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Universality, where microscopic details become irrelevant, takes place in thermodynamic phase transitions.
The universality is captured by a singular scaling function of the thermodynamic variables, where the
scaling exponents are determined by symmetries and dimensionality only. Universality can persist even for
nonequilibrium phase transitions. It implies that a hydrodynamic approach can capture the singular universal
scaling function, even far from equilibrium. In particular, we show these results for phase transitions in the large
deviation function of the current in diffusive systems with particle-hole symmetry. For such systems, we find
the scaling exponents of the universal function and show they are independent of microscopic details as well as
boundary conditions.
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I. INTRODUCTION

A longstanding goal in the study of nonequilibrium is to
generalize and implement the vast knowledge accumulated
in the study of thermodynamic phase transitions [1–3]. In
equilibrium, the relevant thermodynamic potential, e.g., the
free energy, becomes nonanalytic at the transition point. For a
continuous phase transition, the thermodynamic potential is
composed of a regular part and a singular universal part—
a scaling function of the relevant thermodynamic variables.
The scaling function is characterized by critical exponents,
which in turn classify the physics into universality classes
that depend only on the symmetry and dimensionality of the
model.

Nonequilibrium systems are generally sensitive to micro-
scopic details, boundary conditions, and initial conditions.
Therefore, it is appealing to find where universality can take
over in nonequilibrium systems, from both a theoretical and
a practical viewpoint. If universality takes over, it is tempting
to assume that a coarse-grained (hydrodynamic) theory can
capture the singular universal behavior. The purpose of this
paper is to show that this is indeed the case for an analytically
tractable setup.

It was suggested long ago to build a thermodynamic for-
malism for nonequilibrium systems by looking at probabilities
over time realizations rather than looking at the instantaneous
energy states [4]. To illustrate this idea, let us consider two
particle reservoirs, coupled through a 1D transport channel
of size L—a common nonequilibrium setup. The hallmark
of nonequilibrium in such systems is a nonvanishing current.
For this reason, a natural quantity of interest is Pt (Q), the
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probability to observe a transfer of Q particles in the system
during the time interval [0, t]. For t � 1, the probability
to observe an atypical particle transfer, i.e., different than
the steady state, is usually exponentially unlikely. Thus, the
large deviation function (LDF) is defined by the function
I (J ) = − 1

t
log Pt (Q) for J = Q/t—the atypical mean cur-

rent. Starting from the discovery of fluctuation theorems in
the 1990s [5,6], LDFs have played an important role in the
modern development of nonequilibrium theories [7]. Since
the LDF constrains the system to exhibit a mean atypical
current J , we can define an associated mean spatiotemporal
particle occupancy in the system, where the mean is over
all spatiotemporal evolutions that support the particle transfer
Q [8].

Similarly to thermodynamic phase transitions, dynamical
phase transitions (DPTs) are defined as nonanalytic points in
the LDF. A variety of DPTs are identified in a broad range of
nonequilibrium systems, such as in high-dimensional chaotic
chains [9–11], kinetically constrained glass models [12–18]
or active self-propelled particles [19–21]. The transition is
manifest in, e.g., a dramatic change in the mean spatiotem-
poral particle occupancy [22–27]. In this paper, we especially
consider 1D diffusive processes that are symmetric to the
exchange of particles and vacancies. In this case, it is known
that the observed particle occupancy becomes independent
of both space and time in a range determined by the critical
value JC [23–27]. We show that the singular part of the LDF
is universal, irrespective of microscopic details and boundary
conditions. Namely I (J ) = Ireg + Ising, where

Ising = 1

L2+α
φ(δuLβ ), (1)

such that δu is a universal parameter that vanishes as J → Jc.
To exhibit the universality and find the scaling exponents

α, β, we employ analytical tools as well as corroborating re-
sults using numerical analysis. First, we use the macroscopic

2470-0045/2018/98(5)/052116(10) 052116-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052116&domain=pdf&date_stamp=2018-11-14
https://doi.org/10.1103/PhysRevE.98.052116


OHAD SHPIELBERG, TAKAHIRO NEMOTO, AND JOÃO CAETANO PHYSICAL REVIEW E 98, 052116 (2018)

FIG. 1. The dth derivative with respect to the universal parameter u of the cumulant generating function μ(λ) and a proper rescaling with
Lα−dβ as a function of δuLβ is plotted for the weakly asymmetric exclusion process (WASEP) on a ring [41–43]. The cumulant generating
function μ(λ), as defined in the text, is a Legendre-Fenchel transform of the LDF and carries the same scaling behavior for the singular
term. For the third derivative, the universal function becomes dominant over the nonuniversal part even for a relatively small system size L.
The convergence to a scaling function φ̃(r ) is convincing already for small systems L = 14, 16, 18, 20 with α = 1/3, β = 2/3 for the d = 3
derivative. As mentioned in Sec. VII, the singular point r = 0 may be shifted, especially for small systems. In the WASEP, as detailed in
Appendix A, each site is occupied by at most one particle. Particles hop to a left or right empty neighbor with a exp(1 ± E/L) rate, where we
take here E = 10. To get this figure, we diagonalize the corresponding biased matrix [50,51] numerically. See Sec. VII for more details.

