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Critical nonequilibrium cluster-flip relaxations in Ising models
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We investigate nonequilibrium relaxations of Ising models at the critical point by using a cluster update. While
preceding studies imply that nonequilibrium cluster-flip dynamics at the critical point are universally described
by the stretched-exponential function, we find that the dynamics changes from the stretched exponential to the
power function as the dimensionality is increased: The two-, three-, four-, and infinite-dimensional Ising models
are numerically studied, and the four- and infinite-dimensional Ising models exhibit the power-law relaxation.
We also show that the finite-size scaling analysis using the normalized correlation length is markedly effective
for the analysis of relaxational processes rather than the direct use of the Monte Carlo step.
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I. INTRODUCTION

Studies of relaxational processes do not merely give in-
sights but also give probes to investigate critical phenomena.
The droplet theory [1,2] gives relations between relaxational
processes and droplet excitations, and these enable us to study
droplet structures by observing relaxations of order parame-
ters [3]. The nonequilibrium relaxation (NER) method gives
us an alternative means to investigate critical phenomena [4].
The NER functions show power-law relaxations at a critical
point, whereas they are exponential at off-critical points.
The powers of the power functions consist of critical and
dynamical exponents. The NER method estimates a critical
point by finding a point where relaxations exhibit power-law
relaxations, and critical exponents are estimated by applying
a scaling ansatz to the power-law relaxation functions. While
the NER method examines relaxational processes of sudden
cooling and/or heating, a method using the Kibble-Zurek
scaling ansatz examines relaxational processes of scheduled
cooling and/or heating [5–9]. The way of using scheduled
temperature-changing protocol enables us to study a variety
of nonequilibrium relaxations in spin systems.

Although examining dynamical quantities rather than static
ones is an indirect approach, it is effective for systems whose
relaxations are slow. Methods utilizing general relations in
the nonequilibrium relaxation do not require thermalization;
all the production runs are started without discarding Monte
Carlo steps for thermalization.

Since cluster-flip update algorithms [10,11] significantly
accelerate Monte Carlo simulation, the algorithms are widely
used especially for extensive simulations [12]. The algorithms
unite correlated spins into a cluster and flip clusters at a time.
The global update reduces autocorrelation time and enables
us to sample evenly in a state space with small Monte Carlo
steps.

One of us has proposed a method which integrates the NER
method and the cluster-flip update [13]. In that study, it was
found that the nonequilibrium relaxation of the Ising model
at the critical point is not described by the power law, which

is expected in the NER method with single-spin-flip updates,
but rather by the stretched-exponential relaxations [13]. Our
follow-up studies have revealed that stretched-exponential
relaxations are common in the NER with the cluster-flip
update [14,15].

To further develop the method which integrates the NER
method and cluster-flip update, an understanding of the origin
of the stretched-exponential relaxation is indispensable. In
this paper, critical nonequilibrium relaxations with cluster
update in two-, three-, four-, and infinite-dimensional Ising
models are examined. Through the systematical change in
the dimensionality, the origin of the stretched-exponential
relaxation is investigated.

This paper is organized as follows. In Sec. II the Hamilto-
nian and the numerical method used in the paper are given.
Results for several dimensional Ising models are given in
Sec. III. The analysis used in the paper can be extended to a
general procedure for investigation of critical phenomena, and
the procedure is summarized in Sec. IV. Section V is devoted
to summary and discussion.

II. MODEL AND METHOD

We investigate the NER at critical points for two-, three-,
four-, and infinite-dimensional Ising models. The Hamiltonian
of the finite-dimensional Ising model is given by

H = −J
∑
〈i,j〉

σiσj , (1)

where J is the exchange coupling constant, σi (∈ {±1}) is an
Ising spin at site i, and the sum runs over nearest neighbors.
On the other hand, the Hamiltonian of the infinite-range Ising
model is given by

H = − J

N

∑
i<j

σiσj , (2)
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where N is the number of sites. The normalization factor
N is required to make the system extensive. Hereafter, the
Boltzmann constant and the exchange coupling constant J are
set to unity.

