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Statistics of overtake events by a tagged agent

Santanu Das,1 Deepak Dhar,2 and Sanjib Sabhapandit1
1Raman Research Institute, Bangalore 560080, India

2Indian Institute of Science Education and Research (IISER), Pune 411008, India

(Received 17 April 2018; revised manuscript received 5 October 2018; published 20 November 2018)

We consider a minimalist model of overtaking dynamics in one dimension. On each site of a one-dimensional
infinite lattice sits an agent carrying a random number specifying the agent’s preferred velocity, which is drawn
initially for each agent independently from a common distribution. The time evolution is Markovian, where
a pair of agents at adjacent sites exchange their positions with a specified rate, while retaining their respective
preferred velocities, only if the preferred velocity of the agent on the “left” site is higher. We discuss two different
cases: one in which a pair of agents at sites i and i + 1 exchange their positions with rate 1, independent of their
velocity difference, and another in which a pair exchange their positions with a rate equal to the modulus of the
velocity difference. In both cases, we find that the net number of overtake events by a tagged agent in a given
duration t , denoted by m(t ), increases linearly with time t , for large t . In the first case, for a randomly picked
agent, m/t , in the limit t → ∞, is distributed uniformly on [−1, 1], independent of the distributions of preferred
velocities. In the second case, the distribution is given by the distribution of the preferred velocities itself, with a
Galilean shift by the mean velocity. We also find the large time approach to the limiting forms and compare the
results with numerical simulations.
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The phenomenon of overtaking is ubiquitous in nature. It
occurs naturally in all sorts of traffics, ranging from the vehic-
ular traffic on highways [1] to the transport at the molecular
scale by motor proteins [2,3]. Animals in groups overtake
each other to move to a less risky position at the center of
the group [4]. Overtaking also takes place in sedimentation
or electrophoresis of mixtures with polydisperse (different
sizes, densities) particles falling (or rising) through a fluid
under gravity or electric field [5]. In biological evolution, the
population sizes of different genotypes overtake each other
depending on their fitness [6–9]. In a completely different con-
text, the real-time correlation functions in quantum interacting
many body systems may be understood in terms of overtaking
dynamics of particles [10,11].

In spite of its widespread appearances, surprisingly, the
statistics of overtake events has not been studied much. In
this paper, we investigate the statistics of overtake events for
a tagged agent in a simple model of stochastic evolution of
self-driven agents (e.g., vehicles, molecular motors, etc.) in
one dimension. In an overtake event, an agent with a higher
velocity crosses another agent with a lower velocity. We define
the net overtakings by a tagged agent as the total number of
agents that it overtakes minus the total number of agents that
overtake it, in a given duration. We study the probability distri-
bution of fluctuations in this quantity. Such statistics provide
a useful way to monitor the stochastic system. In particular, in
traffic engineering, to obtain flow data, one uses the moving
observer method, where an observer in a test vehicle moves
a fixed distance with a constant speed and counts the number
of vehicles that it overtakes and the number of vehicles that
overtake it [12]. In these studies, the fluctuations are usually
large, but their systematic study is lacking [13].

In this paper, we discuss a minimalist model, consisting
of a collection of self-driven agents initially placed at points

with constant separation along a line. We associate a real
random variable v with each agent, which may be called his
preferred velocity. We assume that each agent is assigned
the velocity at the beginning, independent of others, from
a common probability density function (PDF) ρ(v), which
remains unchanged at subsequent times. We ignore the actual
positions of agents, and only focus on their relative order
along the line. In our model, the configuration at any time t is
fully specified by giving the relative order of different agents
along the line. The total neglect of actual spatial coordinates is
clearly an oversimplification, but this makes the model more
tractable, and we will try to show below that this simplified
model is still instructive, and has an interesting behavior. Let
vi be the preferred velocity of the ith agent to the right of
some reference position on the line. Then, we think of vi as the
preferred velocity of the agent at site i of a one-dimensional
lattice, −∞ < i < +∞. The situation roughly corresponds
to a crowded highway, where actual spacings between cars
are roughly constant. Then, in a frame moving with the mean
velocity of traffic, we would see only infrequent and stochastic
changes of order of the cars. We assume that this overtaking
may be taken as Markovian. As agents overtake each other,
they exchange their positions, but they retain their respective
preferred velocities with them, which are quenched random
variables. In an overtake event, the particle with higher pre-
ferred velocity goes to the right of the particle with a lower
preferred velocity (see Fig. 1). Therefore, the net overtakings
in any time interval by a tagged agent equal the agent’s shift
in position, denoted by m, in that time interval in the list
specifying the configuration.