fluctuation theory (MFT). The MFT is a hydrodynamic theory
of diffusive systems. It was used to obtain various results,
e.g., current fluctuations, nonequilibrium fluctuation induced
forces, escape times of interacting particles, statistics of
tagged particles in single-file diffusion [28–35], and many
more [36–40]. The predictions are exact, up to 1/L correc-
tions. The second approach relies on an exact solution of a
microscopic model—the simple symmetric exclusion process
(SSEP) [41–43] via the Bethe ansatz. The Bethe ansatz allows
to determine the energy eigenstates of many-body integrable
quantum systems [44] as well as evaluating current statistics
of nonequilibrium systems [45–47]. The SSEP is an important
model in the study of classical and quantum nonequilibrium
systems [32,46,48,49]. By using both methods, we evaluate
1/L2 corrections. Close to the transition, the leading singular
behavior allows to obtain the scaling exponents α, β. The
singular term in the LDF is subleading. However, it becomes
more dominant for higher and higher derivatives of the LDF
with respect to JC − J (equivalently δu). Then, as shown in
Fig. 1, the third derivative is sufficient to capture the universal
behavior.

II. THE MACROSCOPIC FLUCTUATION THEORY

To unveil the universal structure of DPTs in nonequilib-
rium diffusive systems, we introduce the MFT. Taking the
limit t, L → ∞ with the fixed diffusive scaling t/L2, we
define rescaled coordinates: τ = t/L2 and x ∈ [0, 1]. At these

scales, the coarse-grained density ρ(x, τ ) is assumed to be a
smoothly varying function. Here, we focus only on processes
that conserve particles at the bulk. The current density j (x, τ )
allows us to write the continuity equation,

∂τρ = −∂xj. (2)

At the steady state, diffusive processes satisfy Fick’s law j =
J(ρ), where J(ρ) = −D(ρ)∂xρ + σ (ρ)E. For a vanishing
field E, Fick’s law in Eq. (2) gives the steady-state diffusion
equation with D the diffusion. The conductivity σ is a mea-
sure of the response to an external field E. Generally, D, σ are
density-dependent.

The fluctuating hydrodynamics approach posits that Fick’s
law can be extended to a dynamical Langevin equation,

j (x, τ ) = J[ρ(x, τ )] +
√

σ [ρ(x, τ )]

L
ξ (x, τ ), (3)

where ξ (x, τ ) is a Gaussian white noise. The strength of the
noise in diffusive systems

√
σ/L is tuned to be consistent with

the Einstein relation [43]. The dynamics of diffusive systems
is thus expressed through D and σ only.

From the Langevin Eq. (3) and by using the Martin-Siggia-
Rose formalism [52], the fundamental result of the MFT is
derived. Namely, we find that the probability to observe a
history {ρ, j} of the system during time [0, T = t/L2] is
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given by

P ({ρ, j}) ∼ exp[−L I[0,T ](ρ, j )],

I[0,T ](ρ, j ) =
∫ 1

0
dx

∫ T

0
dτ

(j + D∂xρ − σE)2

2σ
, (4)

where the continuity equation is implicitly assumed. The
MFT becomes exact for L → ∞. Indeed, trying to extract
microscopic details from a hydrodynamic theory is usually an
ill fated attempt. Notice that any observable obtained through
Eq. (4) will be dominated by the saddle-point since L is large.

It is convenient to define the rescaled LDF �(J ) = LI (J ),
so that � is L independent to leading order. Then, using the
MFT to calculate the LDF of diffusive systems boils down to
solving the minimization problem,

�(J ) = 1

T
min
j,ρ

I[0,T ](ρ, j ), (5)

where {ρ, j} satisfy the continuity Eq. (2) and the macro-
scopic particle transfer Q = L2

∫
dxdτj for a large diffu-

sive time T � 1 [53]. Since we consider nonequilibrium
processes, boundary conditions usually strongly impact the
results. Here, we consider periodic boundary conditions and
boundary driven processes—where the system is coupled to
two particle reservoirs with densities ρl,r , respectively. The
reservoirs’ state is assumed to be unaffected by the interac-
tion with the system. For a periodic system, the integrated
number of particles is conserved. Therefore, one requires
that

∫
dx ρ(x, τ ) is fixed for any τ . Moreover, ρ(x = 0, τ ) =

ρ(x = 1, τ ). For boundary driven processes, ρ(x = {0, 1}, τ )
is fixed to the boundary values ρl,r .

