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The functionals of particle paths have diverse applications in physics, mathematics, hydrology, economics, and
other fields. Under the framework of a continuous-time random walk, the equations governing the probability
density functions (PDFs) of the functionals, including those of the paths of stochastic processes of normal
diffusion, anomalous diffusion, and even diffusion with reaction, have been derived. Sometimes the stochastic
processes in physics and chemistry are naturally described by Langevin equations. The Langevin picture has
the advantage of studying the dynamics with an external force field and analyzing the effect of noise resulting
from a fluctuating environment. We derive the equations governing the PDFs of the functionals of paths of the
Langevin system with both space- and time-dependent force fields and arbitrary multiplicative noise, and
the backward version is proposed for a system with arbitrary additive noise or multiplicative Gaussian white
noise together with a force field. For the newly built equations, their applications in solving the PDFs of the
occupation time and area under the trajectory curve are provided, and the results are confirmed by simulations.
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I. INTRODUCTION

Stochastic processes are the basic mathematical tools to
describe natural phenomena. Extracting statistical information
on a stochastic process is one of the most important strategies
in order to satisfy the demands of practical applications or to
understand the microscopic mechanism. A functional, being a
random variable, is an integral of a stochastic process. It has
diverse applications across multiple disciplines, ranging from
probability theory [1], mathematical finance [2], mesoscopic
physics [3], and computer science [4], and it is used to
understand the cooling and heating degree days relevant to
weather derivatives [5]. This paper focuses on deriving the
equations governing the probability density functions (PDFs)
of the functionals of the paths of Langevin dynamics.

The popular microscopic models used to describe stochas-
tic dynamics in the natural world include continuous-time
random walks (CTRWs) and Langevin equations [6]. The
Langevin picture is more convenient to apply if the effect
of an external field and/or noises generated from a fluctu-
ating environment [7] is considered; it builds a relationship
between physically transparent and mathematically tractable
descriptions for complex stochastic dynamics. The dynamical
behaviors of the system depend fundamentally on the specific
form of noise. The most common one is Lévy noise, generat-
ing the Lévy process [8], which is a stochastic process with
stationary and independent increments and zero initial state.
For Lévy noise, the solutions of the Langevin equation belong
to the class of Markov processes [9–12]. As for the equations
governing the PDFs of the displacement and/or velocity of
particles described by the Langevin equation, there have been
some developments. In particular, the Langevin equation with
Gaussian white noise corresponds to the ordinary Fokker-
Planck equation [10–12], and heavy-tailed stable noise cor-

responds to the spatial fractional Fokker-Planck equation
[13–21]. In addition, the temporal fractional Fokker-Planck
equation is obtained by the time-changed Langevin equations
with an inverse α-stable subordinator [22].

There has also been some progress in deriving the equa-
tions governing the PDFs of a functional: A = ∫ t

0 U [x(t ′)]dt ′,
where x(t ) is the path of a stochastic process and U (x) is some
prescribed function. Influenced by Feynman’s thesis about
Schrödinger’s equation, Kac derived the classical Feynman-
Kac equation in 1949 for normal diffusion [1]. In recent years,
Majumdar discussed the applications of Brownian functionals
in [4] by the path-integral method. More and more Feynman-
Kac equations for non-Brownian functionals have been estab-
lished within the framework of CTRWs [23–29]. In particular,
the ones in [27] are for the functionals of the reaction diffusion
process. In some cases, by the method of subordination [15],
a one-to-one correspondence of the Langevin picture and
CTRWs can be achieved. But there are still a lot of cases
in which the Langevin picture is a more natural choice than
CTRWs, e.g., the Langevin equation with multiplicative noise,
being effectively used to describe the motion of HaCaT cells
[30], which are utilized for their high capacity to differentiate
and proliferate in vitro (HaCaT is a spontaneously transformed
aneuploid immortal keratinocyte cell line from adult human
skin, widely used in scientific research). There has not been
a lot of progress made in obtaining the Feynman-Kac equa-
tions governing the PDFs of the functionals of the paths of
Langevin dynamics. Using the Itô formula, Cairoli and Baule
[31,32] provided the derivation of the forward Feynman-Kac
equation from the Langevin system with Gaussian white noise
and arbitrary waiting time distribution. Along these lines,
by adopting some different ideas, this paper presents the
research of deriving the Feynman-Kac equations for more
general Langevin pictures, for example the dynamical system

2470-0045/2018/98(5)/052114(13) 052114-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052114&domain=pdf&date_stamp=2018-11-13
https://doi.org/10.1103/PhysRevE.98.052114


XUDONG WANG, YAO CHEN, AND WEIHUA DENG PHYSICAL REVIEW E 98, 052114 (2018)

with a fluctuating environment described by the overdamped
Langevin equation:

ẋ(t ) = f (x(t ), t ) + g(x(t ), t )ξ (t ), (1)

where x(t ) is the particle coordinate, f (x, t ) is the force field,
ξ (t ) is the noise resulting from a fluctuating environment, and
g(x, t ) is the multiplicative noise term.

This paper extends the ideas in [14], which focus on
a derivation of the generalized Fokker-Planck equation, to
derive the generalized Feynman-Kac equation for the over-
damped Langevin equation driven by an arbitrary Lévy noise
together with a multiplicative noise term, and then we in-
vestigate applications for specific functionals of interest.
To the best of our knowledge, all the existing backward
Feynman-Kac equations are obtained from CTRWs, not a
Langevin system, even with Gaussian white noise together
with a force field. Here we derive the backward Feynman-
Kac equation from the Langevin system with multiplicative
Gaussian white noise or additive arbitrary Lévy noise. This
paper is organized as follows. In Sec. II, we derive the forward
and backward Feynman-Kac equations associated with the
overdamped Langevin equation (1). In Sec. III, we use the
derived equations to study two examples: the occupation time
and the fraction of a particle moving in a box with reflecting
boundary conditions, and the area under the curve of the
particle trajectory. In addition, some numerical simulations
are performed to verify the correctness of the theoretical
results. Finally, summaries are provided in Sec. IV.

II. DERIVATION OF THE EQUATIONS

A. Forward equation

There are two parts in this subsection. We first explicitly
derive the forward Feynman-Kac equation from the Langevin
equation (1), then we introduce a time-changed Langevin
equation with a Lévy subordinator and present its correspond-
ing forward equation, with a detailed derivation given in
Appendix A.

We use the Lévy noise ξ (t ), which is the formal time
derivative of its corresponding Lévy process η(t ). That is to
say, the increment δη(t ) = η(t + τ ) − η(t ) of η(t ) could be
defined as the time integral of ξ (t ), δη(t ) = ∫ t+τ

t
ξ (t ′)dt ′.

Similarly, the increment δx(t ) = x(t + τ ) − x(t ) of the par-
ticle trajectory undergoing the Langevin system (1) during a
time interval τ (τ → 0) satisfies

δx(t ) = f (x(t ), t )τ + g(x(t ), t )δη(t ), (2)

which defines the meaning of Eq. (1) in the Itô interpreta-
tion [12,33]. The particle location x(t ) only depends on the
previous increments of η(t ) and thus it is independent of the
increment δη(t ) since the increments of the Lévy process are
independent between nonoverlapping intervals. Because of
the stationary increment of the Lévy process, we know that
δη(t ) has the same distribution as η(τ ) with the characteristic
function denoted by [8]

〈e−ikη(τ )〉 = eτφ0(k), (3)

where the Lévy exponent φ0(k) characterizes the jump struc-
ture of the Lévy noise ξ (t ). In the subsequent part, for a

specific Lévy noise, it has the specific form that φ0(k) = −k2

for Gaussian white noise and φ0(k) = −|k|β (0 < β < 2) for
non-Gaussian β-stable Lévy noise.

Define the functional A = ∫ t

0 U [x(t ′)]dt ′ and G(x,A, t )
as the joint PDF of position x and functional A at time t .
To obtain the joint PDF G(x,A, t ), we define its Fourier
transform x → k, A → p as

G(k, p, t ) =
∫ ∞

−∞

∫ ∞

−∞
e−ikx−ipAG(x,A, t )dx dA,

and we write it in the usual way,

G(k, p, t ) = 〈e−ikx(t )e−ipA(t )〉. (4)

Throughout this work, we use the convention that the variables
in parentheses indicate in what space we are working. Being
similar to the increment δx(t ) in (2), one has the increment
δA(t ) = A(t + τ ) − A(t ) = U (x(t ))τ during the time inter-
val τ (τ → 0). Then we consider the increment of G(x,A, t )
in Fourier space, δG(k, p, t ) := G(k, p, t + τ ) − G(k, p, t ),
which can be written as

δG(k, p, t ) = 〈e−ikx(t+τ )−ipA(t+τ )〉 − 〈e−ikx(t )−ipA(t )〉. (5)

Substituting the increment δx(t ), δA(t ) into (5) and taking
τ → 0, we obtain

δG(k, p, t ) = 〈e−ikx(t )−ipA(t )(e−ikg(x(t ),t )δη(t ) − 1)〉
− ikτ 〈e−ikx(t )−ipA(t )f (x(t ), t )〉
− ipτ 〈e−ikx(t )−ipA(t )U (x(t ))〉. (6)

Note that the angular brackets in the first term in (6) denote
the average with the joint PDF G(x,A, t ) and the PDF of the
noise increment δη(t ) since δη(t ) is independent of particle
trajectory x(t ). The characteristic function of the noise incre-
ment δη(t ) in (3) gives

lim
τ→0

1

τ
〈(e−ikg(x(t ),t )δη(t ) − 1)〉 = φ0(kg(x(t ), t )). (7)

The second and third terms in (6) are just the Fourier trans-
form of a compound function on G(x,A, t ), i.e.,

ik〈e−ikx(t )−ipA(t )f (x(t ), t )〉

= FxFA

{
∂

∂x
f (x, t )G(x,A, t )

}
, (8)

and

ip〈e−ikx(t )−ipA(t )U (x(t ))〉 = ipFxFA{U (x)G(x,A, t )}. (9)

Basing on (7), (8), and (9), dividing (6) by τ , and taking the
limit τ → 0, we obtain the forward Feynman-Kac equation in
Fourier space:

∂G(k, p, t )

∂t

= Fx{φ0(kg(x, t ))G(x, p, t )}

−Fx

{
∂

∂x
f (x, t )G(x, p, t ) + ipU (x)G(x, p, t )

}
.

