

(1) Randomly select a starting point on the lattice (i0, j0).
(2) Propose a move to a neighboring site (i ′, j ′), selected

at random.
(3) If no link is present between these two sites, a bond

is created with acceptance probability P = min{1, tanh β}.
If the bond is accepted, we update the bond number for the
present worm, nb = nb + 1.

(4) If a link already exists between the two sites, it is
removed with probability P = 1.

(5) If (i ′, j ′) = (i0, j0), i.e., we have a closed path, go to
step 1. Otherwise, (i ′, j ′) = (i0, j0), go to step 2.
The number of necessary Monte Carlo steps required to
achieve sufficient statistics varies with the lattice size, ther-
malization time, and temperature. After each step, we cal-
culate the energy in terms of the average number of active
bonds Nb and consider the system to be thermalized when
fluctuations between subsequent values of the energy are less
than 1 × 10−3. We then save the resulting configuration, along
with the final values for all physical quantities of interest. This
process is then repeated many times over a range of differ-
ent temperatures to generate sufficient statistics for physical
observables. All error bars are calculated using the block
jackknife resampling technique.

4. Tests

The above formulas have been used to calculate CV . Pre-
cise checks were performed by comparing with the exact
results obtained from Ref. [28]. The agreement can be seen in
Fig. 13. Results for other lattice sizes that we have simulated
are similar.

5. Conjecture about λmax

Using the Monte Carlo algorithm outlined above, we can
calculate the average number of occupied bonds at a particular

FIG. 13. Comparison of the worm Monte Carlo computation of
the specific heat Cv versus temperature and the exact results using the
formula in [28], for an L = 32 lattice. Note that χ 2/dof represents
the reduced χ 2 statistic. It can be seen that the agreement is excellent,
except for a slight deviation at the critical temperature where Monte
Carlo algorithms tend to face difficulties with critical slowing down.
This is mostly addressed with the worm algorithm, in terms of having
a dynamical scaling exponent that is zero rather than 2, but there is
(as can be seen) still a residual suppression of fluctuations in the
immediate vicinity of Tc.

temperature by averaging over all configurations:

〈Nb〉 ≡ 1

Nconfigs

Nconfigs∑
n=1

N
(n)
b (A10)

=
〈 ∑

j=bonds

vj

〉
(A11)

= 2V 〈vb〉. (A12)

From this, we have that

〈vb〉 = 〈Nb〉
2V

, (A13)

where we have defined 〈vb〉 to be the average occupation of
bonds, N

(n)
b to be the number of occupied bonds in the nth

configuration, and we have used Eq. (6) in the second line. If
we consider graphs with no self-intersections,∑

j=bonds

vj =
∑

j=sites

vj . (A14)

For small β (high T ) this can be a good approximation,〈 ∑
j=bonds

vj

〉
�

〈 ∑
j=sites

vj

〉
=⇒ (A15)

〈vb〉 � 1

2
〈vs〉. (A16)

This agrees with our intuition that the average image 〈v〉
should resemble a “tablecloth” where the site pixels are twice
as dark as the link pixels. This can be seen clearly in Fig. 14.

For a general graph, a link is shared by two sites (its
endpoints), whereas a site can be shared either by 0, 2, or 4
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FIG. 14. Average image 〈v〉 calculated for the L = 16 lattice at
T = 2.0, illustrating the tableclothlike appearance.

bonds. If the site is shared by two bonds, it is only visited
once, denoted sites (1), and if it is shared by four bonds, it is
visited twice, denoted sites (2). This allows us to break up the
sum over bonds into two terms:∑

j=bonds

vj = 2

2

∑
j=sites (1)

vj + 4

2

∑
j=sites (2)

vj . (A17)

Rearranging and taking averages gives〈 ∑
j=sites (1)

vj +
∑

j=sites (2)

vj

〉
(A18)

=
〈 ∑

j=bonds

vj −
∑

j=sites (2)

vj

〉
(A19)