III. DYNAMICAL PHASE TRANSITIONS

Finding a solution to Eq. (5) is hard even for simple
models. It requires solving a partial differential nonlinear
problem with constraints. In Ref. [33], it was conjectured
that the optimal density profile in current fluctuations is
time-independent, which is the so-called additivity principle.
For 1D systems, it implies j (x, τ ) = J, ρ(x, τ ) = ρ(x). The
particle transfer and continuity constraints are relaxed and the
variational principle Eq. (4) is simplified to

�AP(J ) = min
ρ(x)

∫
dx

(J + D∂xρ − σE)2

2σ
. (6)

This is clearly a significant improvement, as the solution
of Eq. (6) requires solving a nonlinear ordinary differential
equation [22,33,54]. See Refs. [22,55,56] for discussions on
the validity of the additivity principle. However, even for a
time-independent density profile, the solution need not be
unique which will usually give rise to a DPT. For periodic
systems, translational symmetry suggests a spatial invariant
density profile so that ρ(x) → ρ, which fixes the solution.
This constant solution can be overtaken by a traveling wave
solution as was shown in Refs. [23,24,57], amounting again
to a DPT.

IV. FINITE-SIZE CORRECTIONS

From now on, we focus only on models with dynamics
that satisfy particle-hole symmetry. This implies that odd

derivatives of D, σ with respect to ρ vanish at ρ = 1/2.
The solution of the LDF to Eq. (6) of periodic boundary
conditions with mean density ρ = 1/2 as well as a bound-
ary driven process with ρl,r = 1/2 clearly bears a special
symmetry. Assuming the additivity principle, the constant
density solution ρ(x) = 1/2 is a solution for any J which
results in �AP(J ) = J 2/2σ . From here on out, D, σ and their
derivatives are always evaluated at ρ = 1/2. Taking small
fluctuations around this solution, namely ρ(x, t ) → 1/2 + δρ

and j (x, t ) → J + δj , allows us to explore the finite-size
corrections and whether the solution is indeed optimal. Note
that δρ, δj have to satisfy the continuity equation and the
integrated current constraint. For a boundary driven case the
fluctuations can be recast using the Fourier representation,

δρ = 1

2

∑
k,ω

k sin(kx)(ak,ωeiωτ + a

k,ωe−iωτ ),

δj = 1

2

∑
k,ω

iω cos(kx)(ak,ωeiωτ − a

k,ωe−iωτ ), (7)

where k = πn and ω = 2π
T

m for n,m ∈ Z. Moreover, a

k,ω =

ak,−ω and a−k,ω = ak,ω. We remark that the k, ω values have
a finite cutoff of the order |k| ∼ L and |ω| ∼ L2 for the
hydrodynamic theory to be valid. Let us keep that in mind,
and set these cutoffs by kmax, ωmax (for periodic boundary
condition a slightly different representation is required, see
Ref. [23]).

To find �� ≡ � − �AP, we rescale ak,ω → ak,ω/
√

L and
obtain a perturbative Landau-like theory as

�� = − 1

T L
log

∏
k�0,ω�0

∫
d2ak,ωe

− ∫
dxdτ

∑
j�2

Sj

L1−j/2 , (8)

with the Gaussian term S2 = ∑
k,ω f (k, ω)|ak,ω|2 such that

f = ω2

2σ
+ D2

2σ
k2(k2 − 2u) with u = ε J 2−E2σ 2

16D2σ
σ ′′ and ε = 4(1)

for boundary driven (periodic) systems. The higher-order
terms Si , explicitly detailed in Appendix D, were considered
here only for the boundary driven case.

Evaluating �� boils down to performing a perturba-
tion theory for Gaussian integrals. Let us define �� =∑

j=1,2,... L
−j�j . We then find

�1 = dDF (u) + cJ 2, (9)

where c is a constant that depends on the cutoffs and cannot be
evaluated from a hydrodynamic theory, d = 1

8 (1) for bound-
ary driven (periodic) systems and F is

F (u) = −4
∑

n=1,2,...

nπ
√

n2π2 − 2u − n2π2 + u, (10)

already recovered in this context [23,54,58] as well as others
[59,60]. For u = u
 = π2/2, F (u) is nonanalytic and its
derivatives diverge. This singularity has been discussed as the
onset of a DPT [23,54,58]. It also implies the break down
of the perturbation theory close to the transition point (see
Appendices B and C), i.e., all the higher-order perturbation
coefficients �j diverge at this point. The singular part of the
1/L correction is universal—independent of microscopic de-
tails and fully captured by the macroscopic D, σ . Therefore,
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it is natural to assume that a singular universal function, just
like in Eq. (1), emerges from the sum of all the singular
corrections. To obtain the scaling exponents α, β, it is suffi-
cient to find the dominant singular behavior of �2, as shown
below.

The 1/L2 correction is cumbersome and littered with
nonuniversal terms, depending on microscopic details (see
Appendix D). Focusing on the leading singular term and
defining δu = u
 − u, we find that

�2 = 15π4(Dσ ′′ − 2σD′′)
16Dδu

+ O

(
1√
δu

)
(11)

as δu → 0. We expect periodic systems to yield a similar
leading term. Let us now evaluate the critical exponents.

