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Fluctuation theory in space and time: White noise in reaction-diffusion models of morphogenesis
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The precision of reaction-diffusion models for mesoscopic physical systems is limited by fluctuations. To
account for this uncertainty, Van Kampen derived a stochastic Langevin-like reaction-diffusion equation that
incorporates spatiotemporal white noise. The resulting solutions, however, have infinite standard deviation.
Ad hoc modifications that address this issue by introducing microscopic correlations are inconvenient in
many physical contexts of wide interest. We instead estimate the magnitude of fluctuations by coarse-graining
solutions of the Van Kampen equation at a relevant mesoscopic scale. The ensuing theory yields fluctuations
of finite magnitude. Our approach is demonstrated for a specific biophysical model—the encoding of positional
information. A numerical example is given for bicoid signaling in Drosophila. We discuss the properties of the
fluctuations and the role played by the macroscopic parameters of the underlying reaction-diffusion model. The
analysis and numerical methods developed here can be applied in physical problems to predict the magnitude of
fluctuations. This general approach can also be extended to other classes of dynamical systems that are described
by partial differential equations.
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I. INTRODUCTION

In addition to applications in chemistry and other disci-
plines [1], reaction-diffusion (RD) equations are commonly
accepted as the basis of morphogenetic models in biology
[2–6]. A classical example is the encoding of positional infor-
mation (PI). During embryological development, an organism
must be partitioned into distinct morphological and functional
components. The positions of these structures may be spec-
ified by a chemical agent—a morphogen—whose local con-
centration varies across the embryo and obeys RD equations.
In this context one encounters perhaps the simplest example
of such systems, which has been chosen to demonstrate the
theory presented in this paper.

As a typical RD system we consider the dynamics of a
single morphogen that diffuses from a localized source over a
confined spatial domain and undergoes chemical degradation
(Fig. 1). Once all transients have decayed and the system has
reached a steady state, cells or organelles can measure their
distance to the source by reading out the local concentration
of the morphogen. For this reason it is said that the morphogen
encodes PI.

Quantitative characterization of PI noise is an important
problem in biophysics [5,7–15]. Because many key processes
in development occur on micrometer scales, the underly-
ing chemical reactions and diffusive flows are subject to
spontaneous variations. These fluctuations disrupt the local
concentration of the morphogen and reduce the amount of
information that a RD system contains [5,7,12]. A relevant
question is then: How reliably can PI be encoded and read out
in the presence of noise?
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Most studies concentrate on the problem of decoding PI.
For example, one can estimate the efficiency with which a cell
reads out a morphogen’s concentration [7,16]. When the con-
centration can be measured at this level of accuracy [7,8,11],
the experimental observations provide an upper bound for
the uncertainty of PI, owing to additional sources of noise
and variability [7,14]. This means that the actual encoding
mechanism is likely to be more precise than the limits set
by this bound. Our understanding of the readout problem is
therefore incomplete, unless one also takes into account how
much information a noisy reaction-diffusion system actually
contains.

The physical theory of fluctuations opens an avenue to
the problem of encoding PI. At the mesoscopic scale, the
dynamics of a reaction-diffusion system can be described by a
stochastic partial differential equation derived from simplified
microscopic mechanics [17–19]. The noise level in this model
is completely determined by the macroscopic parameters of
the system, such as the diffusion and reaction constants. The
magnitude of fluctuations in the morphogen’s concentration
should then in theory be calculable.

The Van Kampen approach promises clearer results on
the precision of PI than the analysis of empirical data: the
calculated magnitude of fluctuations is free of readout noise
and contains everything that is needed to apply information-
theoretic methods [5,12] directly to the problem of PI en-
coding. Furthermore this perspective provides an interesting
context that links information theory and stochastic thermo-
dynamics. According to Landauer’s principle [20], energy is
dissipated as fluctuations erase PI. This process can be related
through the Van Kampen approach to fluctuation-dissipation
relations and stochastic thermodynamics.

As shown in Sec. II, the Van Kampen equation leads to
a solution of infinite variance and therefore also of infinite
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standard deviation.1 Because both of these statistics measure
the local magnitude of fluctuations, one may regard this
result as futile and seek a more realistic model. The existing
alternatives [21–25] either part ways with the Van Kampen
equation or require an additional, ad hoc layer of theory.
Both approaches, however, rely on new phenomenological
constants such as the amplitude or correlation length of mi-
croscopic noise (Sec. II). Although these parameters control
and regulate the fluctuation’s magnitude, they can be inferred
neither from the meso- or macroscopic dynamics nor from
the ensuing theory itself. Because one can only fit the new
parameters to observations, these models are purely descrip-
tive. This lack of predictive power is one reason why the
theoretical avenue to the problem of encoding PI has received
little attention.

In contradistinction to the theoretical approaches men-
tioned above, we estimate the fluctuations in a PI problem
by solving the Van Kampen equation without modifications.
A plausible level of noise is obtained if the resultant mor-
phogen concentration is integrated in space over a subscale
of the RD system. This procedure is consistent with classical
fluid dynamics, in which macroscopic fields are commonly
understood as coarse-grained representations of microscopic
systems [26,27].

Multiscale models of computational physics, which com-
bine the methods of finite elements and molecular dynamics
[28,29], make the coarse-graining procedure even more ex-
plicit. The macroscopic properties of a molecular-dynamics
system are calculated as spatial averages by means of a mi-
croscopic connection [30, Secs. 3 and 6]. The exact procedure
amounts to integration of molecular degrees of freedom over
volume, which is suggestive of the coarse-graining subscale.
The finite-element method then offers techniques to solve
the dynamical equations of macroscopic fields. Note that, as
the volume of a molecular-dynamics system decreases, the
uncertainty of spatial averages diverges, exactly as in the Van
Kampen theory.

A coarse-graining subscale arises quite naturally in de-
velopmental biology: morphogenetic features are not point-
like, but have a finite mesoscopic extent in space. Moreover,
developmental decisions are often delegated to whole cells
or to large organelles such as cellular nuclei [7,15]. In the
RD problems of morphogenesis and PI, one should therefore
reckon with the total amount of the substance and its fluctu-
ations over the scale of the target biological structure, rather
than with the concentration field at isolated points.

Coarse-graining induces a spatial averaging of the mor-
phogenetic signal that, together with time averaging, provides
a mechanism by which biological systems can reduce noise
[15,16,31]. This mechanism implies a tradeoff between the
precision with which PI is specified and the space and time
constraints of the system: higher precision requires larger
target structures and longer developmental time scales.

