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In exchange processes clusters composed of elementary building blocks, monomers, undergo binary exchange
in which a monomer is transferred from one cluster to another. In assortative exchange only clusters with
comparable masses participate in exchange events. We study maximally assortative exchange processes in which
only clusters of equal masses can exchange monomers. A mean-field framework based on rate equations is
appropriate for spatially homogeneous systems in sufficiently high spatial dimension. For diffusion-controlled
exchange processes, the mean-field approach is erroneous when the spatial dimension is smaller than critical; we
analyze such systems using scaling and heuristic arguments. Apart from infinite-cluster systems we explore the
fate of finite systems and study maximally assortative exchange processes driven by a localized input.
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I. INTRODUCTION

Exchange processes underlie numerous natural phenomena
such as droplet growth via evaporation and recondensation
[1], island growth [2], and phase ordering [3–5], and they
have used in modeling of hydrodynamics of granular particles
[6–8] and asymmetric dark matter [9]. Exchange processes
have been applied to social sciences, e.g., to modeling seg-
regation of heterogeneous populations [10], studying wealth
distributions through asset exchange models [11–16], and
mimicking growth of urban populations [17] and aggrega-
tion behaviors in job markets [18]. Exchange processes also
proved useful as toy microscopic models which are simple
enough to allow the derivation of the macroscopic “hydrody-
namic” equations and explore other fundamental aspects of
nonequilibrium statistical mechanics (see Refs. [19–24] and
references therein).

In mass exchange processes, clusters interact by transfer-
ring mass from one to another. Cluster are usually assumed
to be composed of an integer number of elemental building
blocks (“monomers”). We denote by Aj a cluster of “mass”
j , that is, a cluster composed of j monomers. Clusters are
labeled solely by their masses; other characteristics (e.g.,
their shape) are ignored. We assume that in each exchange
event, a monomer is transferred from one cluster to another.
Symbolically, the mass exchange process is represented by the
reaction scheme

Ai ⊕ Aj

Ki,j−→(Ai±1, Aj∓1). (1)

A cluster disappears when its mass vanishes. Thus in an
exchange involving a monomer the number of clusters may
decrease; it certainly decreases in an exchange between two
monomers (one monomer disappears and another becomes a
dimer).

Exchange processes characterized by symmetric migra-
tion rates Ki,j have been most investigated, e.g., mod-
els with homogeneous rates Ki,j = iaj b + ibj a have been
studied through asymptotic and scaling analyses (see, e.g.,
Refs. [25–27]). Even in the simplest situation when the system
is spatially uniform and remains well mixed throughout the

evolution, one needs to solve an infinite set of coupled nonlin-
ear differential equations. This is usually impossible even for
simple migration rates. The exchange processes characterized
by generalized product kernels Ki,j = (ij )λ are exceptional
since the governing equations can be linearized, and the mod-
els with λ = 0, 1, 2 have been solved exactly; see Refs. [26–
28]. Spatially homogeneous exchange processes have been
studied [25–27], and, e.g., for exchange rates Ki,j = (ij )λ

it was shown [26] that an algebraic t1/(3−2λ) growth of the
typical mass occurs when λ < 3

2 ; when λ > 3
2 , an infinite

cluster containing a finite fraction of the entire mass is formed
at a finite “gelation” time, and when λ > 2 this time vanishes.
Exchange processes driven by input of monomers have been
investigated in Ref. [29].

In assortative exchange processes, interactions between
clusters with disparate masses are suppressed. In this paper we
study the maximally assortative processes in which exchange
can occur only between clusters of the same mass. The matrix
of migration rates becomes diagonal, Ki,j = K (i)δi,j , and the
set of reaction channels (1) narrows to

Am ⊕ Am

K (m)−→(Am−1, Am+1). (2)

The reaction scheme (2) is rather abstract. A natural physi-
cal realization of the maximally assortative processes is based
on diffusing clusters and postulates that a collision between
equal-mass clusters may result in mass exchange. More pre-
cisely, the simplest maximally assortative diffusion-controlled
exchange process is the point-cluster process defined as fol-
lows:

(1) Each clusters occupies a single lattice site of a d-
dimensional lattice.

(2) Clusters hop to neighboring sites, and the hopping
rates are mass-independent.

(3) When a cluster hops to a site containing a cluster with
the same mass, an exchange (2) instantaneously occurs.

To give a flavor of our findings we present a few basic re-
sults for this simplest diffusion-controlled maximally assorta-
tive exchange process. Imagine that each site is initially occu-
pied by a single monomer, so the initial density of monomers,
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i.e., the number of monomers per site, is c1(0) = 1. We shall
show that the density of monomers decays according to

c1 ∼
⎧⎨
⎩

t−5/8 d = 3
t−5/8(ln t )5/8 d = 2
t−7/18 d = 1

. (3)

The temporal behavior changes at d = dc = 2, which is
the critical dimension for our diffusion-controlled maximally
assortative exchange process. In three dimensions and gener-
ally above the critical dimension, d > 2, one can employ a
mean-field description of (2) with rates K (m) = 1 reflecting
that the hopping rates are mass-independent. At the critical
dimension there is a logarithmic correction to the mean-field
behavior; below the critical dimension the decay is slower
than the mean-field prediction (similarly to other diffusion-
controlled processes; see Ref. [28]). It is often useful to treat d

as a continuous parameter. The decay exponents are universal
when d > dc = 2 and become dimension-dependent below
the critical dimension. In Sec. III we show that when d < dc

the density of monomers decays as
c1

n0
∼ [n0(Dt )d/2]−

3d+4
(d+2)2 . (4)

Here we write the answer in the dimensionally correct form,
which demonstrates the dependence on the diffusion coef-
ficient D and the initial density n0; the latter is defined
via cm(0) = n0δm,1 if the system is initially composed of
monomers. (Hereinafter we denote by cm the density of clus-
ters of mass m.)

We shall further show that the cluster density

N (t ) =
∑
m�1

cm(t ) (5)

decays according to

N ∼
⎧⎨
⎩

t−1/4 d = 3
t−1/4(ln t )1/4 d = 2
t−1/6 d = 1

. (6)

More generally, below the critical dimension, d < 2, the
cluster density decays as

N

n0
∼ [n0(Dt )d/2]−

1
d+2 . (7)

The outline of the paper is as follows. In Sec. II we
study the maximally assortative exchange processes in the
framework of mean-field rate equations. First we probe the
asymptotic behaviors of the process with mass-independent
migration rates, K (m) = 1, and then extend the results to
a one-parameter family of rates varying algebraically with
mass, K (m) = ma . Such rates are particularly suitable for
scaling techniques which we employ. In Sec. III we discuss
the behavior of the simplest diffusion-controlled maximally
assortative exchange process in which each cluster occupies
a single lattice site (the point cluster process) and hops with
mass-independent rate. The critical dimension is dc = 2 for
such exchange processes, and we analyze asymptotic behav-
iors of these processes in one and two dimensions. Maximally
assortative exchange processes with a finite mass generically
do not condense in a single cluster but reach a nontrivial final
state with numerous clusters with different masses. In Sec. IV

we describe these final states. Diffusion-controlled maximally
assortative exchange processes driven by a localized input of
monomers are investigated in Sec. V. In the last Sec. VI we
discuss approaches which may lead to the progress in under-
standing of maximally assortative exchange processes with
quickly growing rates where scaling is violated. Technical
details are relegated to the appendices.

II. MEAN-FIELD ANALYSIS

In this section we analyze maximally assortative exchange
processes using the rate equations approach. This framework
is applicable if the initial state is spatially homogeneous and
if the system remains well mixed throughout the evolution.

The rate equations governing the evolution of the maxi-
mally assortative exchange process (2) with arbitrary migra-
tion rates K (m) read

dcm

dt
= K (m + 1)c2

m+1 − 2K (m)c2
m + K (m − 1)c2

m−1. (8)

The density of monomers obeys ċ1 = K (2)c2
2 − 2K (1)c2

1,
which is consistent with the first equation (8) after setting
c0 ≡ 0, or introducing an extra rate K (0) = 0. One can verify
that Eqs. (8) agree with mass conservation:∑

m�1

mcm(t ) = 1. (9)

Hereinafter we set the conserved mass density M to unity; this
can always be done by rescaling: cm → Mcm.