=
〈 ∑

j=sites

vj

〉
(A20)

= V 〈vs〉 (A21)

=
〈 ∑

j=bonds

vj

〉
−

〈 ∑
j=sites (2)

vj

〉
(A22)

= 2V 〈vb〉 − 〈Nsites (2)〉 =⇒ (A23)

〈Nsites (2)〉
V

= 2〈vb〉 − 〈vs〉. (A24)

We can rewrite the last equation using (A12):

〈vs〉 = 〈Nb〉
V

− 〈Nsites (2)〉
V

. (A25)

This suggests that a departure from a perfect tablecloth
(〈vs〉 = 2〈vb〉) contains information. Another useful construct

is the covariance matrix,

Cij = 〈(vi − 〈v〉i )(vj − 〈v〉j )T 〉 (A26)

= 1

Nconfigs

Nconfigs∑
n=1

(
v

(n)
i − 〈v〉i

)(
v

(n)
j − 〈v〉j

)T
, (A27)

where we have defined v
(n)
k to be the grayscale value of the kth

pixel in the nth sample configuration, and 〈v〉k is the average
grayscale value of the kth pixel over the set of configurations.

At some fixed temperature, the covariance matrix C ∈
RNconfigs×4L2

, where Nconfigs is the number of sample config-
urations (images), with each configuration flattened into a
vector of length 4L2. We can then perform a singular value
decomposition (SVD) on the covariance matrix,

C = W�WT , (A28)

where W is a 4L2 × 4L2 matrix whose columns (wk) are the
eigenvectors of C, and � is the diagonal matrix of the absolute
value of the eigenvalues λ(k) of C, arranged in decreasing
order. Without loss of generality, we can assume that the
eigenvectors wk are real and normalized such that wT

k wk = 1.
Thus, we can write

Cwk = λ(k)wk, (A29)

wT
k Cwk = λ(k). (A30)

For our purposes, we are interested in the first principal com-
ponent, with eigenvalue λ(1) ≡ λ1 and corresponding eigen-
vector w1.

We conjectured that the first principal component w1 of
the covariance matrix C is directly proportional to the average
worm configuration (image) 〈v〉, i.e.,

w1 ∝ 〈v〉. (A31)

FIG. 15. Ratio of the number of twice-visited sites 〈Nsites(2) 〉 to
the average number of bonds 〈Nb〉 versus temperature for the L = 32
lattice. This clearly justifies our approximation 〈vs〉 � 2〈vb〉, where
we ignore the contribution from twice-visited sites.

052129-11



FOREMAN, GIEDT, MEURICE, AND UNMUTH-YOCKEY PHYSICAL REVIEW E 98, 052129 (2018)

(a)1 + 1 = m (b)1 + 1 → 1 (c)1 + 1 → 2

FIG. 16. Example of the different coarse-graining (“blocking”) procedures applied to a sample worm configuration generated at T = 2.0.
Note that in (a) m ∈ {1, 2}, and double bonds are represented by blue lines. (b), (c) The results of applying different weights to the so-called
“double bonds” in the images representing a blocked configuration. Note that in (b) 1 + 1 → 1, double bonds are given the same weight as
single bonds, and in (c) 1 + 1 → 2, and double bonds are given twice the weight as single bonds, appearing twice as dark.

From our results in Sec. II, we can write

〈v〉2 = 〈v〉T 〈v〉 (A32)

= 2V 〈vb〉2 + V 〈vs〉2. (A33)

This suggests that

w1 = 〈v〉√
(2〈vb〉2 + 〈vs〉2)V

. (A34)

FIG. 17. Example of preprocessing steps for converting CIFAR-10 images to “wormlike” images, illustrating the resulting image for
different values of the grayscale cutoff. (a) Original image from CIFAR-10 dataset. (b) Image converted to grayscale. (c) Resulting image from
cutoff values of 0.25, (d) 0.5, and (e) 0.75.
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Moreover, we can write∑
i