In the next section we briefly describe the Van Kam-
pen equation and the coarse-graining of its solution for a

1In Ref. [17, Eqs. (3.7)–(3.9)] Van Kampen uses these results to
estimate a system-averaged level of fluctuations.
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FIG. 1. A morphogen produced at the left boundary propagates
by diffusion into the rest of the one-dimensional system � = [0, L].
The morphogen’s steady-state concentration α(x ) owing to a degra-
dation reaction decreases monotonically toward the impenetrable
right boundary. Each position coordinate x ∈ � corresponds to a
unique value of the positional-information curve α(x ). The instan-
taneous concentration of the morphogen a(t, x ), however, is subject
to spontaneous fluctuations on a mesoscopic scale.

linear RD system. This simple problem, which can be treated
analytically (Appendix B), arises in a classical problem of
morphogenesis—the bicoid gradient in Drosophila embryos
[7,32]. Nonlinear systems that occur in a similar context usu-
ally require numerical approaches. To this end we propose two
classes of the finite-element method to simulate the dynamics
of the coarse-grained stochastic fields (Appendices C and D).
The implications of our theory and some numerical results are
discussed in Sec. III, with the mathematical details provided
in the Appendices.

II. THEORY

Because RD problems in general may not yield to analyt-
ical techniques, we use as a case study our earlier example
of a simple one-dimensional system (Fig. 1). The associated
theory can be treated by a variety of methods. Purely numer-
ical techniques then can be compared with a more accurate
analytical approach. This example is not entirely abstract, for
it provides a model of the actual mechanism of PI encoding in
Drosophila embryos [7,32].

In one dimension the number density of a morphogen
a(t, x), which depends on time t and position x, obeys the
Van Kampen dynamic equation [17–19](

∂t + k − D∂2
x

)
a(t, x) = f (t, x), (1)

in which the degradation rate k and the diffusivity D are
positive constants, whereas f (t, x) represents microscopic
noise. Appendix A offers a short justification of the Van
Kampen equation.

The left-hand side of Eq. (1) expresses the difference
between the local change of concentration ∂ta(t, x) and the
classical nonequilibrium forces of mass action and Fick’s
diffusion. In small systems the residual force f (t, x) does
not vanish, but varies spontaneously because of micro-
scopic events: this is the origin of microscopic noise. To be
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consistent with classical fluid dynamics, the steady-state en-
semble averages of f (t, x) and a(t, x) must yield

〈f (t, x)〉 = 0, 〈a(t, x)〉 = α(x), (2)

in which α(x)—the PI curve—is the time-independent so-
lution of the macroscopic RD problem [Fig. 1; Eq. (A8) in
Appendix A].

A convenient model of the morphogen’s source [7,32] is a
fixed-value condition imposed at the left end of the interval
� = [0, L]. In the macroscopic RD problem, this constraint
is supplemented quite naturally by a reflective right bound-
ary, leading to Eq. (A8) for the concentration curve α(x).
Nonetheless, in Appendices A and E we employ a different
choice of the right boundary condition for the stochastic
Eq. (1):

a(t, x)|x=0 = a0 = α(0), a(t, x)|x=L = α(L), (3)

with a0 representing a source of constant strength. By virtue
of Eq. (2), the fixed-value boundary condition remains macro-
scopically consistent with the reflective boundary for the PI
curve:

∂xα(x)|x=L = 0. (4)

The problem of boundary conditions is addressed in
Appendix E.

At the mesoscale and in the tradition of fluctuation theory,
Van Kampen relates f (t, x) to two stochastic terms, owing to
the fluctuations of the mass-action law and the diffusive flow,
respectively:

f (t, x) =
√

kα(x)∂xẆ1(t, x) + ∂x[
√

2Dα(x)∂xẆ2(t, x)].

(5)

Here ∂xẆ1 and ∂xẆ2 are independent, spatially distributed,
Gaussian white-noise variates of zero mean and unit strength
(Appendix A). The overscript dots indicate the time deriva-
tives. These noise sources are δ-correlated in both space and
time:

〈∂xẆ1|t1,x1∂xẆ2|t2,x2〉 = 0, (6)

〈∂xẆi |t1,x1∂xẆi |t2,x2〉 = δ(t1 − t2)δ(x1 − x2), (7)

which hold for i = 1, 2, with δ(·) being the Dirac δ function.
Note in the above equations that spatially distributed white
noise is singular in time and space: its variance diverges as a
product of two δ functions, limt→0 δ(t ) and limx→0 δ(x).

To avoid immaterial details, we focus on the steady-state
solution of Eq. (1), a(∞, x). We denote the deviation of the
morphogen’s concentration from the ensemble average value
by �a(t, x) = a(t, x) − α(x). Then Eq. (B7) of Appendix B
gives us

�a(∞, x)= lim
t→∞

∫ t

0
dt ′

∫
�

dx ′g(t−t ′, x|x ′)f (t ′, x ′). (8)

Here g(t − t ′, x|x ′) is the Green’s function that propagates
disturbances of the number density in time and space, from
an instant t ′ and position x ′ to any other t and x.

The steady-state variance of the deviation �a(∞, x), as
can be formally calculated from Eq. (8), diverges [see also

Eq. (B8) in Appendix B]. To understand why this happens,
apply the differential chain rule to the second term on the
right-hand side of Eq. (5) and substitute it into Eq. (8); one
then finds the following term in the expression for �a(∞, x):

lim
t→∞

∫ t

0
dt ′

∫
�

dx ′g(t − t ′, x|x ′)
√

2Dα(x ′)∂2
x ′Ẇ2(t ′, x ′)

∼ ∂xW2(t, x). (9)

Here the time integration removes the temporal singularity
of ∂2

x Ẇ2, but the spatial integral is canceled by one of the
two derivative operators. The above term contains a spatial
singularity of the order ∂xW2(t, x) [Eq. (7)]. Therefore, the
variance of �a(∞, x), expressed formally by Eq. (B8), in
effect diverges.