V. THE SCALING FUNCTION

We have shown that the finite-size corrections diverge at
the critical point u
. For a continuous phase transition, we
expect (to leading order)

L��(J ) = 1

Lα
φ(δuLβ ) + nonuniversal terms. (12)

Here, φ(r ) is the scaling function and the nonuniversal terms
are of order 1. From Eqs. (9), (10), and (11), we find that
the leading singular term is of the form φ0

√
δu + φ1

Lδu
+

O( 1
L2 ) where φ0,1 are constants. To keep the scaling Eq. (12),

we find that α = β/2 = 1 − β. This leads to the exponents
α = 1/3, β = 2/3.

VI. BETHE ANSATZ FOR THE SSEP

To test whether the critical exponents are indeed univer-
sal, we corroborate our result by analyzing the finite-size
corrections of an integrable microscopic model—the SSEP.
The SSEP is defined by setting E = 0 in the WASEP (see
the caption of Fig. 1 or Appendix A). Macroscopically, it
corresponds to D = 1, σ = 2ρ(1 − ρ). Note that, since u is
always negative in this case, the singularity of F (u) is not
attained for real values of J . Yet it can still teach us about the
formal structure of the universality by investigating the poles
appearing in the perturbation coefficients.

For a technical reason, instead of trying to find the LDF
I (J ), we consider equivalently the cumulant generating func-
tion (CGF) G(s) = ∑

Q e−sQPt (Q). Note that the CGF is a
Legendre-Fenchel transform of the LDF. For diffusive pro-
cesses, it is natural to define the rescaled CGF μ(λ) = LG(s),
where λ = sL, similarly to the rescaled LDF structure �(J ).
For a Markov process, the CGF is the ground state energy
(lowest eigenvalue) of an operator H associated to the Markov
matrix [46] (see Appendix A). This property makes the CGF
appealing from both a numerical and theoretical perspectives
as we shall see in the following.

For the SSEP, the CGF G(s) corresponds to the ground
state energy of a quantum spin chain operator [46],

H = L

2
− 1

2

L∑
i=1

[
cosh s

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + σ z
i σ z

i+1

− i sinh s
(
σx

i σ
y

i+1 + σ
y

i σ x
i+1

)]
. (13)

Its eigensystem can be exactly determined via Bethe ansatz
[44]. In the coordinate formulation of the Bethe ansatz, each
particle is described by a plane-wave with their interactions
embodied in a pairwise factorizable scattering matrix [61].
Considering N particles on a ring of size L, such that mean
density ρ = N/L ∈ (0, 1), the corresponding wave-function
is parametrized by the complex parameters {ξi}Ni=1 which are
quantized according to the so-called Bethe equations,

ξL
i =

N∏
j = 1
j 
= i

[
− es − 2ξi + e−sξiξj

es − 2ξj + e−sξiξj

]
. (14)

The eigenvalues are expressed in terms of the solutions of
these equations through

G(s) = −2N + e−s

N∑
j=1

ξj + es

N∑
j=1

1

ξj

. (15)

Note that the ground state is shifted here by 2N to obtain
G(s). Based on Bethe ansatz, the CGF was already calculated
to order 1/L [23]. Using an alternative method based on the
Baxter equation [60], we compute the 1/L2 corrections and
numerically validate our results.

Generally, solving Eq. (14) analytically is unfeasible for
arbitrary finite N and L but in the thermodynamic limit where
N,L → ∞, they become tractable. The key observation is
that under the change of variables ξi = es (zi + i/2)/(zi −
i/2), the Bethe Eq. (14) becomes(

zi + i/2

zi − i/2

)L

= e−λ

N∏
j = 1
j 
= i

zi − zj + i

zi − zj − i
, i = 1, . . . , N.

(16)

Equations (16) are precisely the Bethe equations for the
twisted XXX1/2 spin-chain with λ playing the role of the
twist [62]. Finite-size corrections to the spectrum of spin
chains of this type are well studied. In particular, a powerful
method based on the so-called Baxter equation was developed
in Ref. [60] and applied for the closely related sl(2) spin
chain. Based on the results of Ref. [60], we determine the
finite-size corrections of the SSEP to order 1/L2. Namely, we
determine μ0, μ1, and μ2, where we have defined μ(λ) =∑∞

i=0 μiL
−i . The expressions μ0, μ1 (see Appendix C) agree

with the previously obtained results [23]. The full expression
of μ2, which is one of our main results, has a long expression
given in the Appendix. These theoretical predictions of μ0,1,2

are confirmed in the appendix by comparing to a population
dynamics algorithm [9,63–70].

The interesting part of the μ2 arises at its strongest sin-
gularity. For illustration we consider the lowest mode in
the Appendix, Eq. (C19), namely k = 1, and we find the
following singular behavior,

μ2 ∼ 2π4(θ2 − 1)

δu θ2
+ O

(
1√
δu

)
, (17)

where we have introduced δu ≡ 1
8θ2λ2 + π2

2 and θ =
2
√

ρ(1 − ρ). Under the continuation to complex values of λ,
we find simple poles at the positions λ = ± 2iπ

θ
. We then get
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the same type of singularity in δu as in the hydrodynamics
analysis, i.e., [μ2 = O(1/δu)]. Combined with the results of
the MFT, we deduce that the 1/L2 correction diverges with
1/δu.