Equations (8) have not been solved apart from somewhat
pathological models in which for a certain mass j the cor-
responding rate vanishes, K (j ) = 0, so only clusters up to
mass j are present. In the following we assume, if not stated
otherwise, that K (m) > 0 for all m � 1 so that the number
of interacting cluster species is infinite. The most interesting
long time behavior of such models can be probed through
asymptotic and scaling analyses. We start with the simplest
situation when the migration rates are mass-independent.

A. Mass-independent rates

For the maximally assortative exchange process with mass-
independent rates, K (m) = 1, Eqs. (8) reduce to

dcm

dt
= c2

m+1 − 2c2
m + c2

m−1. (10)

This neat infinite system of nonlinear coupled ordinary differ-
ential equations (ODEs) appears intractable. The most inter-
esting large time behavior can be established, however, since
the typical mass exhibits an unlimited growth when t → ∞,
thereby allowing us to employ asymptotic and scaling ap-
proaches. The chief idea is to treat m as a continuous variable.
If c(m, t ) ≡ cm(t ) slowly varies with m, the right-hand side in
(10) can be replaced by the second derivative to yield a partial
differential equation (PDE)

∂c

∂t
= ∂2

∂m2
c2, (11)

known as a porous medium equation. (More generally, a
nonlinear PDE of the form ut = �un, where n > 1 and �
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is the Laplace operator, is known as the porous medium
equation; see Ref. [30].)

One then seeks a scaling solution to (11):

c(m, t ) = t−2βF (x), x = m

tβ
. (12)

The scaling form (12) agrees with mass conservation, and the
choice (9) of the initial mass density implies∫ ∞

0
dx xF (x) = 1. (13)

By inserting the scaling form (12) into (11) we find that the
scaling form is consistent only when β = 1/4, and in that case
the governing PDE turns into an ODE,

4(F 2)′′ + xF ′ + 2F = 0, (14)

where (·)′ = d(·)/dx. Multiplying (14) by x and integrating
we get

4
d

dx

(
F 2

x

)
+ F = 0, (15)

where the integration constant was chosen to be zero to ensure
that F vanishes as x → ∞. Rewriting Eq. (15) as a product
of two factors, F [8F ′/x + 1 − 4F/x2] = 0, we immediately
extract the special solution F (x) = 0, and then from 8F ′/x +
1 − 4F/x2 = 0 we find a one-parameter family of solutions

F = 1

12

√
x

(
x

3/2
0 − x3/2

)
. (16)

The solution is the combination of (16) and F = 0. Since
the density is non-negative, the scaled mass distribution is
given by (16) when 0 � x � x0, and it vanishes when x >

x0. The normalization requirement, 1 = ∫ x0

0 dx xF (x), yields
x0 = (80)1/4. Hereinafter it proves convenient to use a renor-
malized scaled mass variable y = x/x0, which in the present
case equals y = m/(80t )1/4 in terms of the original variables.
Collecting previous results we write the scaling solution in the
form

cm(t ) = t−1/2 G(y) (17)

with

G(y) = 1

3
×

{√
5y (1 − y3/2) 0 � y � 1

0 y > 1
. (18)

Note also simple asymptotic formulas

c1(t ) = B1 t−5/8, (19a)

N (t ) = B t−1/4 (19b)

for the density of monomers and the total cluster density
N (t ) = ∑

m�1 cm(t ). The amplitudes in (19a) and (19b) are

B1 = 53/8

3
√

2
, B = 2 × 53/4

9
.

At first sight, the compact shape of the mass distribution
seems paradoxical given that the governing equations are
parabolic PDEs. Our intuition is based on linear parabolic
PDEs for which perturbations propagate with infinite speed
preventing the formation of compact solutions. For nonlinear

parabolic PDEs like the porous medium equation (11), com-
pact solutions may arise [30] as was discovered many years
ago [31,32]; see Refs. [33–35] for review and [36,37] for
recent examples of such nonlinear parabolic PDEs appearing
in the context of lattice gases.

The compactness is a drawback of the continuum approx-
imation. In the realm of the original discrete system (8), the
mass distribution is positive for all m. The front is extremely
steep, however, so the discrepancy between the actual solution
of the discrete system and the prediction of the continuum ap-
proach, viz. c(m, t ) = 0 in the region m > m∗(t ) = (80t )1/4,
is tiny. To appreciate this we take into account a very sharp
decay and simplify (10) in the m > m∗(t ) region to dcm

dt
�

c2
m−1 from which we deduce a double exponential decay:

ln(1/cm) ∝ 2m−m∗(t ). (20)

The validity of the scaling approach is physically obvious
but hard to justify rigorously. We cannot compare the scaling
solution (17) and (18) with exact solutions since such solu-
tions of Eqs. (10) are unknown. As usual, one anticipates that
for localized initial conditions, i.e., such that cm(0) vanishes
for sufficiently large m, the solution approaches to the scaling
solution (17) and (18). The same should be valid also for
cm(0) sufficiently quickly decaying with m; more complicated
behaviors might occur when cm(0) has a slowly decaying tail.

B. Homogeneous rates K (m) = ma

Let us now look at the one-parameter family of maximally
assortative exchange processes with algebraically varying mi-
gration rates K (m) = ma . The governing rate equations read

dcm

dt
= (m + 1)ac2

m+1 − 2mac2
m + (m − 1)ac2

m−1. (21)

Note that a rate equation for the cluster density

dN

dt
= −c2

1 (22)

is independent on the exponent a.

1. Scaling approach

Algebraically varying migration rates are physically natu-
ral and convenient for analysis since they are compatible with
the scaling approach. Thus we immediately focus on the large
time behavior, treat again m as a continuous variable, and turn
an infinite set of ODEs, Eqs. (21), into a single PDE:

∂c

∂t
= ∂2

∂m2
mac2. (23)

The scaling solution to this PDE has the form (12) with β =
(4 − a)−1; the scaled mass distribution obeys

(4 − a)(xaF 2)′′ + xF ′ + 2F = 0. (24)

Multiplying (24) by x and integrating once we obtain

(4 − a)
d

dx

(
F 2

x1−a

)
+ F = 0. (25)
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This equation admits the special solution F (x) = 0 and a one-
parameter family of solutions

G = x2−a
0

(3 − a)(4 − a)
y

1−a
2

(
1 − y

3−a
2

)
, (26)

where we have used again the renormalized scaled mass vari-
able y = x/x0. The scaled mass distribution is given by (26)
when 0 � y � 1, while G(y) = 0 for y > 1. The parameter
x0 is fixed by normalization:

x0 = (4 − a)2/(4−a)(5 − a)1/(4−a). (27)

Gathering previous results we arrive at

cm(t ) = t−
2

4−a Ga (y),

y = x

x0
= [(4 − a)2(5 − a)t]−

1
4−a m,

(28)

The scaled mass distribution reads

Ga (y) = C(a) ×
{

y
1−a

2
(
1 − y

3−a
2

)
0 � y � 1

0 y > 1
. (29)

The amplitude is

C(a) = x2−a
0

(3 − a)(4 − a)
(30)

with x0(a) given by (27).
The density of monomers and the total cluster density

exhibit algebraic long time behaviors

c1 = B1(a) t−(5−a)/(8−2a), (31a)

N = B(a) t−1/(4−a) (31b)

with amplitudes

B1(a) = x
(3−a)/2
0

(3 − a)(4 − a)
, B(a) = x3−a

0

(3 − a)2(4 − a)
. (32)

These results are applicable when the homogeneity index
lies in the range −∞ < a < 3. Let us now look at the special
values a = −∞ and a = 3.

