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Confinement of Lévy flights in a parabolic potential and fractional quantum oscillator
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We study Lévy flights confined in a parabolic potential. This has to do with a fractional generalization of
an ordinary quantum-mechanical oscillator problem. To solve the spectral problem for the fractional quantum
oscillator, we pass to the momentum space, where we apply the variational method. This permits one to obtain
approximate analytical expressions for eigenvalues and eigenfunctions with very good accuracy. The latter fact
has been checked by a numerical solution to the problem. We point to the realistic physical systems ranging from
multiferroics and oxide heterostructures to quantum chaotic excitons, where obtained results can be used.
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I. INTRODUCTION

An introduction of fractional derivatives to describe the
non-Gaussian phenomena has become a truism. The common
knowledge about fractional derivatives is that they generate
the heavy-tailed, non-Gaussian probability densities, both in
spatial and temporal patterns. The most prominent example
here is so-called anomalous diffusion [1,2], intimately related
to Lévy flights [1–6]. Lévy flights constitute a Markovian
random process whose probability density function (pdf) is
a Lévy stable law, f (x, t ) of index 0 < μ � 2. In the infinite
interval x ∈ R it is convenient to define the pdf in terms of
its characteristic function f (k, t ). For the free (i.e., without
external potential, so-called untamed) Lévy flights, the pdf
f (x, t ) is determined by the fractional Fokker-Planck (FP)
equation; see, e.g., Ref. [1]. In dimensionless units (the dif-
fusion coefficient and particle mass are sent to unity) it reads

∂

∂t
f (x, t ) = ∂μ

∂|x|μ f (x, t ) ≡ −|�|μ/2f (x, t ), (1)

where |�|μ/2 is a one-dimensional (1D) fractional Laplacian,
which at μ = 2 yields the ordinary one [7,8]. We note here
that although at μ = 2 fractional Laplacian gives the ordinary
one, the case μ = 1 does not correspond to the ordinary
first derivative d/dx, but rather to −d/d|x| (Riesz fractional
derivative [7,8]) which is again the fractional operator. The
definition of the fractional Laplacian reads

−|�|μ/2f (x) = Aμ

∫ ∞

−∞

f (y) − f (x)

|y − x|1+μ
, (2)

Aμ = 1

π
�(1 + μ) sin

πμ

2
. (3)

It is seen that operator (2) is spatially nonlocal with a slowly
decaying power-law kernel typical for memory effects in
complex systems. One more interesting application of Lévy
processes is so-called fractional quantum mechanics [9,10],
dealing in short with the substitution of the ordinary Laplacian

with the fractional one (2) in the stationary Schrödinger equa-
tion. The solution of such a problem, if it exists, represents
the spectrum of a corresponding fractional Hamiltonian. The
information about the latter spectrum is very useful as it
permits one to look for solutions to the fractional FP equations
in external potential [i.e., a nonfree version of Eq. (1)] as an
expansion over the complete set of orthogonal eigenfunctions
of a properly tailored fractional Hamiltonian. Under proper
tailoring here we understand the choice of a potential, which
is related to that in the corresponding fractional FP equation,
which can be regarded as fractional generalization of a Sturm-
Liouville operator (see below). It is well known (see, e.g.,
[11]) that the right choice of the orthogonal base increases
dramatically the corresponding series convergence. In that
sense, the spectra of the above fractional Hamiltonians, if
found (even approximately) analytically, represent the useful
orthonormal bases, which can be further employed for the
solutions of the problems, dealing with the Lévy flight con-
finement in corresponding potentials.

In the present paper we focus on the Lévy flights of
arbitrary index 0 < μ � 2 confined in the parabolic potential
well, which corresponds to the problem of a fractional quan-
tum harmonic oscillator. To be specific, here we consider the
following spectral problem:

−|�|μ/2ψiμ(x) + x2

2
ψiμ(x) = Eiμψiμ(x). (4)

Here we adopt the units h̄ = m = ω = 1, where m and ω

are the mass and frequency of the oscillating particle, respec-
tively. Also, ψiμ(x) is the ith eigenfunction of a fractional
quantum harmonic oscillator having the eigenenergy Eiμ for
any specific μ value.