If one replaces the positional δ function δ(·) in Eq. (7)
by some bounded correlation kernel C(·) [21, Sec. 2.1.2],
then the spatial singularity disappears from Eqs. (8) and (9).
The cost of this approach is a significantly more complicated
theory [33–35]. First, spatial noise correlations that regular-
ize the variance of �a(∞, x) must be modeled explicitly.
Second, a nontrivial kernel C(·) increases the mathematical
difficulty of the problem. The spatial singularity of Eq. (9) can
alternatively be removed by integrating it with respect to the
coordinate x, the approach that we pursue here. An integration
with respect to position occurs when we coarse-grain the
number density a(t, x) over a scale ξ of the appropriate spatial
dimension. Then, instead of the morphogen’s concentration
at some point x, the quantity of interest becomes the total
number of molecules in the ξ -neighborhood �(x) = (x −
ξ/2, x + ξ/2) of that point. If we use the inverse scale ξ as
a normalization factor, then we can equivalently consider a
coarse-grained concentration field

aξ (x) =
∫ x+ξ/2

x−ξ/2

dx ′

ξ
a(∞, x ′). (10)

The coarse-grained concentration of the morphogen under-
goes fluctuations of finite magnitude. As a statistical measure
of this magnitude one can take either the variance of aξ —the
second cumulant κ2(aξ )—or the standard deviation std(aξ ).
By using the properties of the Green’s and δ functions together
with Eqs. (3)–(8), we find

κ2[aξ (x)] =
∫∫

�(x)

dx1dx2

ξ 2
lim
t→∞

∫ t

0
dt ′

∫
�

dx ′α(x ′)

× [kg(t − t ′, x1|x ′)g(t − t ′, x2|x ′) + 2D∂x ′

× g(t − t ′, x1|x ′)∂x ′g(t − t ′, x2|x ′)]. (11)

A Fourier series expansion of the above expression, as well
as of the coarse-grained steady-state concentration αξ (x), is
derived in Appendix B [Eqs. (B10) and (B11)]. The number
density αξ (x) differs from α(x) by a factor that is negligible
for small scales ξ . Both these fields interchangeably represent
a PI curve, for they convey nearly the same value everywhere
in �.

A useful way to quantify the uncertainty of aξ (x) is the
coefficient of variation, std(aξ )/αξ , which relates the level of
fluctuations to the strength of the PI signal. Quite generally,
however, both the mean value of the morphogen’s concen-
tration and its variance are proportional to the parameter a0
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[Eq. (B10) and (B11), Appendix B]. Therefore, the relative
uncertainty is inversely proportional to

√
a0:

std[aξ (x)]

αξ (x)
= σξ (x|�)√

a0
, (12)

in which σξ (x|�) depends only on the coordinate x and the
parameters ξ and � = √

D/kL−1.
Fluctuations of physical quantities usually decay as the

inverse square root of the number of molecules involved [36].
This dependence is explicitly controlled by the parameter a0

in Eq. (12). The source strength a0 in the above expression
should therefore be measured in one dimension as the number
of molecules per unit length. If molar or mass-density units
are used instead, then Eq. (12) does not render the coefficient
of variation correctly.

Equation (12) defines σξ (x|�), which we call a variation
profile. Given the values of ξ and �, this relation can be
evaluated numerically as a function of position by use of
Eqs. (B10) and (B11). For a source of any given strength a0,
the coefficient of variation—a rescaled variation profile—can
then be calculated easily from Eq. (12).

Finally, the constant � > 0 is the correlation parameter of
aξ (x) [Appendix B, Eq. (B13)]. The fluctuations of the mor-
phogen’s concentration at two points separated by distances
greater than �L = √

D/k are nearly independent, whereas
the decay of the time correlations is controlled by (k�2)−1 =
L2/D (Appendix B). The constants k and L determine the
scale of the system; they can serve as units of time and length.

III. NUMERICAL RESULTS

As an application of the Van Kampen theory, we estimate
the level of fluctuations for the concentration of the mor-
phogen bicoid in a Drosophila embryo [7,32]. The results of
our calculations are reported in a system of units reduced by
the length constant L and the time constant k−1. The values of
the physical parameters are adopted from experimental data
[7,32]: L = 0.5 mm, λ = 0.1 mm, a0 = 55 nM (1 nM cor-
responds to 0.6 molecules/μm3). Converted to reduced units,
the source strength and the correlation length are, respectively,
a0 = 4.125×109 and � = 0.2. The concentration of bicoid is
presumably read out by densely distributed cellular nuclei,
whose spatial separation sets a plausible coarse-grain scale of
ξ = 0.02.

Figure 2(a) illustrates a typical dependence of the standard
deviation std(aξ ) on the position x, calculated for the coarse-
grained PI curve. This is a convex curve that is defined over
the interval [ξ/2, L − ξ/2] and decreases monotonically from
its maximum at x =ξ/2. For large correlation lengths λ=�L,
the variance of the coarse-grained morphogen concentration
depends almost linearly on x and flattens when λ → ∞ and
k → 0. In the latter case, which represents pure diffusion
without degradation, the fluctuations of α(x) are maximal
for any given values of a0 > 0 and ξ > 0. When the rate
constant k becomes infinitely large, the problem degenerates
and fluctuations vanish.

Of the two numerical integration schemes discussed in
this paper, the collocation method (Appendix D) is less accu-
rate than the spectral finite-element algorithm (Appendix C).
The latter approach compares favorably with the analytical

solution [Eq. (B10) in Appendix B]. Both integration algo-
rithms nonetheless reproduce correctly the average concen-
tration and the overall shape of the variation profile.

The computational cost of the spectral approach
is inversely proportional to the coarse-graining scale
(Appendix C). In deterministic problems the collocation
method usually requires less intensive calculations. Sampling
of random variables, a smaller number of which is needed in
the spectral simulations, makes the computational efficiency
of the two schemes that we used comparable.

Because a better performance is in general expected of the
higher-order schemes, the accuracy of the spectral approach,
which is of an exponential order [37, Chap. 1], comes as no
surprise [38,39, Sec. II.C]. Our collocation method is based
on the first-order approximation of the spatial derivatives.
We also tested a second-order scheme,2 which yielded nearly
identical results. The latter is therefore not discussed in this
paper. A deeper investigation is therefore necessary to find an
optimal level of approximation in finite-difference schemes
for accurate estimations of the second-order statistics.

The relative uncertainty of the PI curve in our numerical
example does not exceed 0.4% at any position [Fig. 2(b)].
Because αξ decreases with x faster than its standard deviation,
the coefficient of variation increases toward the right bound-
ary. The relative uncertainty nevertheless remains within the
order of 0.2% in most of the system. Even an error of three
standard deviations still yields a coefficient of variation within
the order of 1%. The precision of the PI readout might there-
fore be limited mainly by the efficiency of the morphogen’s
receptors.