2. Special cases: a = −∞ and a = 3

When a = −∞, there are only monomers and dimers, and
their densities evolve according to

dc1

dt
= −2c2

1,
dc2

dt
= c2

1, (33)

from which

c1 = 1

1 + 2t
, (34a)

c2 = t

1 + 2t
. (34b)

The scaling description does not hold in this special case,
e.g., the mass attains just two values, and it cannot be treated
as a continuous variable.

In contrast, one obtains consistent results by taking the a ↑
3 limit in (29). The scaled mass distribution becomes

cm(t ) = t−2G3(y), y = m

2t
(35)

with

G3(y) =
{

(4y)−1 ln(1/y) 0 < y < 1
0 y � 1

. (36)

Specializing (35) and (36) to m = 1 we obtain

c1 � ln t

2t
. (37a)

The decay law for the total cluster density also acquires a
logarithmic correction:

N � (ln t )2

4t
. (37b)

To establish this decay law we use (35) and (36) and find

N =
∑
m�1

mcm(t ) � 2t

t2

∫ 1

1/(2t )
dy

ln(1/y)

4y
. (38)

Computing the integral yields (37b) in the leading order. Note
that the integral in (38) diverges in the y → 0 forcing one to
keep the lower limit finite. This makes the replacement of the
summation by integration somewhat doubtful, but it actually
does not cause troubles since the divergence is logarithmic
and hence the prediction should be correct. As an independent
check one can use the exact rate equation (22) and verify that
it is consistent with (37a) and (37b).

3. Nonscaling regime: a > 3

The scaling solution (28) and (29) becomes ill-defined if
a > 3. The behavior in this region is nonscaling and hence
difficult to probe analytically. Our understanding of this range
is incomplete. In Appendix A we present arguments in favor
of a rather amusing behavior combining a normal behavior
with instantaneous gelation.

III. EXCHANGE PROCESSES IN LOW SPATIAL
DIMENSIONS

Here we probe the behavior of the simplest diffusion-
controlled maximally assortative exchange process. First, we
recall the definition of the process

(1) Each clusters occupies a single lattice site of a d-
dimensional lattice.

(2) Clusters hop to neighboring sites, and the hopping
rates are mass-independent.

(3) When a cluster hops to a site containing a cluster with
the same mass, an exchange (2) instantaneously occurs.

Several clusters can occupy the same site, but all such
clusters must have different masses. When a cluster hops to
a site that contains another cluster which can participate in
an exchange process, the exchange instantaneously occurs; if
then another exchange becomes possible, it also occurs instan-
taneously. Overall, an avalanche of exchanges may happen.
(If exchange between clusters of arbitrary masses would be
allowed, the resulting diffusion-controlled exchange process
would be identical to the diffusion-controlled aggregation
process: When a cluster Ai hops to a site with cluster Aj , an
avalanche of exchanges occur till eventually a single cluster
Ai+j is formed; this happens instantaneously, so the process
is indeed a merging event Ai ⊕ Aj → Ai+j .)
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Diffusion-controlled point-cluster processes with mass-
independent hopping rates are still formidable strongly in-
teracting systems, yet the asymptotic behaviors of such pro-
cesses can often be understood. For instance, in the case of
aggregation the critical dimension is known to be dc = 2; the
computations of the critical dimension in various diffusion-
controlled processes are described, e.g., in Refs. [38] and
[28]. The mean-field framework reproduces the asymptotic
behavior above the critical dimension, d > dc = 2, e.g., it cor-
rectly predicts the t−1 decay of the cluster density. In two di-
mensions, the mean-field framework misses only logarithmic
factors, e.g., N ∼ t−1 ln t . In one dimension, the deviations
from the mean-field behavior are most pronounced, e.g., N ∼
t−1/2. The one-dimensional diffusion-controlled point-cluster
aggregation process is actually solvable; see Refs. [39–41].

Let us now consider the maximal assortative exchange in
which a monomer can be transferred only between clusters
with equal masses: Am ⊕ Am → (Am−1, Am+1). In princi-
ple, an avalanche of exchanges can occur. As an example,
consider what happens when A2 hops to a site containing
clusters (A1, A2, A3). After the hop there are four clusters
(A1, A2, A2, A3) at a site, and an avalanche of exchanges
(participating pairs are shown) leads to

A1 A2A2︸ ︷︷ ︸A3 → A1A1︸ ︷︷ ︸A3A3︸ ︷︷ ︸ → A2A2︸ ︷︷ ︸A4 → A1A3A4.

Thus effectively A2 ⊕ (A1, A2, A3) → (A1, A3, A4).
In the long time limit the density of clusters approaches

zero and avalanches become exceedingly rare. Indeed, the
exchange Am ⊕ Am → (Am−1, Am+1) results in two clusters
at a site, but these clusters quickly separate so that when t � 1
an occupied lattice site is almost surely occupied by a single
cluster.

This problem appears analytically intractable even in one
dimension, so we focus on the simplest characteristics, the
decay exponents, and rely on heuristic arguments. As a check
of such arguments let us first recover the exponents describing
the decay of the monomer and cluster densities, which we
know from the asymptotically exact analysis; see (19a) and
(19b).

When t � 1, the left-hand side in (10) decays faster than
the terms in the right-hand side, so the right-hand side must
vanish: c2

m+1 − 2c2
m + c2

m−1 = 0. The general solution which
agrees with convention c0 = 0 is given by c2

m = Am. Using
cm ∝ √

m in conjunction with the scaling form (12) we obtain
F (x) ∼ √

x and then cm ∼
√

m/t5β when m � tβ . Combin-
ing c1 ∼ t−5β/2 and N ∼ t−β with the exact rate equation

dN

dt
= −c2

1, (39)

we find β = 1/4 and therefore

c1 ∼ t−5/8, N ∼ t−1/4, (40)

recovering the exponents in (19a) and (19b).
Consider now the maximal assortative exchange on the

one-dimensional lattice. (In one dimension the lattice version
is not necessary; we can treat clusters as point particles
performing independent Brownian motions with the same
diffusion coefficient D.) To estimate the decay of the total
density, consider two adjacent monomers. They are separated

by distance � ∼ c−1
1 , and it takes time T ∼ �2/D ∼ D−1c−2

1
for these monomers to meet. Thus the cluster density decays
according to

dN

dt
∼ −c1

T
∼ −Dc3

1. (41)

We now use rate equations similar to (10), but with c3
m

instead of c2
m in the right-hand side. (This step involves an

uncontrolled approximation, but such approximations have
been used in various diffusion-controlled processes, and
they always lead to correct asymptotic behaviors; see, e.g.,
Refs. [28,42,43].) In the long time limit we thus obtain c3

m+1 −
2c3

m + c3
m−1 = 0, from which cm ∝ 3

√
m. Combining this with

(12) we obtain cm ∼ 3
√

m/t7β when m � tβ . Plugging c1 ∼
t−7β/3 and N ∼ t−β into (41) we deduce β = 1/6. Thus

c1 ∼ t−7/18, N ∼ t−1/6. (42)

In the dimensionally correct form the decay laws read

c1 ∼ n
2/9
0 (Dt )−7/18 , N ∼ n

2/3
0 (Dt )−1/6. (43)

where n0 is the initial density of monomers.
In two spatial dimensions, we similarly get

dN

dt
∼ Dc2

1

ln[c1a2]
, (44)

where a is the lattice spacing. The same argument as before
leads to c2

m+1 − 2c2
m + c2

m−1 = 0; more precisely one should
write c2

m/ ln[cma2], but since cm decays in time according to
the same law, the logarithmic factor is independent on m in
the leading order. Thus cm ∝ √

m and more precisely cm ∼√
m/μ5, where we use

c(m, t ) = μ−2F (x), x = m

μ
. (45)

We denote the typical size by μ rather than tβ since in addition
to the algebraic factor μ has a logarithmic factor. Plugging
c1 ∼ μ−5/2 and N ∼ μ−1 into (44) we find μ ∼ (t/ ln t )1/4

leading to

c1 ∼
(

ln t

t

)5/8

, N ∼
(

ln t

t

)1/4

. (46)

In the dimensionally correct form the decay laws read

c1 ∼ n
3/8
0

(
�

Dt

)5/8

, N ∼ n
3/4
0

(
�

Dt

)1/4

(47)

with logarithmic factor

� = ln

(
Dta8

n3
0

)
. (48)

Generally for d < 2 the proper generalization of (41) reads
(see Ref. [28] for such arguments)

dN

dt
∼ −c1

T
∼ −Dc

1+2/d

1 . (49)

The same arguments as before give cm ∝ md/(d+2), and after
the same steps as above one gets the announced asymptotic
behaviors (4) and (7).
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TABLE I. The number JM of jammed states for 1 � M � 20.