(10)

Once the form of φ0(kg(x, t )) is given for a specific noise, the
forward Feynman-Kac equation in x space is obtained.
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If the deterministic time variable in the Langevin equation
(1) is replaced by a positive nondecreasing one-dimensional
Lévy process, called a subordinator [8], then the subordinated
stochastic process could be described by the following cou-
pled Langevin equation:

ẋ(s) = f (x(s), T (s)) + g(x(s), T (s))ξ (s),

Ṫ (s) = θ (s).
(11)

Here we adopt the fully skewed α-stable Lévy noise θ (s) with
0 < α < 1, which is independent of the arbitrary Lévy noise
ξ (s). Then the combined process is defined as y(t ) = x(S(t ))
with the inverse α-stable subordinator S(t ), which is the
first-passage time of the α-stable subordinator {T (s), s � 0}
and is defined [34,35] as S(t ) = infs>0{s : T (s) > t}. Note
that the time-dependent force f and multiplicative noise term
g should depend on the physical time T (s), rather than the
operation time s, due to a physical interpretation [36,37]. De-
note the corresponding functional of process y(t ) as W (t ) =∫ t

0 U (y(t ′))dt ′. Then the forward Feynman-Kac equation of
the joint PDF G(y,W, t ) in Fourier space (y → k,W → p)
is

∂G(k, p, t )

∂t
= Fy

{
φ0(kg(y, t ))D1−α

t G(y, p, t )
}

−Fy

{
∂

∂y
f (y, t )D1−α

t G(y, p, t )

+ ipU (y)G(y, p, t )

}
, (12)

which recovers (10) when α = 1; the detailed derivation is
presented in Appendix A. The symbol D1−α

t is the fractional
substantial derivative operator [38,39] defined as

D1−α
t G(y, p, t ) = 1

�(α)

[
∂

∂t
+ ipU (y)

]

×
∫ t

0

e−(t−t ′ )ipU (y)

(t − t ′)1−α
G(y, p, t ′)dt ′.

B. Special cases

This subsection provides some special cases of the derived
equations in the above subsection:

(i) Generalized Fokker-Planck equation. Let p = 0 in (10).
In this case, G(x, p = 0, t ) = ∫ ∞

0 G(x,A, t )dA reduces to
G(x, t ), the marginal PDF of finding the particle at position
x at time t . Correspondingly, the forward Feynman-Kac equa-
tion (10) reduces to the generalized Fokker-Planck equation
[14], where three kinds of noises (Gaussian white noise,
Poisson white noise, and Lévy stable noise) are considered
for the specific forms of this equation.

(ii) Gaussian white noise. If the noise ξ (t ) is the Gaussian
white noise in (12) for arbitrary f (x, t ) and g(x, t ), we get the
forward Feynman-Kac equation:

∂G(y, p, t )

∂t

=
[
− ∂

∂y
f (y, t ) + ∂2

∂y2
g2(y, t )

]

×D1−α
t G(y, p, t ) − ipU (y)G(y, p, t ). (13)

This equation is consistent with the forward Feynman-Kac
equation with the inverse α-stable subordinator proposed
in [32] by the Langevin-type approach. Especially when
g(x, t ) ≡ 1, one recovers the equation in [24] derived from
CTRWs.

(iii) Non-Gaussian β-stable noise. If the noise ξ (t ) is the
non-Gaussian β-stable noise in (12) for arbitrary f (x, t ) and
g(x, t ), the forward Feynman-Kac equation becomes

∂G(y, p, t )

∂t
=

[
− ∂

∂y
f (y, t ) + ∇β

y |g(y, t )|β
]

× D1−α
t G(y, p, t ) − ipU (y)G(y, p, t ),

(14)

where ∇β
y is the Riesz space fractional derivative operator

with Lévy exponent −|k|β [25,26]; and in y space,

∇β
y h(y) = −−∞D

β
y h(y) + yD

β
∞h(y)

2 cos(βπ/2)
,

where for n − 1 < β < n,

−∞Dβ
y h(y) = 1

�(n − β )

dn

dyn

∫ y

−∞

h(y ′)
(y − y ′)β+1−n

dy ′,

yD
β
∞h(y) = (−1)n

�(n − β )

dn

dyn

∫ ∞

y

h(y ′)
(y ′ − y)β+1−n

dy ′.

This equation extends (13) to the case corresponding to
Lévy stable noise, denoting the heavy-tailed jump length in
CTRWs, which will be further studied by an application in
the next section.

(iv) A positive functional. If the functional A is positive at
any time t , the Fourier transform A → p will be replaced by
the Laplace transform G(x, p, t ) = ∫ ∞

0 e−pAG(x,A, t )dA.
Eventually, the forward Feynman-Kac equation correspond-
ing to (12) is obtained by replacing ip with p.

C. Backward equation

The forward Feynman-Kac equation (12) describes the
joint PDF G(x,A, t ) of position x and functional A. But
sometimes, especially in practical applications [4,24,25], what
we are interested in may be only the distribution of functional
A, which prompts us to develop the backward Feynman-
Kac equation governing Gx0 (A, t )—the PDF of functional
A at time t , given that the process has started at x0. In this
subsection, the stochastic process we consider is

ẋ(t ) = f (x(t )) + g(x(t ))ξ (t ), (15)

where ξ (t ) is also a Lévy noise. Compared with the model
(1), f and g do not explicitly depend on t . This assumption
is necessary and can also be found in [24]. If not, the time-
dependent force field (or the multiplicative term) induces
a different displacement for a particle located at the same
position but different time. In this case, it is difficult to let the
functional A only depend on the initial position x0 without
using the information of the whole path x(t ).

Noting that x0 here is a deterministic variable instead of
a random one, we should explore how functional A depends
on the initial position x0. Different from the increment δA
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considered in the forward Feynman-Kac equation, here we
should build the relation between A and x0 as, during the time
interval τ (τ → 0),

A(t + τ )|x0 =
∫ τ

0
U (x(t ′))dt ′ +

∫ t+τ

τ

U (x(t ′))dt ′

= U (x0)τ + A(t )|x(τ ), (16)

where A(t + τ )|x0 denotes the functional A at time t + τ with
the initial position x0. Letting t = 0 in (2), x(τ ) can be written
as

x(τ ) = x0 + f (x0)τ + g(x0)η(τ ). (17)

Expressing Gx0 (A, t ) in Fourier space,

Gx0 (p, t ) = 〈e−ipA(t )|x0 〉,
we could get the form of Gx0 (p, t + τ ) from (16) as

Gx0 (p, t + τ ) = 〈〈e−ipA(t )|x(τ )〉〉e−ipU (x0 )τ . (18)

Since A(t )|x(τ ) denotes the functional A at time t with the
initial position x(τ ), it is independent of the event before x(τ ),
e.g., η(τ ). So the internal angular brackets in (18) denote the
average of A(t )|x(τ ) while the external ones denote the average
of η(τ ). Then the increment δGx0 (p, t ) can be expressed as

δGx0 (p, t ) : = Gx0 (p, t + τ ) − Gx0 (p, t )

= 〈〈e−ipA(t )|x(τ )〉〉e−ipU (x0 )τ − 〈e−ipA(t )|x0 〉.
Taking τ → 0, omitting the higher-order terms of τ , we get

δGx0 (p, t ) = 〈〈e−ipA(t )|x(τ )〉〉 − 〈e−ipA(t )|x0 〉
− ipU (x0)τ 〈e−ipA(t )|x0 〉, (19)

where the last term is equal to −ipU (x0)τGx0 (p, t ). Next, we
will deal with the first two terms on the right-hand side of
(19) carefully by keeping the terms of O(τ ) but removing the
terms o(τ ).

Taking Fourier transform x0 → k0 in (19), 〈e−ipA(t )|x0 〉 then
becomes Gk0 (p, t ). But for 〈〈e−ipA(t )|x(τ )〉〉, it is not easy to
get the form in Fourier space. Hence, we first take g(x) ≡ 1,
i.e., the noise in this system is additive noise. Then for the
convenience of the reader, we put the detailed derivations
for nonconstant g(x) in Appendix B and directly present the
results for general g(x) here.

Denote Tη = 〈e−ipA(t )|x(τ )〉. Since g(x) ≡ 1, (17) becomes
x(τ ) = x0 + f (x0)τ + η(τ ), where f (x0) depends on the ini-
tial position x0. Therefore, x(τ ) is not a simple shift of x0 and
we write the Fourier transform (x0 → k0) of 〈Tη〉 as

Fx0{〈Tη〉} =
〈∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+η(τ )]dx0

〉
.