VII. NUMERICAL VERIFICATION

It is numerically hard to single-out the singular universal
function φ from the (unknown) nonuniversal terms. However,
differentiation accentuates the singular term as detailed below.

In terms of CGF μ(λ), the scaling form Eq. (12) is
written as

L[μ(λ) − μAP(λ)] = 1

Lα
φ̃(δuLβ ) + nonuniversal terms,

(18)

where δu = π2/2 − u and

u(λ) = μAP(λ)
σ ′′

8D2
, (19)

μAP(λ) = lim
L→∞

μ(λ). (20)

To derive these expressions, we have used J = −μ′
AP(λ) [71].

This scaling form indicates that the higher order derivatives of
μ(λ) with respect to δu is dominated by the universal function
φ̃. More precisely,

Lα−dβ+1μ(d )(λ)
∣∣
r=δuLβ = φ̃(r ) + O(Lα−dβ+1), (21)

where μ(d ) is the dth derivative of μ with respect to δu and r

is the scaling variable given as r = δuLβ . We thus can see
that sufficiently large derivatives d (more precisely, d = 3
given α = 1/3, β = 2/3) allows us to neglect O(Lα−dβ+1).
Using the method detailed in the next paragraph, we have
numerically probed μ(λ) for the WASEP to search for the
universal scaling function. We present the plot, showing the
left-hand side of Eq. (21) in Fig. 1. One can clearly see that
the function starts to overlap from the third order derivative,
supporting the prediction of the scaling exponents.

To obtain μ(λ) and its derivatives, we numerically diago-
nalize the s-biased operator Ls

C,C ′ , whose explicit expression is
detailed as Eq. (A2) in Appendix A. To obtain the derivatives
of the CGF in a stable manner, we use the following method:
We denote the eigenvalue equation of Ls by

Lsς = G(s)ς, (22)

where ς is the right eigenvector associated with the principal
eigenvalue G(s). To get the first-order derivative, we numeri-
cally solve the following equation:

(Ls )′ς + Lsς ′ = G′(s)ς + G(s)ς ′, (23)

together with the eigenvalue equation. Similarly, to get the
second-order derivatives, we add another equation (Lsς )′′ =
(G(s)ς )′′ to these equations. Higher-order derivatives can be
also calculated in the same strategy. Thanks to this method, we
do not have to rely on the difference method, which increases
the error of the estimation of the higher-order derivatives.

VIII. DISCUSSION

We have probed the LDF (CGF) of the current in diffu-
sive systems using a hydrodynamical theory, a Bethe ansatz
approach and numerical simulations. For dynamics with
particle-hole symmetry, a singular scaling function with uni-
versal exponents is observed. This implies that near the tran-
sition, macroscopic fluctuations dominate and hydrodynamic
theories are sufficient to observe the critical behavior [58,72].
Thus, it is understood that nonequilibrium systems are prone
to universality, where not only microscopic bulk dynamics,
but also boundary condition details may be washed away.

Our observation leads us to conjecture a similar scaling
exponents for current fluctuations in an infinite chain, starting
from a step initial conditions [73–75]. Consider an infinite
1D chain, where at time t = 0 the sites i � 0 have mean
density ρl and the sites i > 0 have mean density ρr with
Bernoulli distribution (no correlations between the sites). For
the SSEP, the CGF was completely determined (see Eq. (2) in
Ref. [74]). One can notice that for ρl,r = 1

2 , the CGF becomes
singular for the unphysical value λ = ±iπ , similarly to the
value obtained for the boundary driven setup. From the similar
structure, it is indeed appealing to conjecture that the universal
structure shown here is carried through also in the infinite
chain setup as well.

While the universality class here involves diffusive pro-
cesses with particle-hole symmetry, it is temping to check
whether the exponents are valid even outside the range of
validity currently considered, e.g., in models of ballistic or
anomalous transport. The nonlinear fluctuating hydrodynam-
ics theory [76] may allow to detect the universality class in
these regimes.

Two more remarks are in order for the scaling function.
Notice that for the SSEP on a ring, with the mean density
ρ = 1/2, the singular terms vanish in Eq. (17) as well as
the subleading diverging terms (see Appendix C). This does
not imply that the singular behavior changes as the density
is changed by an infinitesimal amount. We expect that a
similar scaling will be recovered in the next leading order
expansion. Secondly, as is verified for the SSEP on a ring, the
diverging term is a simple pole in Eq. (17) even without the
particle-hole symmetry in the density. Therefore, the critical
exponents do not change for periodic boundary conditions,
irrespective of the symmetry. It would be interesting to find
whether the scaling exponents remain the same even when
the particle-hole symmetry is broken for boundary driven
processes. To verify that, it is necessary to find continuous
DPTs in boundary driven processes, which are analytically
tractable. Unfortunately, such transitions are not expected
to support a constant density profile that enable the direct
perturbation theory performed here [77].
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APPENDIX A: THE WASEP AND THE S-BIASED MATRIX

For completeness, we detail here the definition of the
WASEP and the SSEP. We also discuss the s-biased ensemble
that allows to recast finding the CGF as a ground state of
an operator. Denoting the configuration of the particles by
C = (ni )Li=1, where ni = 1(0) means the site i is occupied
(empty), the transition rates of the WASEP w(C → C ′) are
given by

w(C → C ′) =
L∑

i=1

[ni (1 − ni+1)eE/L + (1 − ni )ni+1e
−E/L],

(A1)

where we use the periodic boundary conditions n0 = nL and
n1 = nL+1. Note that when E = 0, the model is reduced to the
SSEP.