There are several examples of the problems resembling (4)
but not exactly similar to it. The first one has been considered
by Laskin [10]. This problem is a little more general than
(4) as it has the potential energy |x|β , 1 < β � 2, related
to the quark confinement theory. Although the problem has
been formulated both in coordinate and momentum spaces,
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its solution has been represented in the semiclassical case
only. Below we will show that our methods can be well
applied to solve this problem in the “purely quantum” (i.e.,
not semiclassical) case.

Another example has been considered in the papers
[12,13], where the fractional FP equation for the Lévy
Ornstein-Uhlenbeck process has been solved by a separation
ansats. This ansats decomposes the initial equation on time-
and coordinate-dependent parts. The latter part admits the
complete solution in terms of the spectrum of a fractional
Fokker-Planck operator [12]. The general form [for arbitrary
potential function U (x)] of such an operator reads in the above
dimensionless variables,

L̂FPψ = ∂

∂x

(
ψ

dU

dx

)
+ |�|μ/2ψ. (5)

For U (x) = x2/2, the first term in Eq. (5) has the form
xψ ′(x) + ψ (x), which is obviously different from the second
term of the Schrödinger operator (4). The operator (5) can be
regarded as a fractional generalization of the Sturm-Liouville
operator. Also, the seminal Landau-Teller model of molecular
collisions [14] and its fractional generalization [15] deals
with the classical oscillator equation related to corresponding
sound waves. It is tempting to quantize this problem in terms
of the fractional Schrödinger equation.

Here we are going to solve the spectral problem for the
fractional quantum harmonic oscillator of arbitrary μ. As
this problem resides on the whole real axis, the most prof-
itable way to solve it is to use momentum space, where
the problem becomes local. Namely, in momentum space
we are dealing with the ordinary (i.e., with the second spa-
tial derivative, stemming from the potential in the x space)
Schrödinger equation, which permits one to apply all known
approaches (like variational and well-developed numerical)
to solve the spectral problem. To find the eigenfunctions
in the x space, we perform inverse Fourier transformation.
Specifically, here we shall utilize the variational approach
to find the spectral solution of the problem (4). It is well
known (see, e.g., Ref. [16]) that variational methods work
for self-adjoint operators, which is the case for ordinary (i.e.,
without fractional derivatives) quantum mechanics. Below we
shall see that operator (4) in the k space is self-adjoint. This
follows from theorem 1.1 on p. 50 of Ref. [16], which will
be discussed quantitatively below. We postpone the studies of
self-adjointness of the fractional quantum mechanics Hamil-
tonians (along with their variational treatment)—other than
(4)—to future publications.

II. GENERAL FORMALISM

Our aim is to solve the spectral problem (4) for the
fractional quantum harmonic oscillator. In [17], we adopted
the method for a solution to the spectral problems like (4).
The idea is to expand the solution in the complete orthonor-
mal set of the eigenfunctions, formed by the solution to
the corresponding “ordinary” (i.e., that for μ = 2) quantum-
mechanical problem. In our case it is an oscillator, whose
wave functions (in our units) are given by the well-known

-2 -1 0 1 2
Momentum, k

0

0.5

1

1.5

2

Po
te

nt
ia

l,
|k
|µ /2

µ=0.1
0.2
0.5
1
1.5
2

µ=0

FIG. 1. Potential in Eq. (4) for different μ, shown in the legend.
The potential for μ = 0 is shown by the dashed horizontal line.

expressions (see, e.g. Ref. [11]):

ψn,μ=2(x) = Hn(x)e−x2/2

π1/4
√

2n · n!
, (6)

where Hn(x) are Hermite polynomials of the nth order [18].
It turns out, however, that the matrix method, adopted in
Ref. [17] for our problem, converges extremely slowly so
that large (around 104 × 104) matrices are to be diagonalized.
This, along with the quite long time needed to calculate each
matrix element, renders the method unsuitable for our present
problem. Rather, here we utilize the Fourier techniques, con-
sidering the problem in the momentum space. The advantage
is that in the k space the problem turns into an ordinary
Schrödinger equation with a large arsenal of tools for its
solution.