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

JM 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 38 46 54 64

IV. FINAL STATES AND EVOLUTION IN FINITE SYSTEMS

In this section we explore the ultimate fate of finite systems
undergoing a maximally assortative exchange process. In this
situation, the difference between maximally assortative and
ordinary exchange processes is more pronounced than for
infinite systems. Indeed, in ordinary exchange processes all
mass eventually accumulates in a single cluster. In a maxi-
mally assortative exchange process in a finite system, the final
outcome is a jammed state containing clusters of different
masses, so the exchange is no longer possible.

A. Final states

A state (m1, . . . , mp ) with cluster masses satisfying

1 � m1 < · · · < mp, m1 + · · · + mp = M (50)

is a jammed state of the system with total mass M. The
number of jammed states JM increases with M. For small M
one easily computes these numbers by hand; Table I shows
these numbers in the range M � 20.

Contemplating about JM, i.e., the number of solutions of
(50), one realizes that JM is the number of partitions of M
into distinct parts. Such partitions appear in combinatorics
[44], they are known as strict partitions, and they have been
also called Fermi partitions [45]. Strict partitions were first
studied by Euler (see Ref. [46]), who expressed the generating
function for such partitions through an infinite product∑

M�0

JM QM =
∏
k�1

(1 + Qk ). (51)

(Here we have used the convention J0 = 1.) Using (51) and
analyzing the Q → 1 behavior one can extract the asymp-
totic behavior: ln JM � π

√
M/3 as M → ∞. A more com-

prehensive analysis [44] gives the Ramanujan asymptotic
formula

JM � 1

4 × 31/4 M3/4
exp

[
π

√
M
3

]
. (52)

Despite this growth of the total number of jammed states,
the fate of the system is surprisingly deterministic, e.g., for
the most natural monomers-only initial condition the final
state is unique. This outcome is universal, and the details of
the exchange process are irrelevant; only the requirement that
it is maximally assortative matters. The final state remains
the same for many other initial conditions, e.g., if the initial
number Nm(0) of clusters of mass m satisfies Nm(0) > 0 for
all m = 1, . . . , mmax and Nm(0) = 0 for m > mmax; only if
the initial mass distribution has big “holes” more complicated
jammed states become possible.

The final state is particularly simple when the initial mass
is a triangular number, M = Tn = n(n + 1)/2: In this case,
the final state is a collection of clusters of mass 1, . . . , n. Let
us represent the final states graphically by putting “•” at site

m if a cluster of mass m is present and “◦” if such a cluster is
absent. For instance, if M = T7 = 28 the final state is

• • • • • • •. (53)

(We do not show absent clusters with masses exceeding the
mass of the largest cluster.) Generally when M is a triangular
number, the final state has no holes. If the initial mass is not
a triangular number, the final state has a single hole. If we
parametrize M = Tn − � with some 1 � � < n, the final state

• · · · •︸ ︷︷ ︸
�−1

◦ • · · · •︸ ︷︷ ︸
n−�

(54)

has a single hole, namely, the mass m = � is absent. For
instance, take M = 24 = T7 − 4; the hole is at mass m = 4,
and hence the final state is

• • • ◦ • • •. (55)

For small M one can verify by hand that, independently
on the details of the dynamics, the final state is unique and
given by (54). The uniqueness is easy to appreciate for two
dissimilar extremal dynamics arising in the a → −∞ or
a → ∞ limits; in the general case, the uniqueness can be
established via the connection to the one-dimensional Oslo
sand-pile model; see Appendix B.

B. Completion time

The evolution towards the final state depends on the details
of the dynamics, and even for the fixed dynamics the duration
varies from realization to realization, that is, the time tfinal to
reach the final state is a random variable. First, we estimate
the completion time for the simplest maximally assortative ex-
change process with mass-independent migration rates. When
M � 1, the behavior is initially the same as the behavior of
the infinite system (Sec. II A). Therefore the total number Nm

of clusters of mass m is

Nm(t ) = M√
t
G(y) (56)

with y = m/(80t )1/4 and G(y) given by (18). These formulas
apply when Nm � 1, but we can employ them up to Nm =
O(1) in estimates. Thus we use the criterion M ∼ √

tfinal

to estimate tfinal ∼ M2. A similar argument for maximally
assortative exchange processes with algebraic migration rates
K (m) = ma gives M ∼ t

2/(4−a)
final . Therefore the completion

time scales as tfinal ∼ M2−a/2. This is valid when −∞ < a �
1. The population of monomers exceeds the population of
clusters of any other mass when a > 1. It is still reasonable
to estimate tfinal from the criterion N1(tfinal) ∼ 1. Using (31a)
we obtain tfinal ∼ M 8−2a

5−a . This matches previous estimate at
a = 1 and applies in the range 1 � a < 3. Overall

tfinal ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M a = −∞
M2−a/2 −∞ < a � 1
M 8−2a

5−a 1 � a < 3
M lnM a = 3
M a > 3

. (57)

In the special cases a = −∞ and a = 3, estimates of the
the completion time given in (57) have been extracted from
the asymptotic behaviors (34a) and (37a), respectively. In the
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third special case, a = ∞, the asymptotic tfinal ∼ M for the
completion time is established below, Eq. (67). In the range
a > 3, the completion time is bounded by M lnM from
above and by M from below, so the estimate presented in
(57) is conjectural (the true asymptotic is perhaps lnM times
larger).

We now compute the average completion time and its
variance in two tractable limits: a = −∞ and a = ∞.

C. The monomer-dimer model (a = −∞)

In each reaction step, the total number of monomers N1

decreases by two: N1 → N1 − 2. The rate of this process is
N1(N1 − 1)/M. The time for each transition step is exponen-
tially distributed, and these transition times are independent
random variables. In this simple situation the average, the
variance, and all higher cumulants have simple expressions
through the rates. For instance,

〈tfinal〉 =
M/2∑
n=1

M
2n(2n − 1)

(58a)

if M is even and

〈tfinal〉 =
(M−1)/2∑

n=1

M
2n(2n + 1)

(58b)

if M is odd. The variance is given by

〈
t2
final

〉 − 〈tfinal〉2 =
M/2∑
n=1

[ M
2n(2n − 1)

]2

(59a)

if M is even and by

〈
t2
final

〉 − 〈tfinal〉2 =
(M−1)/2∑

n=1

[ M
2n(2n + 1)

]2

(59b)

if M is odd. The sums in above equations converge, so we
can replace the upper limits by infinity since we are interested
in asymptotic behaviors. Computing those infinite sums we
obtain

〈tfinal〉
M =

{
ln 2 M even
1 − ln 2 M odd (60)

and

〈t2
final〉 − 〈tfinal〉2

M2
=

{
π2

6 − 2 ln 2 M even
π2

6 − 3 + 2 ln 2 M odd
. (61)

Thus even the asymptotic behaviors depend on whether we
take the M → ∞ limit over even or odd M.

D. The extremal model (a = ∞)

Let us look at the maximally assortative exchange process
with a = ∞, equivalently a process with infinitely fast migra-
tion rates K (m) = ∞ for all m � 2. In this extremal model
the composition of the system is remarkably simple: When
t < tfinal, we still have a lot of monomers, N1 � 1, while the
rest of the population is composed like (54), namely, Nm = 1
for 2 � m � m0(t ) with at most a single hole inside.