Here we consider two different cases for the exchange
rates. In the first case, we set the rate of exchange for agents
between two neighboring lattice sites i and i + 1 as r =
θ (vi − vi+1), where θ (v) = 1 for v > 0 and 0 for v � 0, is the
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FIG. 1. Each site of a one-dimensional lattice is occupied by an
agent with a certain velocity, and two neighboring agents interchange
their positions with a specific rate. During the exchange, the net
overtakings of the faster (slower) moving agent increases (decreases)
by unity. The red filled circle indicates the tagged agent.

Heaviside theta function. This case is more appropriate for a
crowded scenario where what matters is that an agent tries to
overtake, but the actual difference in their preferred velocities
is less important. Note that changing v to any other monotonic
increasing function of v leaves this dynamics unchanged.
In this case, m scales linearly with time t , and hence, it is
useful to consider the scaled random variable c = m/t . Here c

gives the mean change in the position of the tagged agent per
unit time on the discrete lattice, which is our configuration
space. This case is related to the totally asymmetric simple
exclusion process (TASEP), with infinitely many classes of
particles, and has been studied much in the literature [14–19].
We show below that this limiting value c is a function of the
preferred velocity of the tagged agent. If the tagged agent is
picked at random, it becomes a random variable. Interestingly,
the probability distribution of this random variable c is in-
dependent of the initial distribution of velocities, and in the
limit t → ∞, it is uniformly distributed on [−1, 1], for all
continuous distributions of the velocities.

For cars on a highway at a lower density, the rate of
overtaking between two agents is higher, if the difference
between their velocities is larger. This may be approximated
in our lattice model, which makes no mention of spacings
between cars, by taking the Markovian overtaking rate to be
r = θ (vi − vi+1) (vi − vi+1). In this case also, m again scales
linearly with t . However, the limiting PDF of c = m/t is given
by the PDF of v itself, but shifted by the mean velocity 〈v〉. For
brevity, by writing in general r = θ (vi − vi+1) (vi − vi+1)α ,
we refer to the above two cases in the following as α = 0 and
1 respectively. The PDF of c, at any time t , can be written as

p(c, t ) =
∫ ∞

−∞
p1(c, t |v0) ρ(v0) dv0, (1)

where p1(c, t |v0) is the conditional PDF of c for a tagged
agent having a given preferred velocity v0.

Let us first consider the case α = 0. If we consider a
single tagged agent (say in “gray,” for convenience), having
the quenched velocity v0, the rest of the agents can be divided
into two groups: the agents (say in “black”) whose velocities
are greater than v0 and the agents (say in “white”) whose
velocities are less than v0. The dynamics of agents within the
black group as well as within the white group is invisible to
the gray agent. From the point of view of the gray agent, a
black agent can overtake a white agent from the left and not
the other way around—this is then equivalent to a TASEP with
the black agents as particles and the white agents as holes. The
gray agent can overtake a white agent (hole) and a black agent
(particle) can overtake the gray agent, whereas the reverse
moves are not allowed. A black agent cannot distinguish
between the gray and a white agent. Similarly, a white agent
cannot distinguish the gray agent from a black agent. In

TASEP language, the gray agent is known as a second class
particle [14]. Therefore, the motion of this tagged (gray) agent
is same as that of a single second class particle in a TASEP,
starting on an initial uncorrelated background of particles
(also known as first class particles) with density ρ+(v0) =∫ ∞
v0

ρ(v) and holes with density ρ−(v0) = 1 − ρ+(v0). For
this second class particle, it has been shown [14] that, in the
t → ∞ limit, the scaled displacement on the lattice c = m/t ,
converges almost surely to c̄(v0) = 1 − 2ρ+(v0). This result
holds for our tagged (gray) agent with a given v0—which
itself is random that varies from one realization to another.
Evidently, c̄(v0) is bounded by ±1, with c̄ → ±1 for v0 →
±∞ (or the upper and the lower supports respectively) and
c̄(v∗

0 ) = 0 for ρ+(v∗
0 ) = ρ−(v∗

0 ) = 1/2.
In the limit t → ∞, the random variable c does not

have any fluctuations around the random variable c̄(v0)—
i.e., p1(c, t |v0) = δ(c − c̄(v0)) in Eq. (1). Therefore, using
dc̄/dv0 = −2ρ ′

+(v0) = 2ρ(v0), we get

p(c) = 1
2 where − 1 � c � 1. (2)

In words, in the t → ∞ limit, m/t is uniformly distributed
on [−1, 1], for all continuous distributions ρ(v), as claimed
above.

A somewhat similar looking, but very different, result was
obtained earlier for the so-called speed process [18,19]. In
this, one considers TASEP with the step initial condition
where the initial velocities satisfy vi > v0, for all i < 0,
and vi < v0, for i > 0, and there is a single second-class
particle at the origin. It was shown that in each realization, the
second class particle shows a limiting speed for large times.
The precise value of this limiting speed varies in different
realizations. Some value gets selected in the early evolution,
and in later evolution it does not change much. The probability
distribution of this randomly selected value, averaged over all
possible evolutions, is uniform on [−1, 1].