Because the modeled system is half a millimeter in length
[7], the small uncertainty of the PI curve in our example
comes as no surprise. In fact, a recent experimental study [14]
finds the precision of the bicoid gradient to be of order 1%.
Hence, our result validates the Van Kampen theory for con-
ditions approaching the macroscopic limit and suggests that
the precision of PI may still exceed the current experimental
uncertainty in this example [7, Fig. 5(B)].

The speed of developmental processes is constrained by
the time required to read out the morphogen’s concentration.
Given a target precision of 10% [7] and the small magnitude
of bicoid fluctuations, this time can be close to its lower
bound, which is given by the correlation scale (k�)−1. How-
ever, in developmental processes on a length scale of tens of
micrometers [41]—the dimension relevant to the specification
of intracellular structures—fluctuations can challenge the effi-
ciency of morphogen receptors. Additional mechanisms, such
as biochemical feedback loops [42], might then be required to
reduce noise in the system.

IV. CONCLUSION

The Van Kampen theory provides a promising means of es-
timating the fluctuation level in RD problems and more gener-
ally in systems of mesoscopic physical fields. The approach is

2In the second-order collocation method we used the Galerkin
variational approach and the Lagrange interpolating polynomials
[40, Chap. 3].
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FIG. 2. Uncertainty of the coarse-grained concentration αξ (x ) as a function of position for the experimental data of Refs. [7,32]. The values
of the standard deviation in A and the coefficient of variation in B are calculated by three methods: (i) analytical solution (Appendix B); (ii)
spectral finite-element simulations (Appendix C); (iii) collocation finite-element method (Appendix D). The uncertainty of the PI curve does
not exceed 0.4% at any position.

conceptually simple and has a relatively small computational
cost. Although in this paper we consider only the steady-state
solution of a RD problem, transients can be taken into account
as well [Eq. (B6) in Appendix B]. Moreover, the Van Kampen
theory can be integrated readily into multiscale computational
models.

To simulate the Van Kampen equation, we formulated and
tested two numerical techniques. The results of spectral finite-
element simulations (Appendix C) were quite accurate and
superior to those of the collocation method (Appendix D).

The Van Kampen theory can be immediately applied to
morphogenetic problems once the morphogen’s level and its
spatial distribution has been measured. As a case study we
chose a relatively large, 500-μm-long system for its simple
geometry and the availability of experimental data. Because
the length scale approaches macroscopic conditions, fluctua-
tions of the PI curve in our simple example are very small.
In many other instances of the PI problem, however, the
system’s size can be 10 μm or even less. At such scales, the
fluctuations of the PI curve can impose operational time and
space constraints on the detectors of morphogen concentra-
tion. Estimation of the noise level might provide insight into
the mechanisms of encoding and readout of PI. For example,
the concentration’s uncertainty might help in identifying a
morphogen among the candidate substances that occur in a
system.

In a study focused on a specific RD problem, there are
more details that could be included in a Van Kampen equa-
tion: fluctuations of the source strength, boundary effects,
and the dimensionality of the system. Incorporation of these
factors should improve the accuracy of a theoretical model
(Appendices B and E).
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APPENDIX A: VAN KAMPEN
REACTION-DIFFUSION EQUATION

The Van Kampen RD Eq. (1) extends the Langevin model
of fluctuations for simple time-dependent physical quantities
to spatially distributed fields [17–19]. Consider first the clas-
sical RD dynamics for the number density a(t, x) of some
morphogen over the linear domain x ∈ �:

∂ta(t, x) = −ka(t, x) + D∂2
x a(t, x), (A1)

in which the degradation rate k and the diffusivity D are posi-
tive constants. The first term on the right-hand side of Eq. (A1)
states the mass-action law for the chemical degradation of the
morphogen. The second term represents the divergence of the
Fick’s diffusion flow,

J (t, x) = −D∂xa ⇒ −∂xJ (t, x) = D∂2
x a, (A2)

which describes the balance of incoming and outgoing cur-
rents of matter J (t, x).

Both macroscopic laws—mass action and Fick’s
diffusion—emerge as statistical averages of the microscopic
dynamics [17,18] over a steady-state ensemble. Ergodicity
of a system is commonly assumed as well. At mesoscopic
scales, however, we must allow fluctuations by replacing the
following terms in Eqs. (A1) and (A2):

ka(t, x) → ka(t, x) − χ (t, x),

J (t, x) → −D∂xa(t, x) − j (t, x), (A3)

in which χ (t, x) and j (t, x) are the deviations from the clas-
sical macroscopic laws of reaction and diffusion, respectively.
Due to the spontaneous variations given by Eqs. (A3), the
local change of concentration ∂ta(t, x) does not exactly match
the fluctuating force on the right-hand side of Eq. (A1). The
residual is(

∂t + k − D∂2
x

)
a(t, x) = χ (t, x) + ∂xj (t, x). (A4)
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The spontaneous behavior of the fluctuating force on the
right-hand side of this equation appears practically random
and is therefore modeled as a stochastic, spatially distributed
process.

In the Langevin approach, the macroscopic properties of a
steady-state dynamics correspond to the ensemble averages,
here denoted by angle brackets, of mesoscopic variables. In
particular, Eq. (A1) requires 〈χ (t, x)〉=0 and 〈∂xj (t, x)〉= 0.
Hence, the ensemble average of Eq. (A4) yields

k〈a(t, x)〉 − D∂2
x 〈a(t, x)〉 = 0 (A5)

for 〈∂ta(t, x)〉 = 0 by the definition of a steady state.
For a nontrivial solution 〈a(t, x)〉 �= 0 to exist, we model a

source of the chemical agent by a nonhomogeneous Dirichlet
boundary condition, which fixes the value of 〈a(t, x)〉 at
x = 0:

〈a(t, 0)〉 = a0. (A6)

A natural choice of the other boundary at x = L is the homo-
geneous Neumann condition, which reflects the diffusive flow
〈J (t, x)〉 [Eq. (A3)]:

〈∂xa(t, L)〉 = 0. (A7)

Subject to the above constraints, Eq. (A5) is easy to solve
[43, Chap. 2]. We thus obtain the macroscopic time-
independent PI curve plotted in Fig. 1,

α(x) = 〈a(t, x)〉 = a0
cosh[(L − x)/λ]

cosh(L/λ)
, (A8)

in which λ = √
D/k.