To describe the evolution we notice that the merging of
two monomers takes a positive time, and it may trigger an
avalanche of other exchanges which proceed instantaneously.
Symbolically 1 ⊕ 1 → 2 and there will be no other instanta-
neous exchanges if in the preceding configuration the dimer
was absent; otherwise 2 ⊕ 2 → (1, 3) will occur, perhaps
followed by a longer avalanche of instantaneous exchanges.
Focusing on the population of monomers we have N1 →
N1 − 2 in the first case and N1 → N1 − 1 in the second. In
the long time limit a hole (if it exists) is usually far away, so
that N1 → N1 − 1 dominates. As long as N1 � 1, we can use
the rate equation

dc1

dt
= −c2

1 (62)

for the monomer density c1 = N1/M. This is very simple, but
conceptually remarkable, result. Recall that (21) predicts that
the density of monomers satisfies

dc1

dt
= 2ac2

2 − 2c2
1. (63)

It is not immediately obvious how to interpret the first term
on the right-hand side of (63) when a = ∞. The above
analysis shows that we must drop this term and divide by
two the prefactor of the second term. This is reminiscent of
taking the zero-viscosity limit in turbulence, e.g., in Burgers
turbulence one keeps the dissipation rate finite and justifies it
by the appearance of shocks (see, e.g., Refs. [47–50]).

Solving (62) we get c1 = (1 + t )−1 and hence

N1 = M
1 + t

. (64a)

The rest of the mass distribution is

Nm = 1, 2 � m � m0(t ) �
√

2M t

1 + t
. (64b)

The largest mass m0(t ) is established from the requirement
of mass conservation. In the interesting 1 � t � M time
range where we can employ deterministic rate equations the
fraction of mass carried by monomers decreases as t−1. We
also notice that the total number of clusters

N = N1 + m0(t ) = M
1 + t

+
√

2M t

1 + t
(65)

has an interesting behavior: The monomers provide the dom-
inant contribution when t � √

M, while for t � √
M the

total number of clusters saturates to

Nfinal =
√

2M. (66)

Combining (64a) and the criterion N1 = O(1) we estimate the
completion time

tfinal ∼ M. (67)

It is easy to derive more precise results about the comple-
tion time. Indeed, in the most interesting case when M �
1, we established that the dominant channel describing the
decrease of monomers is N1 → N1 − 1, i.e., monomers ef-
fectively undergo the coalescence process: A1 + A1 → A1.
This stochastic process is well understood and the probability
distribution for the completion time is known (see Ref. [28]).
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For instance, the leading behaviors of the two basic moments
of tfinal are

〈tfinal〉 = M,

〈
t2
final

〉
〈tfinal〉2

= π2

3
− 2. (68)

One can also establish these results directly using the same
approach as in deriving (60) and (61).

Fluctuations persist in the thermodynamic limit. To ap-
preciate this assertion it suffices to note that the process
N1 → N1 − 1 occurs with rate N1(N1 − 1)/M, so its aver-
age duration is M

N1(N1−1) . Hence last steps when N1 = O(1)
take time O(M); this explains the non-self-averaging nature.
Up until the very end, however, the evolution is essentially
deterministic.

Overall, the extremal maximally assortative exchange pro-
cess exhibits a very peculiar behavior. There is no gel (which
by definition is a giant cluster containing a finite fraction of
mass of the entire system). On the other side, in nongelling
systems or nongelling phases, the largest cluster usually has a
mass of the order of lnM, while in the extremal maximally
assortative exchange process there are numerous clusters with
masses of the order of

√
M and these clusters contain most of

the mass.

V. EXCHANGE PROCESSES DRIVEN BY A LOCALIZED
INPUT OF MONOMERS

Reaction-diffusion processes driven by localized input of-
ten occur in nature, and they are also used in industrial
applications. Some of these processes involve a few species of
atoms; as examples we mention electropolishing [51], disso-
lution [52], corrosion [53], and erosion [54]. These processes
are rather tractable [55–58] and well understood. Other pro-
cesses involve numerous interacting subspecies, e.g., clusters
in aggregation [42,43,59–62] and ordinary mass exchange
[29]; the analysis of these systems is much more challenging
and usually relies on nonrigorous tools.

Here we study maximally assortative exchange processes
driven by a localized input. The densities cm(r, t ) obey an
infinite system of nonlinear coupled PDEs:

∂cm

∂t
= K (m + 1)c2

m+1 − 2K (m)c2
m + K (m − 1)c2

m−1

+Dm∇2cm + Jδm,1δ(r)θ (t ). (69)

The first three terms on the right-hand side of (69) account for
exchange. The fourth term describes mixing due to diffusion,
and the last term represents the input of monomers at the
origin (J is the strength of the flux). We are interested in the
behavior on distances greatly exceeding the size of the region
where monomers are injected, and hence we model the flux
using the delta function δ(r). The Heaviside step function θ (t )
on the right-hand side of (69) asserts that the source is turned
at t = 0. We assume that the system was initially empty, and
we study the evolution at t > 0, so below we do not explicitly
write θ (t ) = 1.

A. Mass-independent hopping rates

Here we study the model with mass-independent migration
rates and diffusion coefficients. For the diffusion-controlled

point cluster exchange process on the lattice, the migra-
tion rates are proportional to the corresponding hopping
rates, K (m) ∼ Dm, so if diffusion coefficients are mass-
independent, the migration rates are also mass-independent.
Equations (69) for this model become

∂cm

∂t
= ∇2cm + c2

m+1 − 2c2
m + c2

m−1 + Jδm,1δ(r), (70)

where we have set K (m) = 1 and Dm = 1.
The mass density M (r, t ) = ∑

m�1 mcm(r, t ) is now spa-
tially dependent, and it also depends on time. The mass is not
affected by the exchange, so it satisfies the diffusion equation
with a localized source

∂M

∂t
= ∇2M + Jδ(r), (71)

which can be solved in an arbitrary dimension.

1. Three dimensions

In the most physically relevant three-dimensional case the
rate equation approach is applicable. An extra simplification
is that in three dimensions (and generally when d > 2), the
mass density is stationary; more precisely, the mass density
coincides with Coulomb potential generated by “charge” J ,
viz.,

M = J

4πr
. (72)

Since the source is turned on at t = 0 and clusters propagate
diffusively, the stationarity ceases to hold when r ∼ √

t ; the
mass density M (r, t ) quickly approaches zero as rt−1/2 in-
creases.

Some basic quantities do not satisfy closed equations. For
instance, the cluster density N (r, t ) = ∑

m�1 cm(r, t ) evolves
according to

∂N

∂t
= ∇2N − c2

1 + Jδ(r). (73)

It is reasonable to assume that in the long time limit the
densities become stationary. More precisely, they are station-
ary as long as the distance is not too far from the source,
namely, r � √

t . In the stationary regime in three dimensions,
Eq. (73) becomes

1

r2

d

dr

(
r2 dN

dr

)
− c2

1 + Jδ(r) = 0. (74)

Further, in the stationary regime in three dimensions Eqs. (70)
read

1

r2

∂

∂r

(
r2 ∂c

∂r

)
+ ∂2

∂m2
c2 = 0, (75)

where we have replaced c2
m+1 − 2c2

m + c2
m−1 by the second

derivative, which should be asymptotically exact when m �
1. We seek a solution to (75) in a scaling form

c(m, r ) = cm(r ) = r−2β−1�(x), x = m

rβ
. (76)
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The prefactor r−2β−1 is chosen to be consistent with (72).
Indeed,

M (r ) =
∑
m�1

mcm(r ) � r−1
∫ ∞

0
dx x�(x) (77)

has correct spatial dependence; the complete match is ob-
tained if ∫ ∞

0
dx x�(x) = J

4π
. (78)

By inserting (76) into (75) we deduce β = 1/4 and

16(�2)′′ + x2�′′ + 9x�′ + 12� = 0. (79)

This nonlinear second-order ODE with nonconstant coeffi-
cients is soluble. First we notice that (79) admits an integrating
factor: Multiplying (79) by x we obtain

[16x(�2)′ − 16�2 + x3�′ + 6x2�]′ = 0,

which we integrate and write the outcome as

16
d

dx

(
�2

x

)
+ x

d�

dx
+ 6� = 0. (80)

[The integration constant equals zero ensuring that �(x)
vanishes as x → ∞.] We simplify this first-order ODE by
making the transformation

�(x) = √
x �(x). (81)

Using Y = x3/2 instead of x we find that ψ (Y ) = �(x) satis-
fies

3
dψ

dY
+ 13ψ

32� + Y
= 0. (82)

Instead of ψ (Y ) it is convenient to work with inverse function
Y (ψ ):

13

3

dY

dψ
= −32 − Y

ψ
.