In the momentum space, Eq. (4) assumes an especially
simple form,

Hkψiμ(k) = Eiμψiμ(k), (7)

Hk = −1

2

d2

dk2
+ 1

2
|k|μ. (8)

Equation (7) represents the Schrödinger equation with
potential |k|μ/2. The plots of the latter potential at different
μ are shown in Fig. 1. It is seen that at μ = 0.1 and 0.2
the potential differs from that for μ = 0 (dashed horizontal
line) only near k = 0, where it has nonanalytical behavior
with an infinite derivative. The same behavior persists up to
μ = 1, at which point the derivative at k = 0 is constant as
we have a straight line in this case. At 1 � μ � 2 we have
parabolalike curves with zero derivative at k = 0. At μ = 2
we recover the parabolic potential for the ordinary quantum
oscillator in the k space. The main feature of the potential
(8) is that except for μ = 0 (which is not included in the
fractional Laplacian domain) it grows to infinity at k → ±∞.
This means that we should have the discrete spectrum for the
fractional quantum oscillator at the entire domain 0 < μ � 2.
The latter fact implies, in turn, that the wave functions should
be localized in the k space.
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To analyze the character of wave function localization in
the k (and eventually in the x) space, we should find the
large k asymptotics of the ψ (k). For that we observe that at
large k we can neglect the term Eψ in the right-hand side of
Eq. (7). This generates the equation for large k asymptotics
in the form ψ ′′(k) = |k|μψ . The spatially decaying solution
to this equation can be found (Ref. [19]; see also [20])
to be proportional to k1/2Kν (u), where ν = 1/(μ + 2) and
u = 2

√
2|k|1+μ/2/(μ + 2). Here Kν (x) is the modified Bessel

function with the following large x asymptotics Kν (x →
∞) ≈ (π/(2x))1/2e−x [18]. Substitution of latter asymptotics
into the expression ψ ∼ k1/2Kν (u) yields

ψiμ(k → ∞) ∼ |k|−μ/4 exp

[
− 2

√
2

μ + 2
|k|1+μ/2

]
. (9)

It can be shown, that the main (i.e., the largest at k → ∞) term
of the second derivative ψ ′′(k → ∞) is really proportional to
|k|μψ . In the case of μ = 2 (the ordinary quantum oscillator)
this reproduces the well-known result ψ ′′(μ = 2, k → ∞) =
k2ψ [11]. It is seen that for all 0 < μ � 2 the wave function
(9) is well localized: Even at μ = 0 ψ (k → ∞) ∼ e−|k|√2,
i.e., decays exponentially. At μ > 0 the decay is faster and at
μ = 2 we arrive at correct asymptotics e−k2/

√
2 corresponding

to the ordinary quantum oscillator. Good localization of the
ψ functions in the k space yields their absolute integrability
for all 0 < μ � 2 (i.e., the integral

∫ ∞
−∞ |ψ (k)|dk is finite)

and hence (by Riemann-Lebesgue lemma; see, e.g., [21]) the
localization of the wave functions ψ (x) in coordinate space.