For finite times, the fluctuations around c̄(v0) are impor-
tant. As p1(c, t |v0) is expected to depend on v0 only through
ρ+(v0), or equivalently c̄(v0), making a change of variable
from v0 to c̄ eliminates ρ(v0) completely from Eq. (1),

p(c, t ) = 1

2

∫ 1

−1
p2(c, t |c̄) dc̄, (3)

where p2(c, t |c̄) is the conditional PDF for a given c̄. Thus,
not only the limiting distribution, but also the p(c, t ) at all
time is independent of the velocity distribution ρ(v).

Starting from an uncorrelated initial condition, we do not
expect the correlations between the jumps of the tagged
agent at different times to become important at early times.
Therefore, a biased random walk (RW) description of motion
of the tagged agent, that jumps to the left with the rate
ρ+(v0) and right with the rate ρ−(v0), suggests that the typical
fluctuations of c around c̄(v0), at the scale of the standard
deviation σt =

√
〈[c − c̄(v0)]2〉 = t−1/2, are Gaussian. How-

ever, correlations between jumps build up at later times,
and eventually, it crosses over to σt ∝ χ1/3t−1/3 behavior
[20–22] with χ = ρ+(v0)[1 − ρ+(v0)] = (1 − c̄2)/4. The
typical fluctuations, at large times, are described by [21,22]

p2(c, t |c̄)	 1
4 (2χ1/3t−1/3)−1 Gscaling([c − c̄]/[2χ1/3t−1/3]),

(4)
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FIG. 2. The points are numerical simulation results for the condi-
tional PDF of scaled net overtakings c = m(t )/t for given c̄, for our
first choice of the overtaking rate r = θ (vi − vi+1). The initial veloci-
ties are drawn from uniform distribution on [−1, 1]. The dashed lines
plot two Gaussian distributions centered around c̄ = ±1 respectively,
with a variance t−1. The solid lines show the non-Gaussian distribu-
tions, given in Eq. (4), for c̄ = 0, ±0.25, ±0.5, and ±0.75. In all
the cases, t = 100.

where Gscaling(w) is the scaling function associated with the
spatiotemporal two-point correlation function of the TASEP
with the Bernoulli product measure initial condition [21–25].
The crossover time t∗ ∝ χ−2.

At large times, since p2(c, t |c̄) in Eq. (3) is peaked sharply
around c̄, the correction to Eq. (2) near the edges c = ±1
comes from c̄ → ±1 respectively. In this case, t∗ diverges.
Hence, we can use the Gaussian form (see Fig. 2) p2(c, t |c̄) 	
exp(−t[c − c̄]2/2)/

√
2πt−1 of the RW picture in Eq. (3). This

yields

p(c, t ) 	 1

4

[
erf

(
(c + 1)

√
t√

2

)
− erf

(
(c − 1)

√
t√

2

)]
, (5)

where erf(x) = (2/
√

π )
∫ x

0 e−y2
dy is the error function. We

compare this form with numerical results in Fig. 3 and find
very good agreement. The finite large time correction for the
central region around c = 0 can be computed by using Eq. (4)
(see Fig. 2) in Eq. (3) [see Fig. 3(e)].

We next consider the case α = 1. For this, our model,
in fact, corresponds to the infinite-species Karimipour
model [26]. As in the above α = 0 case, here also, due to lack
of strong correlations between jumps, we expect the motion
of the tagged agent, with a given preferred velocity v0, to
be described by a RW at early times. The RW jumps to the
right with the rate ρR (v0) = ∫ v0

−∞(v0 − v) ρ(v) dv and to the
left with the rate ρL(v0) = ∫ ∞

v0
(v − v0) ρ(v) dv. Therefore,

the drift velocity c̄(v0) = ρR (v0) − ρL(v0) = v0 − 〈v〉 and the
standard deviation σt = √

[ρL(v0) + ρR (v0)]/t .
In the limit t → ∞, ignoring the fluctuations around c̄—

i.e., p1(c, t |v0) = δ[c − c̄(v0)] in Eq. (1), gives the limiting
PDF p(c) = ρ(c + 〈v〉), as claimed above. The shift of the
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FIG. 3. (a)–(d) The points are numerical simulation results for
the PDF of the scaled net overtakings c = m(t )/t at different times,
for our first choice of the overtaking rate r = θ (vi − vi+1), where
the initial velocities are chosen from (a) uniform, (b) Gaussian, (c)
exponential, and (d) power-law distributions. The solid lines plot
Eq. (5). (e) The points are from a numerical simulation where the
initial velocities are chosen from a uniform distribution on [−1, 1]
and t = 100. The solid line plots Eq. (3) computed by using Eq. (4)
and the dashed line plots Eq. (5) for t = 100.