Then we turn dx0 into dx(τ ) and get

Fx0{〈Tη〉} =
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+η(τ )]dx(τ )

〉

−
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+η(τ )] df (x0)

dx0
τdx0

〉
.

(20)

Since all x0 and f (x0) are multiplied by τ in (20), replacing
all x0 by x(τ ) in (20) yields higher-order terms of τ , which

can be omitted. Then writing eik0f (x0 )τ 	 1 + ik0f (x0)τ , the
first term on the right-hand side of (20) reduces to

〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0η(τ )dx(τ )

〉

+ ik0τ

〈 ∫ ∞

−∞
e−ik0x(τ )Tηf (x(τ ))dx(τ )

〉
,

where the latter term of the above is equal to

τFx0

{
∂

∂x0
f (x0)Gx0 (p, t )

}
. (21)

The second term on the right-hand side of (20) gives

−τ

〈 ∫ ∞

−∞
e−ik0x(τ )Tη

df (x(τ ))
dx(τ )

dx(τ )

〉

= −τFx0

{
df (x0)

dx0
Gx0 (p, t )

}
.

Therefore, the Fourier transform of 〈〈e−ipA(t )|x(τ )〉〉 −
〈e−ipA(t )|x0 〉 in (19), replacing x(τ ) by y, reduces to

〈 ∫ ∞

−∞
e−ik0yTη(eik0η(τ ) − 1)dy

〉
+ τF

{
f (x0)

∂Gx0 (p, t )

∂x0

}
,

i.e.,

τφ0(−k0)Gk0 (p, t ) + τFx0

{
f (x0)

∂Gx0 (p, t )

∂x0

}

on account of (7). Dividing (19) by τ and taking the limit τ →
0, we obtain the backward Feynman-Kac equation in Fourier
space:

∂Gk0 (p, t )

∂t

= φ0(−k0)Gk0 (p, t ) + Fx0

{
f (x0)

∂Gx0 (p, t )

∂x0

−ipU (x0)Gx0 (p, t )

}
. (22)

If the noise ξ (t ) is Gaussian white noise, then φ0(−k0) =
−k2

0 and we get the backward Feynman-Kac equation:

∂Gx0 (p, t )

∂t
= ∂2

∂x2
0

Gx0 (p, t ) + f (x0)
∂

∂x0
Gx0 (p, t )

− ipU (x0)Gx0 (p, t ), (23)

which is the same as the backward Feynman-Kac equation
proposed in [24] with α = 1 in the CTRW framework. Here,
α is the exponent characterizing the waiting time PDF in
CTRWs or the subordinator PDF in the Langevin system.

If the noise ξ (t ) is non-Gaussian β-stable noise, i.e.,
φ0(−k0) = −|k0|β , then the backward Feynman-Kac equation
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becomes

∂Gx0 (p, t )

∂t
= ∇β

x0
Gx0 (p, t ) + f (x0)

∂

∂x0
Gx0 (p, t )

− ipU (x0)Gx0 (p, t ), (24)

which is an extension for the backward Feynman-Kac equa-
tion derived in the CTRW framework [25], in which jump
length obeys heavy-tailed distribution but without a force field
f (x). In the case that g(x) is not a constant, we assume
ξ (t ) to be Gaussian white noise and derive the backward
Feynman-Kac equation as

∂Gx0 (p, t )

∂t
= g2(x0)

∂2

∂x2
0

Gx0 (p, t ) + f (x0)
∂

∂x0
Gx0 (p, t )

− ipU (x0)Gx0 (p, t ), (25)

which goes back to (23) when g(x0) ≡ 1. See the detailed
derivation in Appendix B.

III. APPLICATIONS

For the stochastic dynamics driven by additive white noise
(or Gaussian jump length in CTRWs), there have been many
applications for their corresponding Feynman-Kac equations
[24,25]. Here we provide the applications for Feynman-Kac
equations of more general stochastic processes discussed
above. More concretely, two applications of the generalized
Feynman-Kac equations are given, including the occupation
time in the positive half-space of a particle moving in a
box with multiplicative Gaussian white noise and the area
under the curve of trajectory of the stochastic process with
a harmonic potential driven by additive Lévy noise.

A. Occupation time in the positive half of a box

The distribution of the occupation time of Brownian mo-
tion was first computed by Lévy with probabilistic methods
[40]. Later, Kac derived it using the Feynman-Kac formal-
ism [1]. More recently, Majumdar derived it based on the
backward Fokker-Planck approach [4], and Carmi and Barkai
derived it for the non-Brownian case from the Feynman-Kac
equation [24]. Here, we extend it to the case with multiplica-
tive Gaussian white noise. We first discuss the occupation time
in x > 0 for a particle moving freely but with a multiplicative
Gaussian white noise in a box [−L,L], L > 0, and then we
give its direct application—the first-passage time. As a special
occupation time, the first-passage time has also attracted a
lot of attentions, particularly in relation to persistence. Persis-
tence and the first-passage time for a Lévy flight and fractional
Brownian motion have been discussed in [41]; one can refer
to the review [42] for more properties of first-passage time in
nonequilibrium systems.

1. Distribution of occupation time

We take U (x0) in (25) to be �(x0) [�(x) = 1 for x � 0
and �(x) = 0 otherwise], and then get the occupation time of

a particle in the positive half-space as T+(t ) = ∫ t

0 �[x(t ′)]dt ′.
In this case, T+(t ) is always positive. We replace the Fourier
transform by the Laplace transform in (25) and remove
i in it. To find the distribution of T+(t ), we take the
Laplace transform of the backward Feynman-Kac equation
(25) (t → s):

sGx0 (p, s)−1= g2(x0)
∂2

∂x2
0

Gx0 (p, s)+f (x0)
∂

∂x0
Gx0 (p, s)

−pU (x0)Gx0 (p, s). (26)

To consider the effect of multiplicative noise, we specify
f (x0) = 0 and g(x0) = aL − x0 with a > 1 to keep g(x0)
positive. The constant aL in g(x0) measures the intensity
of the additive component of the random force. Systems de-
scribed by Langevin equations involving both multiplicative
and additive components of the random force are common
in nature [43]. Examples include polymers in turbulent flow
[44,45], motion of a passive scalar in a random velocity field
[46,47], and noise in dye lasers [48,49]. The linear term g(x0)
is also discussed in [30]. Based on these potentially physical
applications and its relatively simple form, we take g(x0) =
aL − x0 to analytically obtain the solution of the backward
Feynman-Kac equation (26).

To further examine the effect of a different sign of multi-
plicative noise, g(x0) = aL + x0 is also discussed. Interest-
ingly, the theoretical results are quite close, just replacing
a + 1 by a − 1 in (32) and (34). The simulation results for
the cases g(x0) = aL ± x0 are shown together in Figs. 1
and 2.
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t /2

FIG. 1. Mean value of the occupation time T+ in positive half-
space for a particle moving in the box [−1, 1]. Here g1 represents
the case g(x ) = aL − x and g2 the case g(x ) = aL + x. The other
parameters are a1 = 1.1 and a2 = 2. Four kinds of different cases
(g1 − a1 denoted with stars; g1 − a2 denoted with triangles; g2 − a2

denoted with inverted triangles; g2 − a1 denoted with circles) are
simulated with 1000 trajectories and the total time T = 500.
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FIG. 2. PDF of the occupation fraction Tf in positive half-space
for a particle moving in the box [−1, 1]. Here the PDFs of Tf for
long times (T = 500) and short times (T = 0.01) are shown together,
recorded as “LT” and “ST,” respectively. 1000 trajectories are used.
In this figure, g1 and g2 represent the cases g(x ) = aL − x and
g(x ) = aL + x, respectively. The solid line denotes G(Tf ) in long
times with a = 20 as well as g = aL ± x (the lines coincide for the
cases g = g1 and g = g2). The other lines represent the case a = 2,
but g or times are different.

For the case of g(x0) = aL − x0, (26) becomes

(aL − x0)2 ∂2Gx0 (p, s)

∂x2
0

− [s + pU (x0)]Gx0 (p, s) = −1.

With a variable substitution y = aL − x0 > 0, the celebrated
Euler equation is obtained:

y2 ∂2G̃y (p, s)

∂y2
− [s + pŨ (y)]G̃y (p, s) = −1.

It can be solved by a new variable substitution y = et . Finally,
we get the solutions of (26) in two half-spaces, respectively,

Gx0 (p, s)

=
{

C1(aL − x0)λ1 + C2(aL − x0)λ2 + 1
s+p

, x0 > 0,

C3(aL − x0)λ3 + C4(aL − x0)λ4 + 1
s
, x0 < 0,

(27)

where

λ1,2 = 1 ∓ √
1 + 4(s + p)

2
, λ3,4 = 1 ∓ √

1 + 4s

2
. (28)

Specify the reflecting boundary condition to (27), i.e.,

∂Gx0 (p, s)

∂x0

∣∣∣∣
x0=±L

= 0. (29)

The two conditions in (29) together with another two condi-
tions [Gx0 (p, s) and its derivative are continuous at x0 = 0]
can solve the four coefficients C1−4 in (27). Then we get the
final solution Gx0 (p, s) at x0 = 0:

G0(p, s) = p

s(p + s)

F1F2

F3F4 − F1F2
+ 1

s
, (30)

where

F1 = aλ4 − λ4

λ3
(a + 1)λ4−λ3aλ3 ,

F2 = λ2[aλ2 − (a − 1)λ2−λ1aλ1 ],

F3 = λ4[aλ4 − (a + 1)λ4−λ3aλ3 ],

F4 = aλ2 − λ2

λ1
(a − 1)λ2−λ1aλ1 .