The CGF of the current G(s) in this model [see the main
text for the definition of G(s)] is the largest eigenvalue of the
following s-biased matrix [51]:

Ls
C ′,C = w(C → C ′)e−sĵ (C→C ′ ) −

∑
C ′′

w(C → C ′′), (A2)

where ĵ (C → C ′) is a microscopic current, which takes 1(0)
when a particle moves to the right (left) direction in the
transition C → C ′.

To bridge to the macroscopic description, as discussed in
the main text, we define λ = sL and μ(λ) = LG(λ/L). Then,
the Legendre-Fenchel transform of μ(λ) corresponds to �(J )
given as Eq. (5) in the main text. Note also that D = 1,
σ = 2ρ(1 − ρ) in WASEP. When the additivity principle is
satisfied, limL→∞ μ(λ) becomes simply a quadratic function

lim
L→∞

μ(λ) = μAP(λ) ≡ −Eσλ + σλ2

2
(A3)

in this case.

APPENDIX B: NONCONVEXITY CLOSE TO
THE TRANSITION

For the WASEP, we show numerical examples of
L(∂/∂u)[μ(λ) − μAP(λ(u))(1 + 1/L)] in Fig. 2, which con-
verges to F ′(u) away from the transition point u∗ = π2/2
[23]. Close to the transition point, although F ′(u) diverges
at u
, there is no sign of the precursor of the corresponding
divergence in numerics up to L = 100 in the figure. This
corroborates that F (u) does not describe the CGF (LDF) close
to the transition u
.

FIG. 2. L(∂/∂u)[μ(λ) − μAP(λ(u))(1 + 1/L)] for the WASEP
close to u
, where μ(λ) is estimated using the cloning algorithm
[63]. Different markers represent different values of L. Away from
the transition point u
, the 1

L
correction F ′ correctly captures the first

derivative of the cumulant generating function, as predicted [23]. As
u → u
, the derivative of F (u) diverges. It is clear that F (u) does
not capture the finite-size corrections near the transition.

Aside from the divergence of the higher-order corrections,
let us argue that F (u) cannot describe the LDF close to
the transition point. It is safe to assume the existence and
the differentiability of μ in the domain around u
 for finite,
but large, system size L. Indeed, this is what we observe
numerically as seen in Fig. 2 for example. From the Gartner-
Ellis theorem (see, e.g., Ref. [7] and references therein), we
find that the corresponding LDF exists and the LDF needs to
be convex function. However, to order 1/L, the LDF becomes
nonconvex for u → u
 for any finite L. This can be seen from
the negative divergence of the second derivative of F close
to the transition point. Therefore, the first order perturbation
Eq. (9) in the main text cannot describe the correct behavior
of the LDF close to the transition.

This violation of the first order perturbation implies that
higher order corrections also need to diverge as a compen-
sation. Resumming all the corrections restores the convexity
below the transition.

APPENDIX C: FINITE-SIZE CORRECTIONS FOR
THE SSEP ON A RING

A powerful method to study finite-size corrections in in-
tegrable spin chain models is based on the so-called Baxter
equation [60],

T (z) = e
λ
2

(
z + i

2

)LQ(z − i)

Q(z)
+ e− λ

2

(
z − i

2

)LQ(z + i)

Q(z)
,

(C1)

where Q(z) = ∏N
j=1(z − zj ) is the Baxter polynomial. T (z)

is the transfer matrix which is a polynomial of degree L whose
explicit form will not be important here but it can be fixed by
self-consistency of the equation. The Bethe Eqs. (16) follow
from Eq. (C1) by requiring that the residues in the right-hand
side at the location of the zeros of Q(z) vanish.

We will now consider the thermodynamic limit of the
Baxter equation as N,L → ∞ with zj ∼ O(L) following
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the method introduced in Ref. [60]. In this limit, it is use-
ful to introduce the rescaled rapidity w as w ≡ z/L and
use the notations ϕ(w) ≡ 1

L

∑N
j=1 log(w − wk ), the poten-

tial V (w) ≡ log(w) and the rescaled transfer matrix t (w) ≡
T (Lw)/[2(Lw)L], where all these functions are now of O(1).
In this notation, the Baxter equation looks like

t (w) = 1

2

[
exp

(
L�+(w) + λ

2

)
+ exp

(
L�−(w) − λ

2

)]
(C2)

with

�±(w) ≡ ϕ

(
w ∓ i

L

)
− ϕ(w) + V

(
w ± i

2L

)
− V (w).