Solving this equation gives

Y = 6(C ψ−3/13 − ψ ), (83)

where C is an integration constant. Returning to the original
variables we obtain an implicit solution

x2

6
= C

[
x8

�3

] 1
13

− �. (84)

The limiting behaviors of the scaled mass distribution are
(see also Fig. 1)

� �
{

C
13
16

√
x x → 0

(6C)
13
3 x−6 x → ∞

. (85)

The constant C is fixed by (78). To compute the integral in
(78) we first rewrite it as∫ ∞

0
dx x�(x) = 2

3

∫ ∞

0
dY Y

2
3 ψ (Y ). (86)

Equation (83) shows that 0 � ψ � ψ0 = C13/16. We can
now compute the integral in (86) using integration by parts,

FIG. 1. The renormalized scaled mass distribution �(x ) defined
via (81). The parameter C in (84) is chosen to be C = 1; this
corresponds to the flux strength J = A−1 with A appearing in (88).

Eq. (83), and straightforward transformations:

2

3

∫ ∞

0
dY Y

2
3 ψ (Y ) = 2

5

∫ ψ0

0
dψ Y

5
3

= 2

5
6

5
3

∫ ψ0

0
dψ (C ψ−3/13 − ψ )

5
3

= 2

5
6

5
3 ψ

8
3

0

∫ 1

0
du (u−3/13 − u)

5
3

= 6
5
3 C

13
6

13
√

π �
(

8
3

)
40 �

(
19
6

) . (87)

Combining this with (78) we express the amplitude C through
the flux:

C = (AJ )6/13, A = 10 �
(

19
6

)
13π3/2 65/3 �

(
8
3

) . (88)

Let us also compute the cluster density. We have

N (r ) =
∑
m�1

cm(r ) � r−5/4
∫ ∞

0
dx �(x). (89)

The last integral is computed using the same tricks as in the
computation in Eq. (87). We get∫ ∞

0
dx �(x) = 2

3

∫ ∞

0
dY ψ (Y )

= 2

3

∫ ψ0

0
dψ Y

= 4
∫ ψ0

0
dψ (C ψ−3/13 − ψ )

= 16

5
ψ2

0 = 16

5
C

13
8 ,
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leading to

N (r ) = 16
5 (AJ )3/4 r−5/4. (90a)

The monomer density is found from (76) and the x → 0
asymptotic of �(x) [see (85)] to give

c1(r ) = (AJ )3/8 r−13/8. (90b)

As a useful consistency check we note that (90a) and (90b)
agree with (74).

2. High dimensions

The three-dimensional case is most relevant, but it is amus-
ing to explore the behavior in dimension d = 4 and higher. It
turns out that the exchange is barely relevant at the “upper”
critical dimension d = dc = 4 and asymptotically irrelevant
in higher dimensions. To see this let us treat d as a continuous
parameter. The rate equation approach is generally applicable
when d > 2. The mass density is stationary and given by

M = J

(d − 2)�d rd−2
, (91)

where �d = 2πd/2

�(d/2) is the “area” of unit sphere Sd−1. Equation
(91) suggests that the relevant generalization of the three-
dimensional scaling form (76) is

c(m, r ) = cm(r ) = r−2β−d+2�(x), x = m

rβ
. (92)

Plugging (92) into

1

rd−1

∂

∂r

(
rd−1 ∂c

∂r

)
+ ∂2

∂m2
c2 = 0, (93)

we deduce β = 1 − d/4 and determine the scaled mass den-
sity (see Appendix C).

The small mass behavior is again � ∼ √
x, and the

monomer density decays according to

c1(r ) = (AdJ )3/8 r−(3d+4)/8. (94)

The cluster density is given by

N (r ) = 16
(3d−4)(4−d ) (AdJ )3/4 r−(3d−4)/4. (95)

The decay law (95) can be extracted from (94) and

1

rd−1

d

dr

(
rd−1 dN

dr

)
− c2

1 = 0.

The scaling form (92) is applicable when 2 < d < 4. Be-
low two dimensions, d � dc = 2, we cannot use mean-field
rate equations. The upper bound d < dc = 4 is obvious from
the above formulas, e.g., the exponent β = 1 − d/4 must
be positive, yet it vanishes at d = 4 and becomes negative
when d > 4. In sufficiently high dimensions, d > 4, clusters
essentially do not “see” each other. More precisely, some
exchange processes occur near the source, but then clusters
hardly meet. Therefore both the monomer density and the total
cluster density decay similarly to the mass density:

c1 ∼ r−(d−2), N ∼ r−(d−2). (96)

The exponent d − 2 approaches to two as d → 4. Since
β = 0 at the upper critical dimension d = dc = 4, we antic-
ipate that m scales logarithmically. Thus we seek the mass

distribution in the form

cm(r ) = r−2Cm(ρ), ρ = ln r. (97)

Plugging this ansatz into the governing equations

1

r3

d

dr

(
r3 dcm

dr

)
+ c2

m−1 − 2c2
m + c2

m+1 = 0, (98)

we obtain

2
dCm

dρ
+ d2Cm

dρ2
= C2

m−1 − 2C2
m + C2

m+1. (99)

The interesting behavior occurs far from the source where the
second term on the right-hand size of (99) is negligible in
comparison with the first term. (This is asymptotically true;
however, the ratio of these two terms vanishes as ρ−1, and
since ρ = ln r the ratio decays very slowly.) Dropping the
second term on the right-hand size of (99) we arrive at

2
dCm

dρ
= C2

m−1 − 2C2
m + C2

m+1. (100)

This set of equations can be identified with (10) after the
transformation

Cm(ρ) = J

4π2
cm

(
Jρ

8π2

)
, (101)

which also matches (9) with
∑

m�1 mCm = J
4π2 following

from (91) at d = 4. Using previous results we deduce that
when y < 1 the mass density distribution is given by

cm(r ) =
√

5J

18π2

√
y − y2

r2ρ1/2
, y = m

(
10Jρ

π2

)−1/4

. (102)

In particular

N (r ) = B
J 3/4

r2ρ1/4
, (103a)

c1(r ) = B1
J 3/8

r2ρ5/8
, (103b)

with

B1 = 53/8

3 × 25/8 × π3/4
, B = 53/4

9 × 21/4 × π3/2
.

3. Low dimensions

When d � 2 the rate equation approach becomes erro-
neous. There are no closed form exact equations for cluster
densities, but modified rate equations provide qualitatively
correct results and lead to exact scaling. We now outline the
results for d = 1 and d = 2.

In one dimension, we seek the scaling solution in the
form c(m, r ) = m−αF (m/rβ ). Plugging this ansatz into the
analog of (93), namely, ∂2c

∂r2 + ∂2c3

∂m2 = 0, we deduce the relation
β = (1 + α)−1 between the scaling exponents. Estimating∑

m�1 mcm ∼ r (2−α)β and noting that it should scale as r

we deduce the second relation β(2 − α) = 1. Using these
relations we fix the scaling exponents: α = 1

2 and β = 2
3 .