Equation (30) is the PDF of T+ in Laplace space, but it
cannot be inverted easily. Nevertheless, the first moment of the
occupation time T+(t ) can be computed by taking the inverse
Laplace transform [50] of

〈T+(s)〉 = − ∂G0(p, s)

∂p

∣∣∣∣
p=0

.

Using this formula, from (30) one can get

〈T+(s)〉 = − 1

s2

F1F2

F3F4 − F1F2

∣∣∣∣
p=0

. (31)

For long times, i.e., s � 1 (λ1 = λ3 ∼ −s, λ2 = λ4 ∼ 1),

〈T+(t )〉 	 a + 1

2a
t. (32)

For short times, i.e., s � 1 (λ1 = λ3 ∼ −√
s, λ2 =

λ4 ∼ √
s ),

〈T+(t )〉 	 1
2 t. (33)

It can be seen that for both long times and short times,
〈T+(t )〉 scales asymptotically as t , which is also verified in
Fig. 1. Four curves begin as t/2 and finally turn to a+1

2a
t for

the case g(x) = aL − x or a−1
2a

t for the case g(x) = aL + x.
Therefore, it is natural to consider the PDF of the occupation
fraction Tf ≡ T+/t .

For long times, i.e., s � 1, together with p � 1 due to
the scale of T+(t ), we have λ1 ∼ −(s + p), λ2 ∼ 1, λ3 ∼
−s, λ4 ∼ 1 from (28) and F1 ∼ (a + 1)/s, F2 ∼ 1, F3 ∼ −1,
F4 ∼ (a − 1)/(s + p), which give the asymptotic expression
of (30):

G0(p, s) 	 2a

2as + (a + 1)p
.

By inverting the scaling form of a double Laplace transform
in [51], after some calculations, using the nascent δ function:

lim
ε→0

ε

π (x2 + ε2)
= δ(x),

we obtain the PDF of Tf :

G(Tf ) 	 r

Tf

δ(Tf − r )
d= δ(Tf − r ), (34)

where r = a+1
2a

and
d= denotes identical distribution. Note

that the PDF of Tf in (34) is normalized. Especially, Tf

reduces to a deterministic event for large t , occurring at r

with probability 1. But the value r depends on a. When a is
sufficiently large, this value will approach 1

2 (see the curve for
a = 20, which has a peak at 1

2 in Fig. 2). This phenomenon
has an intuitive explanation that in this case the multiplicative
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noise term approximates an additive noise term aL and thus
it is consistent with the case of α = 1 in [24]. On the other
hand, when a is small and close to 1, the value r is near 1,
which means that the particle stays in a positive half-plane
all the time. This phenomenon results from the multiplicative
noise term. We simulate G(Tf ) with a = 2 and it has a peak
at a+1

2a
for g(x) = aL − x (see g1 − LT in Fig. 2) and a peak

at a−1
2a

for g(x) = aL + x (see g2 − LT in Fig. 2).
For short times, i.e., s � 1, we have λ1 ∼ −√

s + p, λ2 ∼√
s + p, λ3 ∼ −√

s, λ4 ∼ √
s from (28) and F1 ∼ (a +

1)2
√

sa−√
s , F2 ∼ √

s + pa
√

s+p, F3 ∼ −√
s(a + 1)2

√
sa−√

s ,
F4 ∼ a

√
s+p, which result in the asymptotic expression

of (30):

G0(p, s) 	 − p

s(p + s)

√
s + p√

s + √
s + p

+ 1

s
.

Then we obtain the PDF of Tf :

G(Tf ) 	 1

π

1√
x
√

1 − x
, (35)

which coincides exactly with the first Lévy arcsine law as the
classical Brownian functional [4] (generalized arcsine laws
for fractional Brownian motion have been discussed in [52]).
This result is as expected since for short times the particle
does not interact with the boundaries and behaves like a free
particle. Furthermore, if the time t is sufficiently small, such
that x � aL, then the multiplicative noise term approximates
an additive noise term aL, so the PDFs of occupation fractions
Tf in cases g(x) = aL ± x all become the Lamperti PDF
and present a symmetric curve with two peaks at Tf = 0
and Tf = 1 (see g2 − ST and g1 − ST in Fig. 2). Though
x � aL, there is still a slight difference between two kinds
of multiplicative noises g(x) = aL ± x. Therefore, the two
curves in Fig. 2 look a little skewed to one side (0 or 1).

For both long times and short times, from another per-
spective, the particle driven by the multiplicative noise term
g(x) = aL − x is more likely to move to the positive half-
space since the distribution of Tf has a larger proportion
on the right side of 0.5 in Fig. 2. On the contrary, for
g(x) = aL + x, the distribution of Tf concentrates on the
left side of 0.5. This phenomenon can be explained by the
corresponding Fokker-Plank equation of (13). Taking α =
1, p = 0, f (x, t ) = 0 in (13) and using the notation g′(x) =
dg(x)/dx, one obtains

∂G(x, t )

∂t
= ∂2

∂x2
g2(x)G(x, t )

= g2(x)
∂2G(x, t )

∂x2
+ 4g(x)g′(x)

∂G(x, t )

∂x

+ 2(g′(x)2 + g(x)g′′(x))G(x, t ), (36)

where the coefficient E := 4g(x)g′(x) in front of the first-
order derivative of G(x, t ) is called noise-induced drift [7].
The cases of g(x) = aL − x and g(x) = aL + x lead to E =
4(x − aL) < 0 and E = 4(x + aL) > 0, respectively, which
means that the multiplicative noise term g(x) = aL − x in-
duces a positive drift while g(x) = aL + x induces a negative
drift. Furthermore, as the time goes on, the curve of the
distribution of occupation fraction Tf in Fig. 2 changes from

concave upwards to convex upwards, which is similar to the
case of Brownian motion. The reason is that by a variable sub-
stitution, the Langevin equation for x(t ) with multiplicative
noise can be turned into another Langevin equation for a new
process y(t ) with an additive noise [i.e., y(t ) is the Brownian
motion with a drift]; see [53,54] for more details.

2. Distribution of first-passage time

The application of occupation time in the previous part is a
good beginning to consider a problem of the first-passage time
tf . Still assume a particle moves freely in the box [−L,L],
with tf denoting the time it takes a particle starting at x0 =
−bL, 0 < b < 1 to reach x = 0 for the first time [55]. The
distribution of tf can be obtained from the occupation time
functional by using an identity due to Kac [56]:

P(tf > t ) = P

(
max

0�τ�t
x(τ ) < 0

)
= lim

p→∞Gx0 (p, t ),

where Gx0 (p, t ) is the Laplace transform of the PDF of
functional T+ in the previous subsection. If the particle has
crossed x = 0 at time t , we have T+ > 0 and e−pT+ = 0 for
p → ∞. Then the two sides of the last equation are equal to
0. Otherwise T+ = 0 and e−pT+ = 1 lead two sides equal to 1.
So now, taking x0 = −bL in (27) in the previous subsection,
we get

G−bL(p, s) = p

s(p + s)

F1bF2

F3F4 − F1F2
+ 1

s
, (37)

where F1−4 are the same as the ones in (30) and

F1b = (a + b)λ4 − λ4

λ3
(a + 1)λ4−λ3 (a + b)λ3 .

When p → ∞, we consider the long-time behavior (i.e., s →
0) and have λ1 ∼ −√

p, λ2 ∼ √
p, λ3 ∼ −s, λ4 ∼ 1. Substi-

tuting λ1−4 into (37) yields

lim
p→∞G−bL(p, s) 	 ln

(
1 + b

a

)
− b

1 + a
=: Cab,

which is a constant only depending on a and b. Considering
the first-passage time PDF satisfying f (t ) = ∂

∂t
[1 − P(tf >

t )], we have the PDF of tf in Laplace s space,

f (s) 	 1 − Cabs 	 e−Cabs,

and thus

f (tf ) 	 δ(tf − Cab ).

This means that the first-passage time is a deterministic event,
occurring at Cab with probability 1; see the distribution of
first-passage time tf in Fig. 3. Furthermore, for 0 < b < 1 <

a, Cab is monotonously increasing with the increase of b but
decreasing with the increase of a, being the same as physical
intuition.

B. Area under the random-walk curve

Now we turn to another application of the Langevin system
containing a force field and non-Gaussian β-stable noise. In
this case, we take U (x) = x and get the functional Ax =∫ t

0 x(t ′)dt ′, denoting the total area under the curve of trajec-
tory x(t ) [57,58]. This functional Ax is also related to the
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FIG. 3. PDF of the first passage time of a particle in the box
[−1, 1] starting at −b and reaching x = 0 for the first time. We
simulate it with 1000 trajectories and the total time T = 10. The
parameters are b = 1/2, a = 2, and then Cab = 0.0565, which is
consistent with the curve that has a peak near 0.0565 in the figure.

phase accumulated by spins in an NMR experiment [58]. If
we further assume that the particle starts and ends at the origin
x(0) = x(t ) = 0 but stays positive in between, this motion
is called excursion [4]. The question about the area under
Brownian excursion has been studied quite extensively by
mathematicians [59–64]. Recently, the applications of Brown-
ian excursion were further studied [65,66] and even extended
to the Bessel excursion for anomalous diffusion [67].

Since the analytical solutions of Gx0 (p, t ) in (24) cannot
be easily obtained due to the Riesz space fractional derivative
operator ∇β

x , we resort to the forward Feynman-Kac equation
(14) by integrating the solution G(x, p, t ) over x with initial
position x0 to get the marginal PDF of Gx0 (p, t ).