III. VARIATIONAL TREATMENT

Equation (7) can be solved analytically in two cases.
The first corresponds to μ = 2 and comprises the ordinary
quantum oscillator [11]. The second one corresponds to μ = 1
and admits the exact solution in terms of Airy functions; see
Ref. [20] and references therein. The solution for the rest of
the Lévy indices can be found, generally speaking, only nu-
merically. Here we suggest the approximate analytical method
to find the spectrum of the operator (8) for all 0 < μ � 2. This
method is based on the variational solution to the Schrödinger
equation (7). To this end, we should establish the self-
adjointness of the operator (8). This can be done on the base of
theorem 1.1 (see p. 50 in Ref. [16]), which states, that for op-
erator (8) to be self-adjoint, it is necessary and sufficient that

the potential v(x) � −Q(x) such that
∫ ∞
−∞[Q(2x)]−1/2dx =

∞. The function Q(x) should be a positive even continuous
nondecreasing function on the whole real axis. Figure 1 shows
that the simplest choice of such a function is any positive
constant, Q(x) > 0 = const. Such a choice guarantees the
fulfillment of the above theorem conditions and proves that
Hamiltonian (8) is essentially self-adjoint. This means, in
turn, that the variational principle of quantum mechanics [11]
can be well applied for the approximate solution of Eq. (7).
The more general quantum oscillator problem, considered
by Laskin [10], contains the fractional derivative of index
β (see above) also in the momentum space. To prove the
self-adjointness of the corresponding Hamiltonian, we should
follow the proof of theorem 1.1 from Ref. [16]. This proof is
based essentially on the analysis of wave function asymptotics
at x → ±∞. Our analysis shows that at 1 < β � 2 the wave
function decays sufficiently fast so that the corresponding
Hamiltonian operator is self-adjoint. In this case, the obtained
asymptotics of the wave function should be used in trial wave
functions for variational treatment.

The asymptotics (9) can be employed to construct the trial
wave functions ψiμ(k) for any μ from the domain 0 < μ � 2.
As usual, the variational solution of the spectral problem (7)
should minimize the energies:

Wiμ =
∫ ∞

−∞
ψ∗

iμ(k) Hkψiμ(k)dk. (10)

Here Hk is the Hamiltonian (8) and Wiμ are the variational
approximations of the eigenenergies Eiμ. Normally Wiμ �
Eiμ. As wave functions ψiμ(k) can be chosen to be real, the
complex conjugation sign in Eq. (10) is not necessary. Also,
since functions ψiμ(k) are well localized [see asymptotics
(9)], the expression (10) could be rendered [by the integration
by parts in the first term of (8)] to the more convenient form,

Wiμ =
∫ ∞

−∞

[
(ψ ′

iμ)2 + |k|μψ2
iμ

]
dk, (11)

where ψ ′ = dψ/dk.
We look for the trial functions on the base of asymptotics

(9) and oscillational theorem (see, e.g., [11]), stating that the
wave function of the ith state has i nodes. In other words, the
ground-state wave function ψ0 has no nodes; ψ1 has one node
ets. This implies, in turn, the mutual orthogonality of the trial
functions ψiμ. In the simplest possible form the trial functions
read

ψ0μ = A0μe−a0μ|k|1+μ/2
, ψ1μ = A1μke−a1μ|k|1+μ/2

, ψ2μ = A2μ(b0μ + b2μk2)e−a2μ|k|1+μ/2
. . . (12)

Here aiμ (i = 0, 1, 2) and biμ (i = 0, 2) are variational pa-
rameters, while Aiμ are normalization coefficients, found
from the obvious condition,

∫ ∞

−∞
ψ2

iμ(k)dk = 1. (13)

The condition (13) relates Aiμ to aiμ and biμ. With respect
to the normalization condition (13) we now find variational
parameter a0μ from the minimum of the functional (11).

The parameter a1μ should be found from the minimum
of (11) with an additional condition of orthogonality∫ ∞
−∞ ψ1μψ0μdk = 0. The latter condition is satisfied auto-

matically as can be seen from Eq. (12). The parameters
b0,1μ are related to a2μ by two orthogonality conditions∫ ∞
−∞ ψ2μψ0μdk = 0 and

∫ ∞
−∞ ψ2μψ1μdk = 0. Then, a2μ is

found from the minimum of the energy functional (11). Such a
procedure can be done for all wave functions of higher excited
states i > 2, giving the approximate spectrum of the operator
(8). Note that the substitution of found a0μ into W0μ (11) gives
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the approximate value of the ground-state energy for all μ;
the same with a1μ gives the energy of first excited state W1μ

and so on for higher eigenenergies. This shows the advantage
of the variational method, which permits one to obtain the
approximate analytical expressions for the eigenvalues and
eigenfunctions of the operator (8) for all 0 < μ � 2. Below
we check the accuracy of our variational method by compari-
son of its results with the numerical solution of the spectral
problem (7). In order to improve the accuracy, we should
increase the number of variational parameters.