For Langevin dynamics Eq. (A7) we reduce the homoge-
neous Neumann condition at the right end to a nonhomoge-
neous Dirichlet boundary:

〈a(t, L)〉 = α(L), (A9)

which ensures full consistency with the macroscopic problem
subject to the mixed boundary conditions Eqs. (A6) and (A7).
As discussed in Appendix E, both Eqs. (A6) and (A9) neglect
fluctuation effects at the boundaries of the RD system. These
effects can be included by imposing the reflective Neumann
conditions on both ends of �. Further details, which are
not strictly necessary for a simple demonstration of the Van
Kampen theory, are spared for Appendix E.

The Langevin model is complete once the statistical prop-
erties for the right-hand side of Eq. (A4) have been specified.
Van Kampen derives them by reducing the microscopic RD
dynamics to a random walk, a traditional argument of sta-
tistical mechanics [44]. A continuous limit of this simplified
model gives

〈χ (t, x)χ (t ′, x ′)〉 = kα(x)δ(t − t ′)δ(x − x ′), (A10)

〈j (t, x)j (t ′, x ′)〉 = 2Dα(x)δ(t − t ′)δ(x − x ′), (A11)

which hold for any instants of time t, t ′, and positions
x, x ′ [17,18]. The theory behind the above equations relies
on the following assumptions: χ and j are independent
(〈χ (t, x)j (t ′, x ′)〉 ≡ 0); an infinitesimal interval dx contains
a large number of molecules α(x)dx; and all correlations
at distances of order dx are negligible. Then infinitesimal

processes χ (t, x) and j (t, x) are approximately Gaussian by
virtue of the central limit theorem [45, Sec. 2.5].

The Van Kampen model leads directly to the concept of
a spatially distributed Gaussian white noise ∂xẆ (t, x) with a
zero mean and a constant strength β. The defining property
of ∂xẆ is that its integral over a time interval t and a line
segment �(x) = (x − ξ/2, x + ξ/2),

W (t, x|ξ ) =
∫ t

0
dt ′

∫
�(x)

dx ′∂x ′Ẇ (t ′, x ′), (A12)

is a Gaussian random process of zero mean (〈W 〉 = 0) and
variance

〈W (t, x|ξ )2〉 = βξt. (A13)

All properties of the stochastic processes χ (t, x) and j (t, x)
are then encompassed by

χ (t, x) =
√

kα(x)∂xẆ1(t, x), (A14)

j (t, x) =
√

2Dα(x)∂xẆ2(t, x), (A15)

in which ∂xẆ1 and ∂xẆ2 are two independent, spatially
distributed, Gaussian white-noise terms of unit strength β = 1
[Eqs. (6) and (7)]. Note that j (t, x) is a vector quantity, which
in one dimension has a single component ∂xẆ2(t, x).

APPENDIX B: GREEN’S FUNCTION METHOD

Supplemented with an initial value a(0, x) and the bound-
ary conditions (3), Eqs. (A4)–(A15) lead to Eq. (1):(

∂t + k − D∂2
x

)
a(t, x) = f (t, x).

This stochastic partial differential equation is linear, as is its
left-hand-side operator L = (∂t + k − D∂2

x ), and inhomoge-
neous, in that f (t, x) enters the expression additively.

A general solution of Eq. (1) is most conveniently ex-
pressed with the help of the Green’s function [46, Chap. 10]
g(t − t ′, x|x ′), which we find from the following equations:

Lg(t − t ′, x|x ′) = δ(t − t ′)δ(x − x ′), (B1)

g(t, 0) = g(t, L) = 0. (B2)

In a finite domain � the Green’s function can be expanded
as a series [47]. For the problem at hand we use a discrete
expansion (n = 1, 2 . . .) in the orthonormal Fourier basis,

φn(x) =
√

2/L sin(nπx/L), (B3)

which is complete under the boundary conditions Eq. (B2).
One then finds

g(t − t ′, x|x ′) =
∞∑

n=1

gn(t − t ′)φn(x ′)φn(x), (B4)

gn(t ) = H (t ) exp

{
−t

[
k + D

n2π2

L2

]}
, (B5)

in which H (·) stands for the Heaviside step function.
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With the boundary conditions Eqs. (3) and (B2), the gen-
eral solution of Eq. (1) takes the form

a(t, x) = α(x) +
∫

�

dx ′g(t, x|x ′)[a(0, x ′) − α(x ′)]

+
∫ t

0
dt ′

∫
�

dx ′g(t − t ′, x|x ′)f (t ′, x ′), (B6)

in which the second term on the right-hand side vanishes as
limt→∞ g(t, x|x ′) = 0. If one is concerned merely with the
steady-state behavior of Eq. (1), then the transient solutions
can be eliminated from Eq. (B6) by taking the limit of infinite
t :

a(∞, x) = α(x) + lim
t→∞

∫ t

0
dt ′

∫
�

dx ′g(t − t ′, x|x ′)f (t ′, x ′).

(B7)

Consider the statistical properties of the steady-state solu-
tion a(∞, x). Because f (t, x) given by Eqs. (5) is a linear
superposition of zero-mean, Gaussian white-noise terms, the
ensemble average of Eq. (B7) is consistent with the macro-
scopic dynamics Eq. (A1):

〈a(∞, x)〉 = α(x).

The second cumulant κ2[a(∞, x)] of a(∞, x) can be obtained
from Eqs. (3)–(8) and (B2):

κ2[a(∞, x)] = κ2[�a(∞, x)] = 〈a(∞, x)2 − α(x)2〉

= k lim
t→∞

∫ t

0
dt ′

∫
�

dx ′α(x ′)[g(t − t ′, x|x ′)]2

+ 2D lim
t→∞

∫ t

0
dt ′

∫
�

dx ′α(x ′)

× [∂x ′g(t − t ′, x|x ′)]2. (B8)

Higher-order cumulants of the steady-state solution vanish
due to the Gaussian nature of f (t, x) and hence of α(∞, x)
as well.