One can also establish proper powers of the source strength
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(omitted above). The scaling form reads

cm(r ) =
√

J

m
�(x), x = m

J 1/3r2/3
. (104)

Using this expression we estimate the cluster density

N (r ) ∼ J 2/3r1/3. (105a)

Equations (104) and (105a) are consistent with d2N
dr2 ∼ c3

1 if
�(x) ∼ x5/6 as x → 0. Thus

c1(r ) ∼ J 2/9r−5/9. (105b)

In two dimensions, we obtain

N (r ) ∼ J 3/4ρ1/4r−1/2, (106a)

c1(r ) ∼ J 3/8ρ5/8r−5/4, (106b)

where we again shortly write ρ = ln r .

4. Total numbers of monomers and clusters

The total number of monomers C1(t ) is estimated by inte-
grating the stationary density till r = √

t . Thus

C1(t ) ∼
∫ √

t

0
dr rd−1c1(r ).

Using (105b), (106b), (90b), and (103b) we obtain

C1 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J 2/9t2/9 d = 1
J 3/8t3/8(ln t )5/8 d = 2
J 3/8t11/16 d = 3
J 3/8t (ln t )−5/8 d = 4
J t d > 4

. (107)

Similarly the total number of clusters is estimated from

N (t ) ∼
∫ √

t

0
dr rd−1N (r ).

Using (105a), (106a), (90a), and (103a) we obtain

N ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J 2/3t2/3 d = 1

J 3/4t3/4(ln t )1/4 d = 2

J 3/4t7/8 d = 3

J 3/4t (ln t )−1/4 d = 4

J t d > 4

. (108)

B. Mass-dependent rates

Diffusion coefficients generally decrease with mass. An
algebraic decay, Dm ∼ m−ν , often occurs, e.g., the mobility
exponents ν = 1 and ν = 3/2 arise in problems involving
two-dimensional clusters [63]. For the diffusion-controlled
point cluster exchange processes on the lattice, the migration
rates are proportional to the hopping rates, K (m) ∼ Dm,
suggesting the study of models with Dm ∼ K (m) ∼ m−ν . The
behavior of such models driven by a local source can be
treated using the same scheme as before, namely, assuming
the emergence of a stationary mass distribution and the valid-
ity of scaling.

As a concrete example, let us consider the model with
Dm = K (m) = m−1. The rate equations read

∂cm

∂t
= (m + 1)−1c2

m+1 − 2m−1c2
m + (m − 1)−1c2

m−1

+m−1∇2cm + Jδm,1δ(r). (109)

The mass density now varies according to

∂M

∂t
= ∇2N + Jδ(r). (110)

In the most physically relevant three-dimensional case,
Eq. (110) gives a simple expression

N = J

4πr
(111)

for the cluster density in the long time limit.
Let us explore the stationary regime in three dimensions in

more detail. We simplify Eqs. (109) to

1

r2

∂

∂r

(
r2 ∂c

∂r

)
+ m

∂2

∂m2

c2

m
= 0 (112)

and seek a solution to (112) in a scaling form

c(m, r ) = cm(r ) = r−β−1�(x), x = m

rβ
. (113)

The prefactor r−β−1 is consistent with (111). Indeed,

N (r ) =
∑
m�1

cm(r ) � r−1
∫ ∞

0
dx �(x) (114)

ensures the correct spatial decay of the cluster density, and the
constraint ∫ ∞

0
dx �(x) = J

4π
(115)

provides the complete match with (111). By inserting (113)
into (112) we deduce β = 1/3 and

9x(x−1�2)′′ + x2�′′ + 6x�′ + 4� = 0, (116)

which is integrated to yield 9(x−2�2)′ + �′ + 4x−1� = 0.
The implicit solution to this equation reads

1
3x2 = C(x6/�)1/5 − � (117)

with C being an integration constant. The limiting behaviors
of the scaled mass distribution are (see also Fig. 2)

� �
{

C
5
6 x x → 0

(3C)5 x−4 x → ∞
. (118)

Using (117) we compute the integral in (115) and extract the

amplitude C = ( J
16π

)
2/5

. In particular,

c1(r ) =
(

J

16π

)2/5

r−5/3. (119)

To determine the spatial size R of the region where the
densities have become stationary, we first compute the mass
density:

M (r ) =
∑
m�1

mcm(r ) � r−2/3
∫ ∞

0
dx x�(x).
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FIG. 2. The renormalized scaled mass distribution defined via
�(x ) = x−1�(x ). The parameter C in (117) is chosen to be C = 1;
this corresponds to the flux strength J = 16π .

The integral is calculated using (117) to yield

M (r ) = 729

56

(
J

16π

)4/3

r−2/3. (120)

Ignoring numerical factors we estimate the total mass

M ∼
∫ R

0
dr r2M (r ) ∼ J

4
3 R

7
3 .

Since M = J t we have R ∼ J−1/7t3/7. Using this result and
(111) we estimate the total number of clusters

N (t ) ∼
∫ R

0
dr r2N (r ) ∼ JR2 ∼ J

5
7 t

6
7 . (121)

Note also the asymptotic growth law for the total number of
monomers

C1(t ) ∼ J
22
105 t

4
7 . (122)

VI. DISCUSSION

Maximally assortative exchange processes are mathemati-
cally challenging, and not a single one has been solved so far.
For a class of models with algebraic migration rates, K (m) =
ma , we relied on scaling to establish the asymptotic behaviors
in the a � 3 range. On the physical grounds, reaction rates
cannot grow faster than the mass of each reactant, so in an
exchange between clusters of the same mass we anticipate that
K (m) � m2, that is, a � 2. Still, it would be interesting to
understand the behavior when a > 3 where scaling is violate.

When scaling holds, a single typical mass characterizes
the mass distribution. The mass distribution in the extremal
model (a = ∞) has two scales: m = 1 corresponding to the
monomers and the scale m0 [see (64b)] characterizing the rest
of the system. This suggests that when 3 < a < ∞ there may
be two scales, an inner region m ∼ tβ− and an outer region
m ∼ tβ+ with β+ > β−. Mass distributions with two, and even
three, scales have appeared in a few models of aggregation

with uniform input; see Refs. [64–66]. In the present situation,
however, we haven’t succeeded in establishing a consistent a
boundary layer structure of the mass distribution.

A strange feature of the mass distribution in the extremal
model is that the outer scale m0 is asymptotically indepen-
dent on time but depends on the total mass of the system:
m0 � √

2M. Thus for infinite systems, M = ∞, the ex-
tremal model provides little insight for guessing the behavior
when 3 < a < ∞, or perhaps the message is hidden. The
extremal model resembles taking the zero-viscosity limit in
turbulence—the terms containing a = ∞ formally disappear,
yet they affect the evolution.

The behavior of maximally assortative exchange processes
substantially differs from the behavior of ordinary exchange
processes. To study the interpolation between these two ex-
tremes one can introduce parameter r ∈ [0, 1] measuring the
degree of assortatitivity by postulating that the reaction chan-
nel (1) operates only when r � i

j
� r−1. With this definition,

r = 1 corresponds to maximally assortative exchange pro-
cesses and r = 0 corresponds to ordinary exchange processes.
The extreme behaviors are known for simple rates rates such
as Ki,j = (ij )a/2; ordinary exchange processes with these
rates were studied in Ref. [26], while for maximally assor-
tative exchange processes we recover the rates K (m) = ma .
We know that, e.g., the cluster density decays as

N ∼
{

t−1/(3−a) when r = 0

t−1/(4−a) when r = 1
. (123)

These asymptotic results are valid when a < 3. One would
like to understand how r affects the decay law for the cluster
density and behaviors of other quantities.
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APPENDIX A: MODELS WITH K (m) = ma WITH a > 3

First, we recall that for ordinary exchange processes with
generalized product kernels Ki,j = (ij )λ, it has been shown
[26] that (i) scaling holds when λ � 3

2 ; (ii) an infinite cluster
containing the finite fraction of the entire mass is formed at a
finite time if 3

2 < λ � 2; and (iii) an infinite cluster is formed
at time t = 0+ when λ > 2 and gelation is complete, i.e.,
cm(t ) = 0 for all m � 1 at t > 0.