Substitution of the trial function ψ0μ into the integral (11)
with subsequent minimization over a0μ yields

(a0μ)min =
√

2μ

2 + μ
. (14)

Further substitution of this value to the result for W0μ gen-
erates the approximate value of the ground-state energy for
arbitrary μ,

(W0μ)min ≈ E0μ = μ

4

�
(

μ

2+μ

)
�

(
2

2+μ

)
(

2
√

2μ

2 + μ

)− 2μ

2+μ

. (15)

It is seen that (W0μ)min gives the correct value 1/2 of the
ground-state energy for μ = 2, corresponding to the ordinary
quantum oscillator with the spectrum En = n + 1/2 in our
units. Below we shall see, that for the case μ = 0 all the
spectrum shrinks into a single value E0 = 1/2, which is also
obtained correctly from the expression (15). The entire μ

dependence (15) will be plotted below and compared with the
numerical solution.

The same procedure with ψ1μ gives that (a1μ)min =
(a0μ)min, which is given by Eq. (14). The variational expres-
sion for the energy of the first excited state reads

(W1μ)min ≈ E1μ = (2 + μ)(4 + μ)

μ

�
(

2
2+μ

)
�

(
6

2+μ

)

×
(

2μ

(2 + μ)2

) 2
2+μ

2− 4(1+μ)
2+μ . (16)

We see that at μ = 2 the expression (16) gives the correct
answer 3/2. At the same time, at μ → 0 we have removable
divergence limμ→0

μ2/(2+μ)

μ
= 1, while the rest of the expres-

sion (16) gives E1,μ=0 = �(1)/�(3) = 1/2, i.e., once more
the correct answer. The dependence (16) will also be plotted
below and compared with numerical results. We will see that
the expressions (15) and (16) give very good approximate
expressions for ground and first excited state energies of a
fractional quantum oscillator for the entire μ domain. Within
the suggested variational approach, any desired energy level
Eiμ can be evaluated analytically, although the calculations
for higher excited states become very cumbersome.

IV. NUMERICAL ANALYSIS

We begin with the analysis of the system spectrum for
arbitrary μ. Table I shows five lowest eigenenergies of the
operator (8), calculated numerically with the help of MATH-
EMATICA routine NDEigensystem. It is seen that at μ = 2 we
have the spectrum Ei,μ=2 = i + 1/2 of the ordinary quantum
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FIG. 2. Comparison of variational [Eqs. (15) and (16), solid
lines] and numerical values (dashed lines) of the ground and first
excited state energies as functions of Lévy index μ. Inset to left
panel details the behavior of the curves at μ → 2. Mind the different
vertical scales in left (ground state) and right (first excited state)
panels.

oscillator, while at μ decrease the spectrum deviates from
i + 1/2 and at μ → 0 (for instance, at μ = 0.1) all the spec-
trum is concentrated around the single value E0 = 1/2. Note,
that the same regularities take place also for the fractional
quantum well [17]. As we can reproduce numerically the
spectrum of the operator (8) for arbitrary μ, we are now in
a position to compare the variational expressions (15) and
(16) with corresponding numerical values. Such comparison
is reported in Fig. 2. As it is the case for the variational
method, in both panels the variational curves lie higher than
numerical ones as variational energy should be larger than its
exact (in our case numerical) value [11].