As explained in Sec. II, the formal expression Eq. (B8)
diverges. Therefore, to estimate the magnitude of fluctuations
in the morphogen’s concentration, we calculate the variance
of the coarse-grained number density aξ (∞, x) from Eq. (11).
This computation can be carried out through a series expan-
sion of the Green’s function, g(t − t ′, x|x ′), truncated at the
N th term. Let us introduce the following formulas:

�n(x) =
∫

�(x)

dx ′

ξ
φn(x ′) = 2L

nπξ
sin

(
nπξ

2L

)
φn(x),

�mn = 4π2�3mn tanh[�−1]

[1 + π2�2(m − n)2][1 + π2�2(m + n)2]
, (B9)

in which � = √
D/kL−1. Then, by substituting Eqs. (A8),

(B4), and (B5) into Eq. (11) and completing the integrals, we
obtain

κ2[aξ (x)] = a0

∑
mn

�mn�m(x)�n(x), (B10)

in which the summation runs over all positive integers m and
n up to N (m, n = 1 . . N). Note that the mean value of the

coarse-grained field aξ (x) is

〈aξ (x)〉 = 2λ

ξ
sinh

(
ξ

2λ

)
α(x) →

ξ→0
α(x). (B11)

We can similarly obtain the autocorrelation function
κ2[aξ (0, x1), aξ (t, x2)] for the time-dependent concentration

aξ (t, x) =
∫

�(x)
dx ′a(t, x ′) = αξ (x) + �aξ (t, x). (B12)

In linear systems the decay of the temporal and spatial
autocorrelations is encompassed by the Green’s function
[48, Sec. 8.6]:

κ2[aξ (0, x1), aξ (t, x2)]

= 〈�aξ (0, x1)�aξ (t, x2)〉

=
∫

�

dx ′g(t, x2|x ′)〈�aξ (0, x1)�a(0, x ′)〉

= a0

∑
mn

�mn�m(x1)�n(x2) exp[−kt (1 + π2�2m2)],

(B13)

in which only the transient term of Eq. (B6) makes a nonzero
contribution [49]. From Eqs. (B4), (B5), (B9), and (B13) it
follows that, in reduced units (Sec. III), the time and space
correlations are controlled, respectively, by the parameters
(k�)2 = D/L2 and λ = �L = √

D/k through the diffusion
constant D.

In computations the series expansion Eqs. (B10) and (B13)
should be truncated at an order N � 2L/ξ�. This optimal
value is suggested by the following argument. Suppose that
2L/ξ is an integer. The Fourier mode φn+N (·) is then an
alias of φn(·), because φn+N (x) = φn(x) whenever x is an
integer multiple of ξ . In Eq. (B10) we passed from the basis
set φn(·) to the coarse-grained functions �n(·) by integrating
over a spatial scale ξ [Eq. (B9)]. This procedure allows us to
disregard aliasing modes with n > N . Indeed, spatial features
smaller than the scale ξ should be smoothed by the coarse-
graining integration. The regions near the ends of the domain
� (x ≈ ξ/2, L − ξ/2) are exceptions that may require more
terms to reduce ringing artifacts.

APPENDIX C: SPECTRAL METHOD

Modal analysis similar to that of Appendix B leads to
a simple method of spectral finite elements [37,38,50,51]
for Eq. (1). Subject to the boundary conditions Eq. (3), the
number density a(t, x) has a series representation in terms of
the basis functions given by Eq. (B3):

a(t, x) = α(x) +
∞∑

m=1

am(t )φm(x), (C1)

in which the time-dependent coefficients am(t ) must vanish on
average to satisfy Eq. (2): 〈am(t )〉 = 0.

Spatially distributed white noise ∂xẆi (i = 1, 2) likewise
has a representation

∂xẆi (t, x) =
∞∑

n=1

ẇin(t )φn(x), (C2)
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in which each time-dependent coefficient ẇin(t ) is a sim-
ple, independent Gaussian white noise. Equations (6), (7),
(A12), and (A13) readily follow from Eq. (C2). In higher
dimensions there are additional vector components like ∂xẆ2

(Appendix B) that are independent in an orthogonal reference
frame and therefore can be expanded separately in series
Eq. (C2). In nonorthogonal coordinate systems one must also
account for correlations due to the overlap of basis vectors.

Equations (C1) and (C2), truncated at some m and n,
provide the finite-element representations of a(t, x) and the
white-noise terms. Their substitution into Eq. (1) and a few
simple manipulations eventually lead to a system of ordinary
differential equations for the coefficients am(t ):

ȧm(t ) = −k(1 + π2�2m2)am(t ) + fm(t ), (C3)

in which � = √
D/kL−1, and

fm(t ) =
∑

n

[F1mnẇ1n(t ) + F2mnẇ2n(t )], (C4)

F1mn =
∫

�

dx
√

kα(x)φm(x)φn(x), (C5)

F2mn = −
∫

�

dx
√

2Dα(x)∂xφm(x)φn(x). (C6)

From Eq. (C3) we see that stochastic forces fm(t ) randomly
perturb the modal coefficients am(t ). When explicit analyti-
cal expressions are not available for the spatial integrals in
Eqs. (C5) and (C6), a discrete Fourier transform can be used
instead as an approximation. This approach should then be
termed a pseudospectral finite-element method.

For a general RD system, the derivation of equations analo-
gous to Eq. (C3) is quite straightforward. Because the problem
studied in this paper is relatively simple, we can obtain each
coefficient am(t ) explicitly (Appendix B). Because numerical
methods are more widely applicable than analytical ones,
however, we develop below a pseudospectral finite-element
scheme to solve the system of Eq. (C3).

The system of Eq. (C3) can be numerically integrated in
time by various methods, such as the Crank-Nicolson algo-
rithm discussed in the next section of the Appendix. We can
also use a second-order stochastic operator-splitting technique
[52, Appendix C]:

am(t + �t ) = exp[−(1 + π2�2m2)k�t]am(t )

+ exp

[
−(1 + π2�2m2)

k�t

2

]
Fm(�t );

Fm(�t ) =
∫ �t

0
dt fm(t )

=
√

�t
∑

n

[F1mnw1n + F2mnw2n], (C7)

in which w1n and w2n are independent Gaussian random
variables of zero mean and unit variance, whereas �t is an
integration time step.