In the case of a harmonic potential, where V (x, t ) =
bx2/2 (b > 0) [f (x, t ) = −∂V (x, t )/∂x = −bx] and
g(x, t ) ≡ 1, U (x) = x, α = 1, the forward Feynman-Kac
equation (10) takes the form

∂G(k, p, t )

∂t
+ (bk − p)

∂

∂k
G(k, p, t ) = φ0(k)G(k, p, t ).

Its general solution is given by the following [68]:

G(k, p, t ) = exp

[∫ k

0

φ0(z)

bz − p
dz + c1

]

×�

[
1

b
ln |bk − p| − t + c2

]
, (38)

where c1, c2 are constants and �(x) is an arbitrary function.
Using the initial condition G(k, p, 0) = 1 (the particle starts
at x0 = 0), we get

�

[
1

b
ln |bk − p| + c2

]
= exp

[
−

∫ k

0

φ0(z)

bz − p
dz − c1

]
.

(39)

Then replacing k by l(k) := bk−p

bebt + p

b
, (39) becomes

�

[
1

b
ln |bk − p| − t + c2

]
= exp

[
−

∫ l(k)

0

φ0(z)

bz − p
dz − c1

]
.

Substituting this result into (38) gives

G(k, p, t ) = exp

[∫ k

l(k)

φ0(z)

bz − p
dz

]
.

Letting k = 0, we get the PDF of functional Ax in Fourier
space (Ax → p):

G(p, t ) := G(k, p, t )|k=0 = exp

[∫ 0

p

b
(1−e−bt )

φ0(z)

bz − p
dz

]
.

(40)
Now we discuss the specific dynamical behavior of the

functional Ax with Lévy β-stable noise [φ0(k) = −|k|β].
Considering a variable substitution z = p

b
(1 − e−bt )y, (40)

can be represented in the form

ln G(p, t ) = −Cb(t )

(
1 − e−bt

b

)β+1

|p|β, (41)

where Cb(t ) is independent of p [69]:

Cb(t ) =
∫ 1

0

yβ

1 − (1 − e−bt )y
dy

= B(β + 1, 1) 2F1(1, β + 1; β + 2; 1 − e−bt ).

It can be seen from (41) that the functional Ax also obeys Lévy
β-stable distribution. Next what we need to pay attention to is
the coefficient in front of |p|β in (41).

For long times t → ∞, we find that

Cb(t ) =
∫ 1

0

yβ

1 − (1 − e−bt )y
dy 	 bt,

since this integral scales as bt in two extreme cases (β = 0
and β = 2). Substituting it into (41) makes

G(p, t ) 	 exp(−b−βt |p|β ) as t → ∞. (42)

For short times t → 0, 2F1(1, β + 1; β + 2; 1 − e−bt ) ∼ 1,
and thus

G(p, t ) 	 exp

(
− tβ+1

β + 1
|p|β

)
as t → 0. (43)

For the special case β = 2, i.e., Gaussian white noise, by
the formula 〈

A2
x

〉 = ∂2

∂p2
G(p, t )

∣∣∣∣
p=0

,

we get 〈
A2

x

〉 	 2b−2t as t → ∞ (44)

and 〈
A2

x

〉 	 2
3 t3 as t → 0, (45)

which are verified by numerical simulations. In Fig. 4, the
functional Ax exhibits a crossover between different scaling
regimes (from t3 to t). When the particle begins its movement
from the origin, i.e., x � 1, the effect of force (f = −bx) can
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FIG. 4. Second moment 〈A2
x〉 of the area under the trajectory

curve with β = 2 and b = 2, generated with 1000 trajectories and
the total time T = 100. The circles denote the simulation results.
The dotted line denotes the theoretical result 〈A2

x〉 	 2
3 t3 for short

time while the solid line represents 〈A2
x〉 	 2

b2 t for long time. This
figure shows a crossover of scaling regimes from t3 to t .

be omitted. As time goes on, this effect is getting bigger and
bigger, and eventually it produces the multiscale phenomenon.
On the contrary, for the case without the force field f , i.e.,
b = 0, it is equivalent to b → 0 for any t from (41). Then only
the single-scale phenomenon 〈A2

x〉 	 2
3 t3 can be observed,

which is consistent with [25] by taking α = 1 there.
As for the general case 0 < β < 2, the mean-squared dis-

placement of Ax diverges [70]: 〈A2
x〉 → ∞. But for a parti-

cle with nondiverging mass, a finite velocity of propagation
exists, making long instantaneous jumps impossible. Their
fractional moments can be written as

〈|Ax |δ〉 ∝ t̃ δ/β, (46)

where 0 < δ < β < 2. From (42) and (43), one can get that in
(46) t̃ should be tβ+1 for short times and t for long times. So
we rescale the fractional moments and get the pseudo second
moment [A2

x] ∝ t̃2/β . An alternative method is to consider the
(Ax − t ) scaling relations, or to measure the width of the PDF
G(Ax, t ) rather than its variance [70]. More precisely, enclose
the particle in an imaginary growing box [19] and define

〈
A2

x

〉
L

:=
∫ L2t

1/β

L1t1/β

A2
xG(Ax, t )dAx 	 t̃2/β,

where L1 and L2 are chosen to adapt the scaling regimes
in (42) and (43), i.e., for long time −L1 = L2 = √

2b−β

while for short time −L1 = L2 = √
2/(1 + β ). This has been

implemented numerically and can be seen in Fig. 5. We take
β to be 1.4 or 0.7 and b = 2. The markers denote simulation
results while the solid lines are the theoretical ones,〈

A2
x

〉 	 2b−βt2/β as t → ∞,

and 〈
A2

x

〉 	 2

β + 1
t2(β+1)/β as t → 0,

which go back to (44) and (45), respectively, when β = 2.
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FIG. 5. Pseudo second moment 〈A2
x〉L by a cutoff approach,

generated with 1000 trajectories and the total time T = 100 with β =
1.4, 0.7, and b = 2. The circles and squares denote the simulation
results of β = 1.4 and 0.7, respectively. The solid lines are the
theoretical results with slope 2(β + 1)/β for short time and 2/β for
long time. It shows that for different Lévy β-stable noise (0 < β <

2), there is a crossover of scaling regimes from t2(β+1)/β to t2/β .

IV. SUMMARY AND DISCUSSION

The Feynman-Kac equations have striking advantages in
characterizing the PDFs of various general statistical quanti-
ties. Under the CTRW framework, there have been systematic
derivations of the equations. But the CTRWs cannot well
describe the multiplicative noise and the arbitrary additive
noise together with a force field, being more conveniently
modeled by the Langevin system.

The contributions of this paper are twofold: deriving
the forward Feynman-Kac equation from the overdamped
Langevin equation driven by an arbitrary Lévy noise together
with a time-dependent multiplicative noise term and an ar-
bitrary time-dependent external force field, and deriving the
backward Feynman-Kac equation with an arbitrary additive
Lévy noise or a multiplicative Gaussian white noise, together
with an arbitrary force field. For some special noises and force
fields, the obtained equations are consistent with the existing
works. Two applications of the derived equations to solve
PDFs of the occupation time T+ and the total area Ax under
the curve of the particle trajectory are carefully provided. In
the first application, we take a multiplicative Gaussian white
noise and restrict the particle in a box [−L,L] with reflecting
boundary conditions. Then we find the phenomenon that for
long times the PDF of the occupation fraction is a δ-function,
which is similar to the case of Brownian motion [3,71]. In
the second application, we take an additive Lévy β-stable
noise and find that the functional Ax also obeys Lévy stable
distribution but experiences a crossover between different
scaling regimes. Using the techniques of a subordinator in
deriving Feynman-Kac equations presented in [32], we also
derive the forward Feynman-Kac equations from the coupled
Langevin equation with an α-stable subordinator and arbitrary
Lévy noise based on the Langevin framework.
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In view of the complexity of deriving these equations, it is
quite important to verify the correctness of the equations. So
we choose the specific multiplicative term g(x) = aL ± x in
the first application and the harmonic potential in the second
application. In these cases, the analytic solutions can be ob-
tained, and many simulations are presented to implicitly show
the correctness of the forward and backward Feynman-Kac
equations while providing the applications of the equations.
In turn, based on the correctness of the models, the cases
with more general multiplicative noises or potentials can be
investigated; without analytic solutions, some results can also
be obtained through simulations or numerical approximations,
which will be considered in our future works and will not be
presented here due to space limitations.
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APPENDIX A: FORWARD FEYNMAN-KAC EQUATION
WITH A SUBORDINATOR

Since the forward Feynman-Kac equation in the case of
Gaussian white noise ξ (s) has been derived in [32], we can
make the best of some techniques of the subordinator in
that paper and extend its result to arbitrary Lévy noise ξ (s)
in the Langevin framework. Some of the calculations about
the subordinator may be omitted for simplicity; see [32] for
details.

Since y(t ) = x(S(t )), we can build the Langevin equation
of y(t ) from model (11) as

ẏ(t ) = f (y(t ), t )Ṡ(t ) + g(y(t ), t )ξ (S(t ))Ṡ(t ).