It is seen that the agreement is much better for the first
excited state, where the variational and numerical curves
are indistinguishable in the scale of the plots. The average
error in this case is only 0.3%. Our analysis shows that the
same good accuracy occurs for higher excited states also.
This means that the variational expressions like (16) can be
regarded as “almost exact” for the states with i � 1. This is
because the energies of excited states are much higher than
the ground-state one so that in the scale of the right panel
of Fig. 2, the ground-state curves would lie in the narrow
strip near the x axis. The second factor, influencing such a
good variational approximation with only one parameter is
that the excited state energies are monotonous functions of μ.
On the contrary, the ground-state energy is a nonmonotonous
function of μ as it begins (at μ = 0) and ends (at μ = 2) at the
same value 0.5. It is seen from the left panel of Fig. 2 that the
largest error about 1.5% occurs near the curve maximum, i.e.,
around μmax ≈ 0.2476 for the variational curve. Thus we can
safely assert that with the accuracy not higher than 1.5% the
analytical expression (15) approximates the numerical curve.
This means that the approximation for ground-state energy
is also not bad at all for the trial function with only one
parameter. To improve the accuracy, the consideration of trial
functions with more adjustable parameters is necessary.

052127-4



CONFINEMENT OF LÉVY FLIGHTS IN A PARABOLIC … PHYSICAL REVIEW E 98, 052127 (2018)

TABLE I. Five lowest eigenstates of the fractional quantum harmonic oscillator for different μ, obtained numerically.

Number of state, i 0 1 2 3 4 5

μ = 0.1 0.534418 0.617864 0.643554 0.667326 0.681551 0.696129
μ = 0.5 0.529809 0.916697 1.10501 1.27532 1.40276 1.52559
μ = 1.0 0.509396 1.16905 1.6241 2.04398 2.41005 2.76028
μ = 1.5 0.500592 1.35405 2.08857 2.79283 3.46141 4.11343
μ = 1.8 0.499498 1.44520 2.34152 3.22291 4.08849 4.94536
μ = 2.0 0.5 1.5 2.5 3.5 4.5 5.5

One more interesting (although tiny) feature of the E0μ

curves is shown in the inset to the left panel of Fig. 2. Namely,
both numerical and variational curves have minima at μ =
1.8–1.85 and then approach the asymptotic value E0μ = 0.5
at μ = 2. This minute difference between the ground-state
energies of the ordinary quantum oscillator (μ = 2) and its
“almost ordinary” counterpart (μ ≈ 1.85) means that the frac-
tional quantum oscillator with the Lévy index about 1.85 has
lower ground-state energy than the ordinary one. Our numer-
ical calculations of the spectrum for μ = 1.85 show that the
energies for this case lie lower than those for μ = 2. We have
for the first four eigenvalues the following: E0 = 0.499543
(against 0.5 at μ = 2), E1 = 1.4593 (1.5 for μ = 2), E2 =
2.38189 (2.5 for μ = 2), E3 = 3.29293 (3.5 for μ = 2).

The numerical wave functions in the k space are reported
in Fig. 3 for different values of μ. It is seen that the oscillation
theorem holds, i.e., the wave function of the state number
i has exactly i nodes. It can be checked that functions are
normalized, i.e., they obey condition (13). It is seen from
Figs. 3(a)–3(c) that functions for different μ have different
decay rates. These rates are dictated by the asymptotics (9).
The decay rates are smaller for μ → 0 (at μ = 0 all wave
functions do not decay at all) and larger for μ → 2, tending
to those of the conventional quantum oscillator. Note that
variational wave functions (12) [with respect to minimizing
parameters defined by the expression (14)] do not differ from
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FIG. 3. (a)–(c) Four first wave functions of the fractional quan-
tum oscillator in k space for different μ, shown in the legends.
Number of state i is also shown. (d) Comparison of the ground state
(i = 0) functions for different μ (legend). The different horizontal
scales in (a)–(c) reflect the character of decay at different μ.

those in Figs. 3(a)–3(c) in the scales of the plots. This means
that variational expressions for wave functions also give very
good approximations for exact (i.e., numerical) ones.