(C3)

In addition, we introduce the quasimomentum p(w), which
will play a major role in the subsequent analysis as

p(w) ≡ ϕ′(w) − V ′(w)

2
+ iλ

2
. (C4)

By definition, the expansion of p′(w) around w = 0 is
given by

p′(w) − 1

2w2

w→0
 − 1

L

N∑
j=1

1

wj

= G. (C5)

The idea is now to expand the Baxter equation in 1/L and
solve it for p(w), order by order in this parameter. The first
few orders look as follows:

t (w) = cos[p(w)]

[
1 − 4p′(w) + 3V ′′(w)

8L

]
+ O(1/L2).

(C6)
We aim at finding the first corrections to p(w) and hence, we
will expand both p(w) and t (w) in powers of 1/L as

p(w) = p0(w) + 1

L
p1(w) + O(1/L2),

t (w) = t0(w) + 1

L
t1(w) + O(1/L2). (C7)

The polynomiality condition on the transfer matrix T (z)
lead us to assume that the coefficients ti contain only one
singularity at w = 0 (by construction) but apart from that they
are analytic everywhere in w.

At each order, we will have a Riemann-Hilbert problem
defining the quasi-momentum whose asymptotic conditions
are imposed directly from its definition Eq. (C4) and the
analytic properties follow from the properties of the functions
involved in Eq. (C2).

1. Leading-order correction

Let us gain some intuition of what happens to the Bethe
roots when we consider the thermodynamic limit at the level
of the Bethe Eq. (C8). Taking the logarithm of these equations
we get that

L log

(
zj + i

2

zj − i
2

)
=

N∑
j=1

log

(
zi − zj + i

zi − zj − i

)
+ 2πi

(
nj+ iλ

2π

)
,

(C8)

where nj is an integer called mode number that parametrizes
the branches of the logarithms and the twist λ corresponds to
a shift of such mode number. As we go to the thermodynamic
limit it is well known that the Bethe roots condense into cuts
in the complex plane whose position depends on the choice of
the mode number nj . The presence of the twist will merely
change the shape of the cuts as well as their positions. To
specify for the ground state, we use the observation made in
Ref. [23] that the distribution of Bethe roots is along a single
contour (often called a one-cut solution) where nj = n for all
j and as we will see we further need to set n to zero.

In terms of the quasimomentum, the thermodynamic limit
of Eq. (C8) reads [60]

p0(z + i0) + p0(z − i0) = 2πnj for z ∈ Cj , (C9)

where Cj denotes the cut in the complex plane formed by the
Bethe roots. Considering the derivative of the quasimomen-
tum p′(z), we see that it satisfies

p′
0(z + i0) = −p′

0(z − i0), (C10)

which means that ±p′
0(z) defines a two-sheeted Riemann

surface with square-root type branch points.
To see this from the point of view of the Eq. (C2), we have

that at leading order

t0(z) = cos[p0(z)], (C11)

which implies that the derivative of the quasimomentum at
this order will be given by

p′
0(z) = t ′0(z)√

1 − t2
0 (z)

. (C12)

Given the analyticity of t0 we see explicitly the square-
root branch points emerging from the denominator of the
expression above. Using the definition of the quasimomentum
Eq. (C4), we can supplement the previous equation with the
asymptotic condition

p′
0(z) ∼ 1

2z2
+ O(1) as z → 0 (C13)

and

p′
0(z) ∼ 1

z2

(
1

2
− ρ

)
as z → ∞, (C14)

with ρ = N/L being the density of particles. This fixes p′
0(z)

to be

p′
0(z) = 2θ1θ2 − z(θ1 + θ2)

4z2
√

θ1θ2
√

(z − θ1)(z − θ2)
, (C15)

where θ1 and θ2 are the branch points where the distribution of
the Bethe roots ends. We can relate them back to the rapidity
variables ξ of the original Bethe equations and replace the
location of the branch points found in Ref. [23], namely, ξ =
e−is(±θ+2iρ) with θ = 2

√
ρ(1 − ρ). Using Eq. (C5), we then

obtain the leading term for the energy to be

μ0 = θ2λ2

4
, (C16)

which matches the result found in Ref. [23].
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2. Subleading corrections

We could proceed in expanding one order further the
Eq. (C2) and solve the corresponding Riemann-Hilbert prob-
lem. Instead, we will use the results already available in
literature derived by this method in Ref. [60] to recover the
already known next-to-leading order correction and make
a new prediction for the next-to-next-to-leading order. The
result of Ref. [60] was derived for a closely related spin chain
model, namely, the (untwisted) sl(2) spin chain, whose Bethe
equations are related to those in Eq. (14) simply by replacing
L → −L. Additionally we have seen that the twist shifts
the mode numbers. The one-cut solution of the leading and
next-to-leading correction to the energy in Refs. [59,60] for
the sl(2) spin chain reads