Being similar to (2), with the Itô interpretation, the increment
of y(t ) reads

δy(t ) = f (y(t ), t )δS(t ) + g(y(t ), t )δη(S(t )), (A1)

where δS(t ) = S(t + τ ) − S(t ) and δη(S(t )) = η(S(t +
τ )) − η(S(t )). Next, similar to (6), we obtain the increment
of G(y,W, t ) in Fourier space (y → k,W → p):

δG(k, p, t ) = 〈e−iky(t )−ipW (t )(e−ikg(y(t ),t )δη(S(t )) − 1)〉
− ik〈e−iky(t )−ipW (t )f (y(t ), t )δS(t )〉
− ipτ 〈e−iky(t )−ipW (t )U (y(t ))〉, (A2)

where the first term on the right-hand side can be reduced to

〈e−iky(t )−ipW (t )φ0(kg(y(t ), t )) δS(t )〉
as usual due to the characteristic function of δη(t ) in (3). So
dividing (A2) by τ and taking the limit τ → 0, we obtain

∂

∂t
G(k, p, t ) = 〈e−iky(t )−ipW (t )φ0(kg(y(t ), t ))Ṡ(t )〉

− ik〈e−iky(t )−ipW (t )f (y(t ), t )Ṡ(t )〉
− ip〈e−iky(t )−ipW (t )U (y(t ))〉

= : Q1 + Q2 + Q3. (A3)

It is obvious that the inverse Fourier transform (k → y) of
Q3 is −ipU (y)G(y, p, t ). But for Q1 and Q2, they look a
little bit difficult due to the new term Ṡ(t ) compared with (6).
Note that the angular brackets in Q1 denote the average of two
kinds of independent stochastic processes with the joint PDF
G(y(t ),W (t ), t ) and Lévy α-stable noise θ (t ) on which S(t )
depends. To deal with the term Q1, we first add a technical
delta function δ(y − y(t )) in it and get

Q1 =
∫ ∞

−∞
e−ikyφ0(kg(y, t ))〈e−ipW (t )δ(y − y(t ))Ṡ(t )〉dy.

Then applying the technique in [32] of rewriting the functional
W (t ) as a subordinated process,

W (t ) = V (S(t )), V (s) =
∫ s

0
U (x(s ′))θ (s ′)ds ′.

Substituting y(t ) = x(S(t )) and W (t ) = V (S(t )) into Q1

gives the middle term of Q1 as

〈e−ipV (S(t ))δ(y − x(S(t )))Ṡ(t )〉

=
∫ ∞

0
〈e−ipV (s)δ(y − x(s))δ(t − T (s))〉ds. (A4)

Taking the Laplace transform (t → u) of (A4), we obtain

Q1(u) =
∫ ∞

−∞
e−ikyφ0(kg(y, t ))

×
∫ ∞

0
〈e−ipV (s)−uT (s)δ(y − x(s))〉ds dy. (A5)

On the other hand, G(y, p, t ) can be rewritten as

G(y, p, t ) = 〈e−ipV (S(t ))δ(y − x(S(t )))〉

=
∫ ∞

0
〈e−ipV (s)δ(s − S(t ))δ(y − x(s))〉ds.

So its Laplace transform (t → u) is

G(y, p, u) =
∫ ∞

0
〈e−ipV (s)−uT (s)θ (s)δ(y − x(s))〉ds. (A6)

The characteristic function of the Lévy process T (s) in (11) is

〈e−uT (s)〉 = e−suα

,

which yields an important equality in [32] from (A6):

G(y, p, u) = [u + ipU (y)]α−1

×
∫ ∞

0
〈e−ipV (s)−uT (s)δ(y − x(s))〉ds. (A7)

Comparing (A5) with (A7), we find that

Q1(u) =
∫ ∞

−∞
e−ikyφ0(kg(y, t ))

× [u + ipU (y)]1−αG(y, p, u)dy.

Taking the inverse Laplace transform (u → t), we obtain

Q1 =
∫ ∞

−∞
e−ikyφ0(kg(y, t ))D1−α

t G(y, p, t )dy. (A8)
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As for Q2, it can be obtained by the procedure similar to Q1, i.e.,

Q2 = −ik

∫ ∞

−∞
e−ikyf (y, t )D1−α

t G(y, p, t )dy. (A9)

Finally, substituting (A8) and (A9) into (A3), we obtain the forward Feynman-Kac equation in Fourier space:

∂G(k, p, t )

∂t
= Fy

{
φ0(kg(y, t ))D1−α

t G(y, p, t )
} − Fy

{
∂

∂y
f (y, t )D1−α

t G(y, p, t ) + ipU (y)G(y, p, t )

}
.

APPENDIX B: BACKWARD FEYNMAN-KAC EQUATION WITH MULTIPLICATIVE NOISE

If g(x) is not a constant in (15), then the Fourier transform of 〈Tη〉 becomes

Fy{〈Tη〉} =
〈∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+g(x0 )η(τ )]dx0

〉
.

We turn dx0 into dx(τ ) and get

Fx0{〈Tη〉} =
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+g(x0 )η(τ )]dx(τ )

〉
−

〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+g(x0 )η(τ )] df (x0)

dx0
τ dx0

〉

−
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0[f (x0 )τ+g(x0 )η(τ )] dg(x0)

dx0
η(τ )dx0

〉
. (B1)

Letting τ → 0, the second term of Fx0{〈Tη〉} is the same as (21), i.e.,

−τFx0

{
∂f (x0)

∂x0
Gx0 (p, t )

}
. (B2)

Though η(τ ) → 0 as τ → 0, how fast it tends to 0 is not specific, which brings about the challenge of dealing with the first and
third terms in (B1). To make this point clear, we should define

Mn(k, τ ) = 〈e−ikη(τ )ηn(τ )〉.
When n = 0, M0 is the characteristic function of η(τ ), given in (3). When n � 1, Mn → 0 as τ → 0. For the case of Gaussian
white noise: M0 = e−τk2

, by some calculations we have, as τ → 0,

M1 ∼ −2ikτ, M2 ∼ 2τ,

Mn ∼ τ 2 ∼ 0, ∀ n � 3;
(B3)

since Mn (n � 3) are all higher-order terms of τ . But for Lévy β-stable noise, M0 = e−τ |k|β and all Mn (n � 1) contain the
first-order term of τ . Here we focus on the case that η(τ ) is Gaussian white noise, and we use the property (B3) to deal with the
first and third terms in (B1).

Denoting the first term as T1 for convenience and using eik0f (x0 )τ 	 1 + ik0f (x0)τ as before, we get

T1 =
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0g(x0 )η(τ )dx(τ )

〉
+ ik0τ

〈 ∫ ∞

−∞
e−ik0x(τ )Tηf (x(τ ))dx(τ )

〉
, (B4)

where the latter term is equal to

τFx0

{
∂

∂x0
f (x0)Gx0 (p, t )

}
.

Turn g(x0) into g(x(τ )) in (B4) by Taylor expansion g(x0) = g(x(τ )) + Rg , where

Rg = −[f (x0)τ + g(x0)η(τ )]g′(x(τ )) + 1

2
[f (x0)τ + g(x0)η(τ )]2g′′(x(τ )) + · · · ,

where for convenience we use a prime to denote the first-order derivative. Then the former term of (B4), denoted as T11, becomes

T11 =
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0g[x(τ )]η(τ )eik0Rgη(τ )dx(τ )

〉
, (B5)

052114-11



XUDONG WANG, YAO CHEN, AND WEIHUA DENG PHYSICAL REVIEW E 98, 052114 (2018)

where eik0Rgη(τ ) = 1 + ik0Rgη(τ ) + · · · . Considering Mn ∼ 0 (n � 3) in (B3), the second term of Rg and all the latter terms can
be omitted since these terms contribute to η2(τ ) and then yield Mn (n � 3) when substituted into (B5). Therefore, we have

T11 =
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0g(x(τ ))η(τ )e−ik0g(x0 )g′(x(τ ))η2(τ )dx(τ )

〉

=
〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0g(x(τ ))η(τ )dx(τ )

〉
− ik0

〈 ∫ ∞

−∞
e−ik0x(τ )Tηe

ik0g(x(τ ))η(τ )g(x0)g′(x(τ ))η2(τ )dx(τ )

〉

= Fx0

{〈eik0g(x0 )η(τ )〉Gx0 (p, t )
} − ik0Fx0

{〈eik0g(x0 )η(τ )η2(τ )〉g(x0)g′(x0)Gx0 (p, t )
}
,

where we replace g(x0) by g(x(τ )) in the latter term and omit the high-order term M3. Substituting M2 in (B3) and T11 into (B4)
gives

T1 = Fx0

{〈eik0g(x0 )η(τ )〉Gx0 (p, t )
} − 2ik0τFx0

{
g(x0)g′(x0)Gx0 (p, t )

} + τFx0

{
∂

∂x0
f (x0)Gx0 (p, t )

}
. (B6)

Similarly, still using the property Mn ∼ 0, n � 3, we get the third term in (B1),

T3 = −2τFx0

{
g(x0)g′(x0)

∂Gx0 (p, t )

∂x0

}
. (B7)

Combining (B6), (B7), and (B2), we finally get

Fx0{〈Tη〉} = Fx0

{〈eik0g(x0 )η(τ )〉Gx0 (p, t )
} − 2τFx0

{
∂

∂x0
g(x0)g′(x0)Gx0 (p, t )

}

+ τFx0

{
f (x0)

∂Gx0 (p, t )

∂x0

}
− 2τFx0

{
g(x0)g′(x0)

∂Gx0 (p, t )

∂x0

}
. (B8)

The characteristic function of Lévy noise (3) leads to

〈eik0g(x0 )η(τ )〉 − 1 	 τφ0(−k0g(x0)) = −τk2
0g

2(x0) as τ → 0. (B9)

Combining (B8) and (B9), by some calculations we obtain

Fx0{〈Tη〉} − Fx0

{
Gx0 (p, t )

} = τFx0

{
g2(x0)

∂2Gx0 (p, t )

∂x2
0

}
+ τFx0

{
f (x0)

∂Gx0 (p, t )

∂x0

}
.