(
v

(n)
i − 〈v〉i

)〈v〉i (A35)

=
{
〈vb〉

∑
j=bonds

v
(n)
j + 〈vs〉

∑
j=sites

v
(n)
j (A36)

−(2V 〈vb〉2 + V 〈vs〉2)

}
(A37)

=
{
〈vb〉N (n)

b + 〈vs〉N (n)
s (A38)

−V (2〈vb〉2 + 〈vs〉2)

}
(A39)

=
{
〈vb〉

(
N

(n)
b − 〈Nb〉

)
(A40)

+〈vs〉
(
N (n)

s − 〈Ns〉
)}

(A41)

≡ 〈vb〉�(n)
Nb

+ 〈vs〉�(n)
Ns

. (A42)

From this, we can extract a relationship between the eigen-
value corresponding to the first principal component λ(1) and
the fluctuations �Nb

and �Ns
,

wT
1 Cw1 = λ(1)

= 1

Nconfigs

Nconfigs∑
n=1

(
〈vb〉2

(
�

(n)
Nb

)2

+ 2〈vb〉〈vs〉�(n)
Nb

�
(n)
Ns

+ 〈vs〉2
(
�

(n)
Ns

)2
)

1

(2〈vb〉2 + 〈vs〉2)
.

Now, if we consider the high-temperature approximation
where sites only have single visits (no self-intersections),
〈vs〉 � 2〈vb〉, 〈Ns〉 � 〈Nb〉, and �Nb

� �Ns
, we have that

2〈vb〉2 + 〈vs〉2 � 6〈vb〉2 and

λ1 � 〈vb〉2

Nconfigs

9

6〈vb〉2

Nconfigs∑
n=1

(
�

(n)
Nb

)2
(A43)

= 3

2

1

Nconfigs

Nconfigs∑
n=1

(
�

(n)
Nb

)2
(A44)

= 3

2

〈
�2

Nb

〉
. (A45)

A justification for making this approximation can be seen in
Fig. 15.

Figure 16 is an illustration of alternate blockings.

APPENDIX B: POSSIBLE APPLICATIONS—FROM
IMAGES TO LOOPS

Having better understood how these RG transformations
can be used to describe the two-dimensional Ising model
near criticality, we began to look for possible applications to
real-world datasets. For our analysis, we used the CIFAR-10
[29] image set consisting of 60 000 32 × 32 color images in 10
classes. First, each of the images was converted to a grayscale
with pixel values in the range [0, 1]. Next, a grayscale cutoff
value was chosen so that all pixels with values below the
cutoff would become black and pixels above the cutoff would
become white, resulting in images consisting entirely of black
and white pixels. Finally, each of these images were converted
to “wormlike” images by drawing the boundaries separating
black and white collections of pixels. An example of these
preprocessing steps is illustrated in Fig. 17.

This process was carried out on a minibatch consisting
of 500 randomly selected images from the CIFAR-10 image
set. For each image in our minibatch, we calculated 〈Nb〉
and 〈�2

Nb
〉 over a range of grayscale cutoff values in [0, 1]

in steps of 0.02. Each of these images were then iteratively
blocked using the (1 + 1 → 0) blocking procedure described
in Sec. IV, calculating 〈Nb〉 and 〈�2

Nb
〉 for each successive

blocking step, as shown in Fig. 18. Immediately we see that
there is no identifiable low-temperature phase, and that for

FIG. 18. 〈Nb〉 and 〈�2
Nb

〉 vs grayscale cutoff value for 500 randomly chosen images from the CIFAR-10 dataset.
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cut-off values near both 0 and 1, we obtain images which are
mostly empty, similar to the high-temperature configurations
obtained from the worm algorithm. This suggests that there is

no such notion of criticality (as characterized by the abrupt
transition from a low- to high-temperature phase) like we
found for the two-dimensional Ising model.
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