μ0 = −4π2n2ρ(ρ + 1),

μ1 = −4π2

{ ∞∑
k=1

[k
√

k2 + 4n2ρ(ρ + 1) − k2

− 2n2ρ(ρ + 1)] − n2ρ(ρ + 1)

}
. (C17)

Upon the transforming L → −L (and thus ρ → −ρ) as well
as n → n + iλ

2π
we obtain the complete result of Ref. [23]

when we finally set n = 0 (which corresponds to selecting the
ground state). This encourages us to proceed to the next-to-
next-to-leading order and apply the same heuristic rule to the
result written in Appendix B of Ref. [60] to obtain the model
under study. Let us first define the following auxiliary sums:

S1 =
∞∑
l=1

√
θ2λ2 + 4π2l2

2πl
− 1,

S2 =
∞∑
l=1

(
−θ2λ2

8π2
+ l

2π

√
θ2λ2 + 4π2l2 − l2

)
,

S3(k)=
∞∑
l=1

k
√

θ2λ2 + 4π2k2 − l
√

θ2λ2 + 4π2l2

2πk2 − 2πl2
−1, (C18)

we have that the correction reads

μ2 = λ2

96

{
θ2[(19θ2 − 14)λ2 + 24]

+ 96(4θ2 − 3)
(
S2

1 − S1
)} + 8π2S2

−
∞∑

k=1

{
2(3θ2 − 2)λ2 + θ2(4θ2 − 3)λ4

4π2k2

+ 8π2(k2 + 2S2)

+ (2S3(k) − 1)[θ2(4θ2 − 3)λ4 + 32π4k4]

2πk
√

θ2λ2 + 4π2k2

+ (2S3(k) − 1)[4π2(7θ2 − 4)λ2k2]

2πk
√

θ2λ2 + 4π2k2

}
. (C19)

The sums above mimic the sums over Fourier modes of
the wave fluctuations in the MFT. We verified this result
numerically via the cloning algorithm; see Fig. 3.

FIG. 3. Analytical results of μ0, μ1 Eq. (C17) and μ2 Eq. (C19)
for ρ = 0.4 are shown as yellow dashed lines in (a), (b), and
(c), respectively. We also plot the corresponding numerical results
obtained from the cloning algorithm [63] for several values of L. We
can see the convergence of numerical results to the corresponding
analytical predictions as L → ∞.

APPENDIX D: FINITE-SIZE CORRECTIONS USING
THE MFT FOR BOUNDARY DRIVEN SYSTEM

Let us bring in full details the finite-size corrections to the
LDF �(J ) to order 1/L2.

First, the S3, S4 terms are given by

S3 =
∑
�k, �ω

χ0h0V3, S4 =
∑
�k, �ω

∑
l=1,2,3

χlglV4, (D1)
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where Vm = ∏
j=1,...,m akj ,ωj

δ(
∑

ki )δ(
∑

ωi ) and

χ0 = −Jσ ′′

2σ 2
, χ1 = DD′′

2σ
,

χ2 = J 2(σ ′′)2

8σ 3
+ σ (4)

48
(E2 − J 2/σ 2),

χ3 = − σ ′′

4σ 2
, h0 = −iω3k1k2,

g1 = −k1k2k
2
3k

2
4, g2 = k1k2k3k4,

g3 = k1k2ω3ω4. (D2)

Performing the perturbative expansion to order 1/L2, we
find

�2 = 15σ 2

4D2

(
χ1u + 3

2
χ2

)
(1 −

√
2u cot

√
2u)

× 15σ 2

4D2

(
χ1G1G3 − 2χ1G2

2 + 3χ2G2
1

)
+ 2σ 3

D2
χ2

0G2 + 2χ2
0

π2
[Fa (u) + Fb(u)]

− 15σ 2

2π2
χ3(H1 + H2)

+ (Au + Bu2)

(
1 + C√

(δu)

)
, (D3)

where A, B, and C are nonuniversal terms that depend on the
cutoffs and with the functions

Fa (u) =
∑
k1,k2

∫
dω1dω2

k1k
3
2ω1(ω1 + ω2)2

f (k1, ω1)f (k2, ω2)f (k1+k2, ω1+ω2)
,

Fb(u) =
∑
k1,k2

∫
dω1dω2

k2
1k

2
2 (ω1 + ω2)2

f (k1, ω1)f (k2, ω2)f (k1+k2, ω1+ω2)
,

G1 =
∑

k

k√
k2 − 2u

− 1,

G2 =
∑

k

k2

√
k2 − 2u

− k − u

k
,

G3 =
∑

k

k3

√
k2 − 2u

− k2 − u,

H1 = 8
∑

k

k2 log Dk log(k2 − 2u)

− k2 log Dk log k2 + 2u log Dk,

H2 =
∑

k

k2 log2(k2 − 2u) − 4k2 log2 k + 8u log k. (D4)

One can show that as δu → 0, only the first two lines of
Eq. (D3) contribute to the leading 1/δu divergence.
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