Substituting this formula into (19), dividing (19) by τ , taking the limit τ → 0, and making the inverse Fourier transform (k0 →
x0), we obtain the backward Feynman-Kac equation:

∂Gx0 (p, t )

∂t
= g2(x0)

∂2Gx0 (p, t )

∂x2
0

+ f (x0)
∂Gx0 (p, t )

∂x0
− ipU (x0)Gx0 (p, t ). (B10)

[1] M. Kac, Trans. Am. Math. Soc. 65, 1 (1949).
[2] H. Geman and M. Yor, Math. Finance 3, 349 (1993).
[3] A. Comtet, J. Desbois, and C. Texier, J. Phys. A 38, R341

(2005).
[4] S. N. Majumdar, Curr. Sci. 89, 2076 (2005).
[5] S. N. Majumdar and A. J. Bray, Phys. Rev. E 65, 051112 (2002).
[6] P. Langevin, C. R. Acad. Sci. 146, 530 (1908).
[7] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin

Equation (World Scientific, Singapore, 2004).
[8] D. Applebaum, Lévy Processes and Stochastic Calculus (Cam-

bridge University Press, Cambridge, 2009).
[9] N. G. V. Kampen, Stochastic Processes in Physics and Chem-

istry (North-Holland, Amsterdam, 1992).
[10] W. Horsthemke and R. Lefever, Noise-Induced Transitions

(Springer-Verlag, Berlin, 1984).
[11] P. Hänggi and H. Thomas, Phys. Rep. 88, 207 (1982).
[12] H. Risken, The Fokker-Planck Equation (Springer-Verlag,

Berlin, 1989).
[13] S. I. Denisov, W. Horsthemke, and P. Hänggi, Phys. Rev. E 77,

061112 (2008).

[14] S. I. Denisov, W. Horsthemke, and P. Hänggi, Eur. Phys. J. B
68, 567 (2009).

[15] H. C. Fogedby, Phys. Rev. E 50, 1657 (1994).
[16] H. C. Fogedby, Phys. Rev. E 58, 1690 (1998).
[17] K. M. Kolwankar and A. D. Gangal, Phys. Rev. Lett. 80, 214

(1998).
[18] R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563

(1999).
[19] S. Jespersen, R. Metzler, and H. C. Fogedby, Phys. Rev. E 59,

2736 (1999).
[20] A. V. Chechkin, V. Y. Gonchar, J. Klafter, and R. Metzler, Adv.

Chem. Phys. 133, 439 (2006).
[21] S. A. Adelman, J. Chem. Phys. 64, 124 (1976).
[22] M. Magdziarz, A. Weron, and K. Weron, Phys. Rev. E 75,

016708 (2007).
[23] L. Turgeman, S. Carmi, and E. Barkai, Phys. Rev. Lett. 103,

190201 (2009).
[24] S. Carmi and E. Barkai, Phys. Rev. E 84, 061104 (2011).
[25] S. Carmi, L. Turgeman, and E. Barkai, J. Stat. Phys. 141, 1071

(2010).

052114-12

https://doi.org/10.1090/S0002-9947-1949-0027960-X
https://doi.org/10.1090/S0002-9947-1949-0027960-X
https://doi.org/10.1090/S0002-9947-1949-0027960-X
https://doi.org/10.1090/S0002-9947-1949-0027960-X
https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
https://doi.org/10.1088/0305-4470/38/37/R01
https://doi.org/10.1088/0305-4470/38/37/R01
https://doi.org/10.1088/0305-4470/38/37/R01
https://doi.org/10.1088/0305-4470/38/37/R01
https://doi.org/10.1103/PhysRevE.65.051112
https://doi.org/10.1103/PhysRevE.65.051112
https://doi.org/10.1103/PhysRevE.65.051112
https://doi.org/10.1103/PhysRevE.65.051112
https://doi.org/10.1016/0370-1573(82)90045-X
https://doi.org/10.1016/0370-1573(82)90045-X
https://doi.org/10.1016/0370-1573(82)90045-X
https://doi.org/10.1016/0370-1573(82)90045-X
https://doi.org/10.1103/PhysRevE.77.061112
https://doi.org/10.1103/PhysRevE.77.061112
https://doi.org/10.1103/PhysRevE.77.061112
https://doi.org/10.1103/PhysRevE.77.061112
https://doi.org/10.1140/epjb/e2009-00126-3
https://doi.org/10.1140/epjb/e2009-00126-3
https://doi.org/10.1140/epjb/e2009-00126-3
https://doi.org/10.1140/epjb/e2009-00126-3
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1103/PhysRevE.58.1690
https://doi.org/10.1103/PhysRevE.58.1690
https://doi.org/10.1103/PhysRevE.58.1690
https://doi.org/10.1103/PhysRevE.58.1690
https://doi.org/10.1103/PhysRevLett.80.214
https://doi.org/10.1103/PhysRevLett.80.214
https://doi.org/10.1103/PhysRevLett.80.214
https://doi.org/10.1103/PhysRevLett.80.214
https://doi.org/10.1103/PhysRevLett.82.3563
https://doi.org/10.1103/PhysRevLett.82.3563
https://doi.org/10.1103/PhysRevLett.82.3563
https://doi.org/10.1103/PhysRevLett.82.3563
https://doi.org/10.1103/PhysRevE.59.2736
https://doi.org/10.1103/PhysRevE.59.2736
https://doi.org/10.1103/PhysRevE.59.2736
https://doi.org/10.1103/PhysRevE.59.2736
https://doi.org/10.1063/1.431961
https://doi.org/10.1063/1.431961
https://doi.org/10.1063/1.431961
https://doi.org/10.1063/1.431961
https://doi.org/10.1103/PhysRevE.75.016708
https://doi.org/10.1103/PhysRevE.75.016708
https://doi.org/10.1103/PhysRevE.75.016708
https://doi.org/10.1103/PhysRevE.75.016708
https://doi.org/10.1103/PhysRevLett.103.190201
https://doi.org/10.1103/PhysRevLett.103.190201
https://doi.org/10.1103/PhysRevLett.103.190201
https://doi.org/10.1103/PhysRevLett.103.190201
https://doi.org/10.1103/PhysRevE.84.061104
https://doi.org/10.1103/PhysRevE.84.061104
https://doi.org/10.1103/PhysRevE.84.061104
https://doi.org/10.1103/PhysRevE.84.061104
https://doi.org/10.1007/s10955-010-0086-6
https://doi.org/10.1007/s10955-010-0086-6
https://doi.org/10.1007/s10955-010-0086-6
https://doi.org/10.1007/s10955-010-0086-6


FEYNMAN-KAC EQUATION REVISITED PHYSICAL REVIEW E 98, 052114 (2018)

[26] X. C. Wu, W. H. Deng, and E. Barkai, Phys. Rev. E 93, 032151
(2016).

[27] R. Hou and W. H. Deng, J. Phys. A 51, 155001 (2018).
[28] W. L. Wang and W. H. Deng, J. Phys. A 51, 015001 (2018).
[29] P. B. Xu and W. H. Deng, Math. Model. Nat. Phenom. 13, 10

(2018).
[30] D. Selmeczi, L. Li, L. I. I. Pedersen, S. F. Nrrelykke, P. H.

Hagedorn, S. Mosler, N. B. Larsen, E. C. Cox, and H. Flyvbjerg,
Eur. Phys. J. Spec. Top. 157, 1 (2008).

[31] A. Cairoli and A. Baule, Phys. Rev. Lett. 115, 110601 (2015).
[32] A. Cairoli and A. Baule, J. Phys. A 50, 164002 (2017).
[33] K. Ito, Nagoya Math. J. 1, 35 (1950).
[34] A. Piryatinska, A. I. Saichev, and W. A. Woyczynski, Physica

A 349, 375 (2005).
[35] M. Magdziarz, A. Weron, and J. Klafter, Physica A 367, 1

(2006).
[36] M. Magdziarz, A. Weron, and J. Klafter, Phys. Rev. Lett. 101,

210601 (2008).
[37] E. Heinsalu, M. Patriarca, I. Goychuk, and P. Hänggi, Phys. Rev.

Lett. 99, 120602 (2007).
[38] R. Friedrich, F. Jenko, A. Baule, and S. Eule, Phys. Rev. Lett.

96, 230601 (2006).
[39] I. M. Sokolov and R. Metzler, Phys. Rev. E 67, 010101(R)

(2003).
[40] P. Lévy, Compos. Math. 7, 283 (1939).
[41] S. N. Majumdar, A. Rosso, and A. Zoia, Phys. Rev. Lett. 104,

020602 (2010).
[42] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys. 62, 225

(2013).
[43] J. M. Deutsch, Physica A 208, 433 (1994).
[44] M. S. Jhon, G. Sekhon, and R. Armstrong, Adv. Chem. Phys.

66, 153 (1987).
[45] J. M. Deutsch, Phys. Rev. Lett. 69, 1536 (1992).
[46] S. B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985).
[47] V. Eswaran and S. B. Pope, Phys. Fluids 31, 506 (1988).
[48] S. Q. Zhu, Phys. Rev. A 41, 1689 (1990).