PDF by the mean is easily understood, as the overtaking dy-
namics depends only on the velocity differences and the mean
value of the overtaking rate, averaged over different agents,
must be zero. For the approach to this limiting distribution,
we note that as in the α = 0 case, the contributions to the
large |c| tails of p(c, t ) come from large |v0 − 〈v〉| behavior
of p1(c, t |v0) in Eq. (1), for which we expect the crossover
time t#(v0) to be large. Therefore, the tails of p(c, t ) can
be computed by using a Gaussian distribution with mean
v0 − 〈v〉 and variance [ρL(v0) + ρR (v0)]/t for p1(c, t |v0) in
Eq. (1),

p(c, t ) 	
∫ ∞

−∞
dv0 ρ(v0)

√
t√

2π [ρL(v0) + ρR (v0)]

× exp

(
− t[c + 〈v〉 − v0]2

2[ρL(v0) + ρR (v0)]

)
. (6)

Evidently, p(c, t ) now depends on the form of ρ(v0) and the
integral has to be carried out separately for each case. Figure 4
shows very good agreement between Eq. (6) and numerical
simulation results for four different choices of ρ(v0).

Finally, we comment on the relation of our model to the
Jepsen gas, which has been studied in literature earlier [27]
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FIG. 4. The points are numerical simulation results for the PDF
of the scaled net overtakings c = m(t )/t at different times, for the
second choice of the overtaking rate r = θ (vi − vi+1)(vi − vi+1),
where the initial velocities are chosen from (a) uniform, (b) Gaussian,
(c) exponential, and (d) power-law distributions. The solid lines plot
the theoretical results obtained from Eq. (6).

for different quantities. In our language, the Jepsen gas cor-
responds to cars on multilane highways (in the continuum
space, not on a lattice), each moving with a constant velocity
(in cruise control) that is drawn independently from ρ(v).
The cars can pass each other freely without any obstacles.
We consider the density of the cars along the highway to be
uniform, which is set to unity. The space-time trajectories are
given by slanted straight lines where the slopes with respect
to the time axis represent the velocities. Evidently, any two
lines (cars) can cross (pass) each other at the most once.
The net number of overtake events by a tagged car, in a
given duration, is the number of lines crossing the tagged line
(corresponds to the trajectory of the car) from its right minus
the number of lines crossing the tagged line from its left, in
that duration. It is easy to see that, for a tagged car with a
velocity v0, the crossings are mutually independent and the
rates of crossing from the left and right are ρL(v0) and ρR (v0)
respectively—the same rates that occur in the RW description
of the motion of the tagged agent in the α = 1 case above.

Therefore, the RW description of the α = 1 case at early times
is exact for this Jepsen gas model for all times.

In conclusion, we have found two categories of overtaking
behavior. In these cases, the net number of overtake events
m(t ) grows as t . We have also obtained the limiting distri-
bution of the time-averaged overtaking rate, defined by the
total number of net overtakings in a given time period divided
by the total time, as well as the approach to the limiting
distributions. We contrast this behavior with what happens
when the exchange rates r is independent of the velocities
and without consideration of which is faster. In this case,
evidently, a tagged agent performs a symmetric RW, and
therefore, the net overtakings m(t ), in a given time t , has the
diffusive scaling m(t ) ∼ √

t and PDF of the scaled variable
m/

√
t , in the limit t → ∞, is Gaussian. In the overtaking

dynamics, the behavior is very different, as seen above. Also,
in the case where the random velocity v takes only two distinct
values, clearly the value of α does not matter anymore, and the
model corresponds to TASEP with identifying agents carrying
one type of velocity as particles and the agents carrying the
other type of velocity as holes. In this case, the tagged particle
displacement m(t ) depends on the initial condition [28–31].
In particular, for independent and identically drawn initial
velocities, a tagged particle performs a totally asymmetric
RW in continuous time, where the fluctuations about the
mean displacement are Gaussian and grows diffusively in
time [32–35].

There are several interesting open directions for future re-
search. The first and foremost one is of course to analyze real
data. Another question is whether there are other classes, and
if any, how to identify them. Third, here we have studied only
a single time property. However, one can study correlations
between overtake events at different times or the overtaking
dynamics itself as a process. Here, it is somewhat assumed
that the density of agents is homogeneous in real space, so
that velocity is the only relevant variable for overtaking. One
can explore the effect of inhomogeneity by considering a
dilute case, where a finite number of sites, chosen randomly
with a given density, are not occupied by agents (equivalently,
occupied by agents having zero velocity). The simple picture
presented in this paper can serve as a stepping stone for future
studies. The model on a finite line is also of interest. In this
case, there are important end effects, and there are shock
waves that start at the ends and travel inwards, and determine
the qualitative behavior in the region deep inside for times of
order of the system size. These will be discussed in a future
publication.
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