By coarse-graining Eq. (C1), one easily finds a finite-
element representation of �aξ (x) = aξ (x) − αξ (x) in the no-
tation of Eq. (B9):

�aξ (x) =
∑
m

am�m(x), (C8)

 L

FIG. 3. A piecewise-linear interpolant A(x ) on a grid xi,

i = 0 . . M + 1. We use the boundary conditions Eq. (3) to fix the
values A(x0 ) = a0 and A(xM+1) = α(L) at the nodes i = 0 and
i = M + 1 (◦), respectively. The control elements are centered on
the nodes i = 1 . . M (•). This collocation scheme reserves small
intervals near the boundaries of the domain for a convenient imple-
mentation of the coarse-graining procedure.

in which the coefficients am are correlated Gaussian variables.
Their covariance matrix

Kmn = 〈aman〉

can be sampled in a numerical simulation of Eq. (C7). The
variance of �aξ (x) is then equal to

κ2[�aξ (x)] =
∑
mn

Kmn�m(x)�n(x). (C9)

By comparing the above equation with (B10), we see that
Kmn = a0�mn.

The above results show that the modal coefficients am(t )
are correlated Gaussian random variables of finite mean and
variance. However, there are so many of them in the represen-
tation of a(∞, x) that its variance given by Eq. (B8) diverges
unless the coarse-grained basis functions �m(x) are used as
in Eq. (B10). Thanks to the nonsingular nature of the modal
coefficients, a computer simulation of Eq. (C7) is feasible.

The series expansions Eqs. (C1) and (C2) need not have
the same number of modes. The argument of Appendix B
for Eq. (B10) sets the optimum for m = 1, 2, . . Nm, in which
Nm = 2L/ξ�. The accuracy of simulations can be improved
indefinitely by taking progressively more terms in Eq. (C2),
Nn � Nm. In Sec. III we report our results for Nn = 4Nm and
�t = 10−3.

APPENDIX D: COLLOCATION METHOD

The Fourier components am(t ) of the morphogen’s con-
centration are Gaussian random variables of finite variance
(Appendix C). This vector representation of the field a(t, x)
can be projected onto another basis set. Then, in principle, it
should be possible to simulate numerically the dynamics of
the new components.

In this section we use a piecewise-linear interpolation
[37, Chap. 1], as a basis set for the finite-volume method, a
widely used collocation finite-element scheme [53,54, Chap.
4]. Consider a uniform grid xi = i�x, i = 0, 1, . . . M + 1
on the domain � (Fig. 3). We center control elements of
size �x at the nodes xi, i = 1, 2, . . . M . The morphogen’s
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concentration is then interpolated by

a(t, x) ≈
M+1∑
i=0

Ai (t )ηi (x), (D1)

ηi (x) =
{

�x−xi+x

�x
, if xi−1 � x � xi

�x+xi−x

�x
, if xi � x � xi+1,

(D2)

which coincides with a(t, x) at the centers of the control
elements Ai (t ) = a(t, xi ). To comply with the boundary con-
ditions Eq. (3), we fix A0 = a0 and AM+1 = α(L). Thus,
the above interpolation is completely specified by M time-
dependent components Ai (t ), i = 1 . . . M .

A standard procedure of the finite-volume method would
be to integrate Eq. (1) over each ith control element Xi =
[xi − �x/2, xi + �x/2]. In addition to this, we must apply
coarse graining over the scale ξ � �x to remove the spatial
singularity of the stochastic noise (Sec. II). It is convenient to
partition the domain � so that ξ is an integer multiple of �x:
ξ = P�x. We construct an integral operator

IP i = P −1
P−1∑
j=0

Ii+j = P −1
P−1∑
j=0

∫∫
Xi+j

dx2

�x
. (D3)

In the above expression it suffices to consider only P = 1 with
a single term Ii that can be used to evaluate Eq. (D3) for an
arbitrary P . Applied to a(t, x), the operator Ii gives a spatial
integral of the coarse-grained concentration:

Iia(t, x) =
∫

Xi

dx1

∫ x1+�x/2

x1−�x/2

dx2

�x
a(t, x2)

=
∫

Xi

dx1 aξ (t, x1)|ξ=�x. (D4)

By applying each of the M operators Ii , i = 1, 2 . . . M to
both sides of Eq. (1), we get

(∂t + k)Iia(t, x) − D

�x
[a(t, xi − �x) − 2a(t, xi )

+ a(t, xi + �x)] = Iif (t, x). (D5)

Then substituting Eq. (D1) for a(t, x) yields

�x(∂t + k)

[
2Ai (t )

3
+ Ai−1(t ) + Ai+1(t )

6

]

− D

�x
[Ai−1(t ) − 2Ai (t ) + Ai+1(t )] = Iif (t, x), (D6)

which forms a system of M ordinary differential equations to
be solved for Ai (t ), i = 1, 2 . . . M .

The statistical properties of the coarse-grained field
aξ (t, x) can be estimated from the values Ai (t ) [Eq. (D1)]
sampled in a computer simulation. For example, when ξ =
�x one obtains

a�x (t, xi ) ≈ 3Ai (t )

4
+ Ai−1(t ) + Ai+1(t )

8
,

a�x (t, xi + �x/2) ≈ Ai (t )

2
+ Ai+1(t )

2
. (D7)

To integrate Eq. (D6) in time we use the Crank-Nicolson
scheme based on the trapezoidal rule∫ t+�t

t

dtAi (t ) ≈ [Ai (t ) + Ai (t + �t )]
�t

2
. (D8)

The simulation algorithm can be concisely written in the
vector-matrix notation

T A(t + �t ) = E A(t ) + R(�t ); (D9)

Tii = (2 + k�t )
�x

3
+ D

�t

�x
, (D10)

Ti(i±1) = (2 + k�t )
�x

12
− D

�t

2�x
, (D11)

Eii = (2 − k�t )
�x

3
− D

�t

�x
, (D12)

Ei(i±1) = (2 − k�t )
�x

12
+ D

�t

2�x
, (D13)

with all other elements of M-by-M matrices T and E being
zero. The column vector R(�t ) of size M is given below.