For maximally assortative exchange processes with
K (m) = ma , scaling holds when a < 3. Analogously to or-
dinary exchange processes one may anticipate gelation when
a > 3 and complete instantaneous gelation for sufficiently
large a. We already analyzed (Sec. IV D) the maximally assor-
tative exchange process with a = ∞. In this extremal model
K (m) = ∞ for all m � 2, and the emerging mass distribution
has certain features resembling instantaneous gelation, despite
of the lack of an infinite cluster. More precisely, in the infinite-
system limit the rate equations are mathematically ill-defined
for the extremal model. We thus considered the extremal
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model with finite total mass M and established [see (64a) and
(64b)] the following mass distribution:

cm =
{

(1 + t )−1 m = 1

M−1 2 � m �
√

2M t
1+t

. (A1)

Thus in the M → ∞ limit all cluster densities apart from the
monomer density vanish: cm(t ) = 0 for all m � 2 at t > 0.
This is similar to instantaneous gelation but without an infinite
cluster.

The knowledge of the behavior in the range a � 3 and at
a = ∞ allows one to guess the behavior in the a > 3 range.
For instance, the cluster density decays as

N �

⎧⎪⎨
⎪⎩

B(a) t−1/(4−a) a < 3

(4t )−1(ln t )2 a = 3

t−1 a = ∞
. (A2)

with B(a) appearing in (32). Equation (A2) suggests the upper
and lower bounds for N (t ):

(4t )−1(ln t )2 < N (t ) < t−1 (A3)

when a > 3. Logarithmic corrections usually appear in the
marginal cases, like a = 3 in our situation, so for all a > 3
we anticipate a simple decay

N � B+(a)

t
. (A4)

The unknown amplitude B+(a) should decrease from
lima→3+0 B+(a) = ∞ to lima→∞ B+(a) = 1.

Similarly for the density of monomers we have established
the following decay laws:

c1 �

⎧⎪⎨
⎪⎩

B1(a) t−1/(4−a) a < 3

(2t )−1 ln t a = 3

t−1 a = ∞
(A5)

with B1(a) appearing in (32). Thus the bounds are

(2t )−1 ln t < c1(t ) < t−1 (A6)

for a > 3, and we actually expect a simple decay

c1 � B+
1 (a)

t
. (A7)

Similarly to B+(a), the amplitude B+
1 (a) should decrease

from lima→3+0 B+
1 (a) = ∞ to lima→∞ B+

1 (a) = 1, and the
inequality B+

1 (a) � B+(a) should be valid.

APPENDIX B: FINAL STATES

In a finite system, the evolution depends on the exchange
rules, and even for fixed rules the evolution varies from real-
ization to realization due to the stochasticity of the exchange
process. The final state, however, is independent on the order
of the exchange events. To appreciate this Abelian property
let us first consider two dissimilar extremal dynamics where
this property is easy to understand. In the extremal dynamics
arising in the a → ∞ limit, the exchanges between clusters
heavier than monomers proceed instantaneously. At any time,

the mass distribution may have many monomers but otherwise
looks like (53)–(55). If there are no holes,[

M − n2 + 3n

2

]
• · · · •︸ ︷︷ ︸

n

, (B1)

where the factor in the square brackets represents the num-
ber of monomers (indeed, the rest of the system has mass∑

2�j�n+1 j = n2+3n
2 ). If there is a single hole, say, at mass

m = � + 1, the mass distribution is[
M − n2 + 3n

2
+ � + 1

]
• · · · •︸ ︷︷ ︸

�−1

◦ • · · · •︸ ︷︷ ︸
n−�

. (B2)

It suffices to know the total number of monomers N1, and then
there is a unique way of writing N1 either in the form N1 =
M − n2+3n

2 leading to (B1) or in the form N1 = M − n2+3n
2 +

� + 1 with 0 � � < n leading to (B2).
One can directly verify (B1) and (B2) for small n and

� < n. Indeed, the evolution is deterministic, and starting with
[M] we obtain [M − 2]•. The following mass distributions
are

[M − 3] ◦ •,

[M − 5] • •,

[M − 6] • ◦ •,

[M − 7] ◦ • •,

[M − 9] • • •,

(B3)

etc. Generally one can prove by induction that at any time
the mass distribution is given by either (B1) or (B2). Indeed,
the evolution of states (B1) and (B2) is obvious already from
examples given in (B3). For instance, the daughter state of
(B2) is [

M − n2 + 3n

2
+ �

]
• · · · •︸ ︷︷ ︸

�−2

◦ • · · · •︸ ︷︷ ︸
n−�+1

when 1 < � < n and (B1) if � = 1, while the daughter state of
(B1) is [

M − n2 + 3n

2
− 1

]
• · · · •︸ ︷︷ ︸

n−1

◦ • .

It is easy to see that the jammed states are unique and given
by (54) for the dynamics corresponding to a → ∞.

For the extremal dynamics arising in the a → −∞ limit,
at the first stage when there are monomers in the system we
use the original time variable, t1 = t , so only monomers are
active. At the end of this stage the mass distribution is{◦[M/2] M even

•[(M − 1)/2] M odd . (B4)

Then we use the time variable t2 = 2at , so that dimers
participate in exchanges, the merging of monomers which
are formed after two exchange events involving dimers is
instantaneous, while clusters of mass m > 2 are passive. At
the end of this second stage the mass distribution is⎧⎨

⎩
• ◦ [(M − 1)/3] M ≡ 1 (mod 3)
◦ • [(M − 2)/3] M ≡ 2 (mod 3)
• • [(M − 3)/3] M ≡ 0 (mod 3)

. (B5)
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The interesting part of the mass distribution preceding the
trimers has at most one hole.

During the third stage we take t3 = 3at as the new time
variable and observe that trimers participate in exchanges,
and the merging of monomers and exchanges of dimers are
instantaneous (although the former are still infinitely faster
than the latter), while clusters of mass m > 3 are passive.
Proceeding along these lines one can verify that at the end
of every stage the interesting part of the mass distribution has
at most one hole.

Thus for these two dissimilar extremal dynamics the final
jammed states are the same. This hints on the validity of
the Abelian property of the maximally assortative exchange
processes. It suffices to notice that our process is essentially
identical to the one-dimensional Oslo rice-pile model [67],
after one identifies the spatial coordinate of the Oslo model
with the mass variable in the exchange process, and the height
variable Hm in the Oslo model with the total number of
clusters with mass � m. The Abelian property for the one-
dimensional Oslo model is established in Ref. [68].

APPENDIX C: MASS DENSITY IN HIGH
DIMENSIONS (d > 2)

To determine the scaled mass density in d dimensions, we
insert the scaling ansatz (92) into the governing equation (93)
and deduce the scaling exponent β = 1 − d/4 together with
the ODE for the scaled mass density(

1 − d

4

)−1

(�2)′′ +
(

1 − d

4

)
x2�′′ +

(
3 − d

4

)
x�′

+ d� = 0. (C1)

Multiplying by x and integrating we obtain(
1 − d

4

)−2
d

dx

(
�2

x

)
+ x

d�

dx
+ 2d

4 − d
� = 0. (C2)

Making the same transformation (81) and using again Y =
x3/2 we obtain

Y = 6

4 − d
(C ψ−δ − ψ ), δ = 3

4 − d

4 + 3d
, (C3)

indicating that the results are applicable when d < 4.
The same computation as in Eq. (87) allows one to fix the

amplitude:

J

(d − 2)�d

= 2

5

∫ ψ0

0
dψ Y

5
3

= 2

5

(
6

4 − d

) 5
3
∫ ψ0

0
dψ (C ψ−δ − ψ )

5
3

= 2

5

(
6

4 − d

) 5
3

ψ
8
3

0

∫ 1

0
du (u−δ − u)

5
3

= 2

5

(
6

4 − d

) 5
3

C
4+3d

6
�(�) �

(
8
3

)
(1 + δ) �

(
� + 8

3

) ,

where � = (1 + δ)−1 − 5δ/3. Thus

C = (AdJ )6/(4+3d ) (C4)

with a cumbersome expression for the numerical factor Ad

following from the above formulas.
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