The wave function in the coordinate space can
be obtained by the inverse Fourier transform ψ (x) =

1√
2π

∫ ∞
−∞ ψ (k)eikxdk. As reported in Fig. 4, similar to

the case of the momentum space, the oscillation theorem
also holds and the wave functions are normalized to unity.
The only difference between the k and x spaces is that the
fastest decaying function is now that for μ = 0.1. This is
because for μ = 0 all the wave functions merge into a single
Dirac δ function. The latter also follows from the fact that
in the k space for μ = 0 all functions merge into a constant.
Accordingly, the slowest decaying function is that for
μ = 1.8. At μ = 2 we once more have the ordinary quantum
oscillator wave functions, given by the expression (6).

V. OUTLOOK

In summary, we have studied the spectral problem for
a fractional quantum harmonic oscillator with the arbitrary
Lévy index 0 < μ � 2. As this problem resides in the whole
real axis, the most profitable way to solve it is to pass to the
momentum space. In the latter space, due to the harmonicity
of the potential, the problem reduces to the ordinary (i.e., that
with the second spatial derivative in the 1D case) quantum-
mechanical one with the potential |k|μ/2 containing Lévy
index μ. Having the proof [16] of the self-adjointness of the
Hamiltonian (8), we can safely apply the variational method
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FIG. 4. Same as in Fig. 3, but in coordinate space. In (d), the now
fastest decaying function is that for μ = 0.1.
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of quantum mechanics for the problem under consideration.
For the anharmonic (in coordinate space) potentials it is not
clear if the variational method works in the case of the frac-
tional Laplacian. The same is relevant to the other problems
of fractional quantum mechanics [10] and for the quantum
oscillator, considered there, in particular. The work in this
direction should be based on the proof of self-adjointness of
the corresponding Hamiltonian operator. This proof, in turn,
is based on the analysis of wave function decay character
at infinities. The consideration of this interesting class of
problems is currently underway. If the variational treatment
works for arbitrary potentials in the fractional Scrödinger
equation, many problems can get their approximate (as we see
above, the approximation is generally very good) analytical
solutions for arbitrary μ.

As we have mentioned above, the solution to spectral
problems for fractional Hamiltonians can be regarded as the
creation of the orthonormal bases, in which the solutions
to fractional FP equations could be expanded. This method
can be considered as more general since only few potentials
U (x) in the fractional FP equations admit the exact solution.
One of the cases had been considered in Ref. [12], where
U (x) = x2/2 (see also above). The solution had been done in
the momentum space, where the explicit form of the spectral
problem reads in our dimensionless units:

k
d

dk
ψn(k) + |k|μψn(k) = λnψn(k), (17)

where

ψn(k) = cn|k|μn exp

[
−|k|μ

μ

]
(18)

is the eigenfunction (with cn being the normalization con-
stant), corresponding to the nth eigenvalue λn = μn. It is seen
that the “kinetic part” (i.e., that containing derivatives) of the
operator (17) is different from that in our expression (8). This,
actually, is the reason, why the function (18) (and similar
ansätze) does not satisfy our Eq. (7). Our analysis shows that
Eq. (17) can be solved by the expansion over the orthonormal
set (12), however, the convergence of the corresponding series
will be worse than that in Eq. (29) of Ref. [12], realizing the
expansion over set (18). This is because the set (18) represents
the rare case of an exact solution. On the other hand, the
Lévy flights in nonlinear potentials (see, e.g., [22,23]) as a rule
cannot be solved exactly, while the expansions over complete
sets [either exact or obtained variationally like (12)] generated
by fractional Hamiltonians, can be regarded as a feasible way
to solve such problems.