On the right-hand side of Eq. (D6) we obtain two contri-
butions, which correspond to the stochastic terms of the force
f (t, x) [Eq. (5)]:

∫
�t

dtIi

√
kα(x)∂xẆ1(t, x) = ui,

∫
�t

dtIi∂x[
√

2Dα(x)∂xẆ2(t, x)] = vi − vi+1, (D14)

in which ui and vi are Gaussian random variables of zero mean. The covariances of ui and vi can be calculated from Eqs. (6)
and (7). In particular, all vi are independent of each other, as well as from ui which correlate in pairs: 〈uiuj 〉 �= 0 if |i − j | = 1.
We omit lengthy calculations that eventually lead to

κ2(ui ) = 4λ3k�tα(xi )

�x2

[
sinh

(
�x

λ

)
− �x

λ

]
, (D15)

〈uiui+1〉 = 4λ3k�ta0

�x2 cosh(L/λ)
cosh

(
2L − xi − xi+1

2λ

)[
�x

2λ
cosh

(
�x

2λ

)
− sinh

(
�x

2λ

)]
, (D16)

κ2(vi ) = 2λD�ta0

�x2 cosh(L/λ)

[
sinh

(
L − xi−1

λ

)
− sinh

(
L − xi

λ

)]
, (D17)

with λ = √
D/k.

052125-9



ROMAN BELOUSOV, ADRIAN JACOBO, AND A. J. HUDSPETH PHYSICAL REVIEW E 98, 052125 (2018)

An alternative approach can be used for problems in which the derivation of formulas analogous to Eqs. (D15)–(D16) is too
tedious. If we substitute the spectral representation of white noise Eq. (C2) into Eq. (D14), then we get

ui =
√

�t
∑

j

w1juij , vi =
√

�t
∑

j

w2j vij , uij = Ii[
√

kα(x)φj (x)],

vij =
∫

Xi

dx

�x

√
2Dα(x + �x/2)φj (x + �x/2), (D18)

in which w1j and w2j are independent Gaussian random
variables with zero mean and unit variance. The elements
uij and vij can be evaluated by the pseudospectral method
(Appendix C). In essence, the above equations are projections
of white noise in a spectral representation onto the linear-
interpolation basis functions, a procedure mentioned in the
beginning of this section.

Finally, we can express the column vector R as

R = b + u + Cv, (D19)

b0 = a0�t

(
D

�x
− k�x

6

)
, (D20)

bM = α(L)�t

(
D

�x
− k�x

6

)
− vM+1, (D21)

Cii = 1, Ci(i+1) = −1, (D22)

in which the vector b incorporates the boundary terms; the
components bij and the matrix elements Cij that equal zero
are not indicated.

The results reported in Sec. III are obtained by using
Eqs. (D15)–(D17) with �t = 10−3 and �x = 2×10−4.

APPENDIX E: FLUCTUATION EFFECTS
AT THE SOURCE AND BOUNDARIES

The Dirichlet conditions Eq. (3) fixes the value of a(t, x)
at the ends of the domain �. The resulting solution of Eq. (1)
therefore neglects fluctuation effects at the boundaries and, in
particular, at the source of the morphogen. Indeed, the Green’s
function we obtained in Appendix B is insusceptible to any
forces at the ends of the domain �, where it vanishes due to
Eq. (B2). Note that the left Dirichlet boundary in Eq. (3) is an
implicit source of the morphogen.

Assuming a closed RD system, in which matter does not
leak through the ends of the domain �, we replace the
reflective Neumann boundary conditions Eq. (3) by

∂xa(t, x)|x=0 = 0, ∂xa(t, x)|x=L = 0, (E1)

whereby the macroscopic diffusion flux through the points
x = 0, L vanishes [Eq. (A2)]. Nonetheless, we shall take
special care that the fluctuations of the matter flow j (t, x) in
Eq. (A3) do not violate the closed-system constraint.

Together with Eq. (E1), we must model explicitly the
source of the morphogen s(x). Given that this substance is
generated from a densely concentrated substrate at an effec-
tive rate k+, one can pose

s(x) = k+δ(x) +
√

k+ẇ+(t )δ(x), (E2)

in which the second term, with simple white noise coefficient
ẇ+(t ), introduces fluctuations of the source strength.

The new boundary conditions Eqs. (E1) require a change
of the basis set φn(·) → ψn(·) in the series expansion for
the Green’s function [Eq. (B4)], for the concentration a(t, x)
[Eq. (C1)], and finally for white noise ∂xẆ1, but not for ∂xẆ2.
The Neumann basis set has an additional mode for n = 0:

ψ0(x) = L−1/2, ψn(x) =
√

2/L cos(nπx/L). (E3)

The Neumann boundary conditions also alter the expression
for the PI curve α(x) → ν(x):

ν(x) = k+
k

∞∑
n=0

ψn(0)ψn(x)

1 + π2λ2n2/L
. (E4)

White noise in the expression for the fluctuating diffusive
flow, ∂xẆ2(t, x), should be treated separately. Because this
term models variations of matter flux through a point x, its
spatial derivative at x = 0, L is not well defined. With the
no-leak conditions, matter is not allowed to flow through the
boundaries of the domain �. To satisfy this requirement we
must use the expansion Eq. (C2) for ∂xẆ2(t, x).

If we were to enforce the expansion of ∂xW2(t, x) in the
basis set Eq. (E3) instead of Eq. (B3), then through integration
by parts in Eq. (8) we would obtain a boundary term of the
form

lim
t→∞

∫ t

0
dt ′g(t−t ′, x|x ′)

√
2Dα(x ′)∂x ′W2(t ′, x ′)

∣∣L
x ′=0. (E5)

As for Eq. (9), this expression has a spatial singularity because
the Green’s function does not vanish at the Neumann bound-
aries. We cannot remedy this problem by coarse graining, for
we cannot integrate over a ξ -neighborhood of the end points
x = 0, L.

If the morphogen is allowed to leak through the boundaries
of the system, then new point sources of fluctations, similar to
the second term in Eq. (E2), may emerge. The Van Kampen
theory should then be extended to include this contribution.

In summary, we introduced above three point sources of
fluctuations: noise in the morphogen’s synthesis at x = 0
and in its degradation at x = 0 and x = L. In our simplified
model of Sec. II, however, there is a continuum of noise over
the interval x ∈ (0, L). Provided the average total number of
molecules in the system is large, we do not expect that the
addition of three isolated points, as suggested in this section,
would alter the level of fluctuations.

Systematically applying the above changes to the theory
presented earlier, one can derive results that incorporate fluc-
tuations at the source of the chemical agent and at the bound-
aries of the RD system. From the analysis of this section it also
follows that the Dirichlet-Neumann conditions Eqs. (A6) and
(A7) would not provide a full account of these phenomena. A
more reasonable choice would be either to increase the level
of details by Eqs. (E1) and (E2) or to neglect the boundary
effects altogether by using Eq. (3).
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