[49] S. Q. Zhu, Phys. Rev. A 45, 8148 (1992).
[50] J. Klafter and I. M. Sokolov, First Steps in Random Walks From

Tools to Applications (Oxford University Press, New York,
2011).

[51] C. Godrèche and J. M. Luck, J. Stat. Phys. 104, 489 (2001).
[52] T. Sadhu, M. Delorme, and K. J. Wiese, Phys. Rev. Lett. 120,

040603 (2018).
[53] A. Dhar and S. N. Majumdar, Phys. Rev. E 59, 6413 (1999).
[54] A. G. Cherstvy, A. V. Chechkin, and R. Metzler, New J. Phys.

15, 083039 (2013).
[55] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, 2001).
[56] M. Kac, On Some Connections between Probability Theory and

Differential and Integral Equations (University of California
Press, Berkeley, 1951), p. 189.

[57] A. Baule and R. Friedrich, Phys. Lett. A 350, 167 (2006).
[58] D. S. Grebenkov, Rev. Mod. Phys. 79, 1077 (2007).
[59] D. A. Darling, Ann. Probab. 11, 803 (1983).
[60] G. Louchard, J. Appl. Prob. 21, 479 (1984).
[61] L. Takacs, Adv. Appl. Prob. 23, 557 (1991).
[62] L. Takacs, J. Appl. Prob. 32, 375 (1995).
[63] P. Flajolet, P. Poblete, and A. Viola, Algorithmica 22, 490

(1998).
[64] P. Flajolet and G. Louchard, Algorithmica 31, 361 (2001).
[65] J. L. Gall, Ann. Probab. 19, 1399 (1991).
[66] S. N. Majumdar and A. Comtet, J. Stat. Phys. 119, 777 (2005).
[67] E. Barkai, E. Aghion, and D. A. Kessler, Phys. Rev. X 4, 021036

(2014).
[68] A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook

of First-order Partial Differential Equations (Taylor & Francis,
London, 2002).

[69] I. S. Gradshteyn, I. M. Ryzhik, Y. V. Geraniums, and M. Y.
Tseytlin, Table of Integrals, Series, and Products (Academic
Press, New York, 1980).

[70] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[71] O. Bénichou and J. Desbois, J. Phys. A 42, 015004 (2009).

052114-13

https://doi.org/10.1103/PhysRevE.93.032151
https://doi.org/10.1103/PhysRevE.93.032151
https://doi.org/10.1103/PhysRevE.93.032151
https://doi.org/10.1103/PhysRevE.93.032151
https://doi.org/10.1088/1751-8121/aab1af
https://doi.org/10.1088/1751-8121/aab1af
https://doi.org/10.1088/1751-8121/aab1af
https://doi.org/10.1088/1751-8121/aab1af
https://doi.org/10.1088/1751-8121/aa9469
https://doi.org/10.1088/1751-8121/aa9469
https://doi.org/10.1088/1751-8121/aa9469
https://doi.org/10.1088/1751-8121/aa9469
https://doi.org/10.1051/mmnp/2018001
https://doi.org/10.1051/mmnp/2018001
https://doi.org/10.1051/mmnp/2018001
https://doi.org/10.1051/mmnp/2018001
https://doi.org/10.1140/epjst/e2008-00626-x
https://doi.org/10.1140/epjst/e2008-00626-x
https://doi.org/10.1140/epjst/e2008-00626-x
https://doi.org/10.1140/epjst/e2008-00626-x
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1088/1751-8121/aa5a97
https://doi.org/10.1088/1751-8121/aa5a97
https://doi.org/10.1088/1751-8121/aa5a97
https://doi.org/10.1088/1751-8121/aa5a97
https://doi.org/10.1017/S0027763000022819
https://doi.org/10.1017/S0027763000022819
https://doi.org/10.1017/S0027763000022819
https://doi.org/10.1017/S0027763000022819
https://doi.org/10.1016/j.physa.2004.11.003
https://doi.org/10.1016/j.physa.2004.11.003
https://doi.org/10.1016/j.physa.2004.11.003
https://doi.org/10.1016/j.physa.2004.11.003
https://doi.org/10.1016/j.physa.2005.12.011
https://doi.org/10.1016/j.physa.2005.12.011
https://doi.org/10.1016/j.physa.2005.12.011
https://doi.org/10.1016/j.physa.2005.12.011
https://doi.org/10.1103/PhysRevLett.101.210601
https://doi.org/10.1103/PhysRevLett.101.210601
https://doi.org/10.1103/PhysRevLett.101.210601
https://doi.org/10.1103/PhysRevLett.101.210601
https://doi.org/10.1103/PhysRevLett.99.120602
https://doi.org/10.1103/PhysRevLett.99.120602
https://doi.org/10.1103/PhysRevLett.99.120602
https://doi.org/10.1103/PhysRevLett.99.120602
https://doi.org/10.1103/PhysRevLett.96.230601
https://doi.org/10.1103/PhysRevLett.96.230601
https://doi.org/10.1103/PhysRevLett.96.230601
https://doi.org/10.1103/PhysRevLett.96.230601
https://doi.org/10.1103/PhysRevE.67.010101
https://doi.org/10.1103/PhysRevE.67.010101
https://doi.org/10.1103/PhysRevE.67.010101
https://doi.org/10.1103/PhysRevE.67.010101
https://doi.org/10.1103/PhysRevLett.104.020602
https://doi.org/10.1103/PhysRevLett.104.020602
https://doi.org/10.1103/PhysRevLett.104.020602
https://doi.org/10.1103/PhysRevLett.104.020602
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1016/0378-4371(94)00055-7
https://doi.org/10.1016/0378-4371(94)00055-7
https://doi.org/10.1016/0378-4371(94)00055-7
https://doi.org/10.1016/0378-4371(94)00055-7
https://doi.org/10.1103/PhysRevLett.69.1536
https://doi.org/10.1103/PhysRevLett.69.1536
https://doi.org/10.1103/PhysRevLett.69.1536
https://doi.org/10.1103/PhysRevLett.69.1536
https://doi.org/10.1016/0360-1285(85)90002-4
https://doi.org/10.1016/0360-1285(85)90002-4
https://doi.org/10.1016/0360-1285(85)90002-4
https://doi.org/10.1016/0360-1285(85)90002-4
https://doi.org/10.1063/1.866832
https://doi.org/10.1063/1.866832
https://doi.org/10.1063/1.866832
https://doi.org/10.1063/1.866832
https://doi.org/10.1103/PhysRevA.41.1689
https://doi.org/10.1103/PhysRevA.41.1689
https://doi.org/10.1103/PhysRevA.41.1689
https://doi.org/10.1103/PhysRevA.41.1689
https://doi.org/10.1103/PhysRevA.45.8148
https://doi.org/10.1103/PhysRevA.45.8148
https://doi.org/10.1103/PhysRevA.45.8148
https://doi.org/10.1103/PhysRevA.45.8148
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevE.59.6413
https://doi.org/10.1103/PhysRevE.59.6413
https://doi.org/10.1103/PhysRevE.59.6413
https://doi.org/10.1103/PhysRevE.59.6413
https://doi.org/10.1088/1367-2630/15/8/083039
https://doi.org/10.1088/1367-2630/15/8/083039
https://doi.org/10.1088/1367-2630/15/8/083039
https://doi.org/10.1088/1367-2630/15/8/083039
https://doi.org/10.1016/j.physleta.2005.10.017
https://doi.org/10.1016/j.physleta.2005.10.017
https://doi.org/10.1016/j.physleta.2005.10.017
https://doi.org/10.1016/j.physleta.2005.10.017
https://doi.org/10.1103/RevModPhys.79.1077
https://doi.org/10.1103/RevModPhys.79.1077
https://doi.org/10.1103/RevModPhys.79.1077
https://doi.org/10.1103/RevModPhys.79.1077
https://doi.org/10.1214/aop/1176993527
https://doi.org/10.1214/aop/1176993527
https://doi.org/10.1214/aop/1176993527
https://doi.org/10.1214/aop/1176993527
https://doi.org/10.2307/3213611
https://doi.org/10.2307/3213611
https://doi.org/10.2307/3213611
https://doi.org/10.2307/3213611
https://doi.org/10.2307/1427622
https://doi.org/10.2307/1427622
https://doi.org/10.2307/1427622
https://doi.org/10.2307/1427622
https://doi.org/10.2307/3215294
https://doi.org/10.2307/3215294
https://doi.org/10.2307/3215294
https://doi.org/10.2307/3215294
https://doi.org/10.1007/PL00009236
https://doi.org/10.1007/PL00009236
https://doi.org/10.1007/PL00009236
https://doi.org/10.1007/PL00009236
https://doi.org/10.1007/s00453-001-0056-0
https://doi.org/10.1007/s00453-001-0056-0
https://doi.org/10.1007/s00453-001-0056-0
https://doi.org/10.1007/s00453-001-0056-0
https://doi.org/10.1214/aop/1176990218
https://doi.org/10.1214/aop/1176990218
https://doi.org/10.1214/aop/1176990218
https://doi.org/10.1214/aop/1176990218
https://doi.org/10.1007/s10955-005-3022-4
https://doi.org/10.1007/s10955-005-3022-4
https://doi.org/10.1007/s10955-005-3022-4
https://doi.org/10.1007/s10955-005-3022-4
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1088/1751-8113/42/1/015004
https://doi.org/10.1088/1751-8113/42/1/015004
https://doi.org/10.1088/1751-8113/42/1/015004
https://doi.org/10.1088/1751-8113/42/1/015004