The developed formalism for the fractional quantum har-
monic oscillator can be applied to the calculations of the
properties of real physical systems, where disorder (like lat-
tice imperfections and/or impurities) influences phonon and
electron spectra of a substance, leading to non-Gaussian dis-
tribution of the internal electric, magnetic, and elastic fields.
The challenging example here is electric and magnetic proper-
ties of multiferroics, where ferroelectric and magnetic orders
coexist [24]. The non-Gaussian statistics due to disorder and
frustration plays an important role in these substances [25–27]
and we are applying now our formalism to explain unusual
experimental data in them. In this context it would be also

interesting to consider the fractional generalization of the
problem of spatial quantum oscillator [i.e., particle with po-
tential energy U (r ) = r2/2 in our units; r2 = x2 + y2 + z2]
[11], which arises naturally in the above substances as well as
in other realistic two-dimensional (2D) and three-dimensional
(3D) physical systems. In dealing with these systems, we
should use multidimensional generalization of the fractional
Laplacian (3) (see Ref. [28] and references therein),

−|�|μ/2f (x) = Aμ,d

∫
f (u) − f (x)

|u − x|μ+d
, (19)

Aμ,d = 2μ�
(

μ+d

2

)
πd/2|�(−μ/2)| , (20)

where d is space dimensionality. In this case the spectral
problem for the 3D quantum fractional oscillator reads

−|�|μ/2ψiμ(r) + 1
2 (x2 + y2 + z2)ψiμ(r) = Eiμψiμ(r),

(21)

where r is now the 3D vector and the other notations are the
same as those in Eq. (4). Similar to the considered case of
the 1D oscillator, this problem resides in the whole space.
This means, that once more it is convenient to pass to the
momentum space. With respect to the fact that in the mo-
mentum space the operator (19) is simply |k|μ (where k is
the d-dimensional momentum vector), in this space Eq. (21)
renders to the form,

−�kψiμ(k) + kμψiμ(k) = Eiμψiμ(k), (22)

where k = |k|, �k ≡ ∂2

∂k2
x

+ ∂2

∂k2
y

+ ∂2

∂k2
z

is the ordinary Lapla-

cian in k space. After usual decomposition ψiμ(k) =
Ril (k)Ylm(θ, ϕ) (Ylm are spherical harmonics and l, m are
orbital and magnetic quantum numbers, respectively) [11],
we obtain following the fractional Scrödinger equation for the
radial part Ril (k),

d2Ril

dk2
+ 2

k

dRil

dk
+

[
2Eiμ − l(l + 1)

k2
− kμ

]
Ril = 0. (23)

Equation (23) can also be solved variationally, giving the
approximate (but of very good accuracy) spectrum of the 3D
fractional oscillator. This spectrum can further be used in
the calculation of partition function and other thermodynamic
characteristics of the above systems. The work on this inter-
esting problem is underway.

Another object to apply the solutions to fractional
quantum-mechanical problems is oxide interfaces [29,30],
where non-Gaussian quantum fluctuations occur both in
phonon and electron spectra due to specific potential at the
interface [31–33]. Here, both the above results on the 1D
fractional quantum oscillator and those for the quantum well
[17] can be well applied.

Finally we mention one more interesting physical problem
regarding the onset of chaos in the excitons (described by
the quantum-mechanical model of the hydrogen atom; see,
e.g., [34]) due to Rashba spin-orbit interaction [35]. This
problem turns out to be extremely important for perovskite
substances, used in photovoltaics [36], where the above chaos
can adversely influence device functionality. While in the
classical case the chaotic electron trajectories in an exciton
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have been clearly revealed [37], in the quantum case only
weak effects like level repulsion (but not non-Poissonian
energy level statistics; see, e.g., [38,39]) were seen [40]. We
speculate that the introduction of fractional derivatives in
the corresponding 2D Schrödinger equation can highlight the
quantum chaotic features, which are actually important for
photovoltaic device functionality. This problem can be formu-
lated in the form of Eq. (21) but with Coulomb potential. The
transition to momentum space is also possible, but it is much

more laborious then in the case of the 3D oscillator (21). This
means that the solution of this problem turns out to be rather
involved so that we should opt for the numerical methods.
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