In the present paper, we observe NERs from totally ran-
dom states (T = ∞) to critical states (T = Tc) in the Ising
models using the cluster update. To update the systems uni-
formly, we employ the Swendsen-Wang (multiple) cluster
update [10,16,17]. The Wolff (single) cluster update [11]
tends to flip larger clusters, and it could bring about spatially
nonuniform updates especially in the initial stage.

The computational cost of the Swendsen-Wang cluster
algorithm for the infinite-range model is O(N2) since it scans
all the N2 bonds. To reduce the cost to O(N ), the O(N )
cluster Monte Carlo method [18–20] is employed. The method
skips the bond scan properly and realizes O(N ) computa-
tional cost.

III. RESULTS

A. Infinite-range Ising model

To understand the NER in the cluster-flip update, we
consider time evolution in the infinite-range (IR) Ising model
first since the model is one of the simplest models which
exhibits phase transitions at a finite temperature. The IR Ising
model is an Ising model on the complete graph. Owing to the
special character of the complete graph, the development of
the magnetization from the completely random configuration
(T = ∞) to the critical state can be described by the simple
exponential form (see Appendix B). We refine the exponential
form [Eq. (B12)] by considering three facts: (i) The absolute
magnetization per site converges to its thermal equilibrium
states 〈|mc|〉 [18,19], which is given by Eq. (A13),

N1/4〈|mc|〉 = 121/4�(1/2)

�(1/4)
, (3)

∼ 0.909890588,

where �(x) is the gamma function. (ii) The first step of the
time evolution is the percolation process on the complete
graph at the critical point, and the magnetization is propor-
tional to Nβp/dpνp , where βp(= 1) and νp(= 1/2) are, respec-
tively, the mean-field critical exponents of the percolation
problem for the spontaneous magnetization and the correla-
tion length. The upper critical dimension of the percolation
problem dp is six. (iii) The time scale per one Monte Carlo step
depends on the system size. The growth rate of the correlation
in the cluster-flip update is proportional to the correlation
length ξ and merging rate S(t ), and it is described by

dξ

dt
= S(t )ξ. (4)

Owing to the peculiarity of the complete graph, the merging
rate S(t ) at the criticality is proportional to the number of
outside sites of ordered domains times the density of bonds,

S(t ) = A
M∞ − M (t )

N
, (5)

where M∞, M (t ), and A are, respectively, the magnetiza-
tion at the thermodynamic limit, the magnetization at Monte

Carlo step t , and a constant. Considering that M ∝ N3/4 (see
Appendix A), Eq. (4) gives that the time scale of the IR Ising
model is proportional to N−1/4. Taking account of facts (i)–
(iii), the scaling function form of the absolute magnetization
per site at Monte Carlo step t is refined as

〈|m(t )|〉 = 〈|mc|〉[1 − {1 − c1(t/N1/4)2/3}
× exp(−c2t/N

1/4)]1/2. (6)

Here, c1 and c2 are coefficients.
Monte Carlo simulations of the IR Ising model with the

O(N ) cluster Monte Carlo method [18–20] are executed to
obtain the numerical data. To obtain sample means, 8 × 105

independent runs are executed for each system size, N =
1024, 2048, 4096, 8192, and 16384. Figure 1(a) shows mag-
netizations per site as functions of Monte Carlo step t for
several system sizes, and the finite-size scaling (FSS) plot
is shown in Figs. 1(b) and 1(c). The constants c1 and c2 in
Eq. (6) are 0.463(2) and 0.627(2), respectively. The number
in parenthesis represents one standard error in the last digit.
The finite-size scaling function is well described by a single
curve, and that confirms that in the IR Ising model with
Swendsen-Wang cluster updates, the magnetization relaxes
toward its equilibrium value according to a product of power
and simple exponential functions. At the very beginning of
the nonequilibrium relaxation, the magnetization shows the
power-law relaxation, and it exponentially converges to the
thermal equilibrium value [see Fig. 1(c)]. Finite-size scaling
collapse occurs when the Monte Carlo step number t is scaled
by N1/4; that is, the dynamical exponent is unity since the
effective dimension of the model is four.

B. Finite-dimensional Ising model

In our previous papers, we observed stretched-exponential
relaxations in the cluster-flip NER at critical points
[13–15]. The observation of the stretched-exponential relax-
ation indicates that the cluster-flip NER is essentially faster
than the power-law relaxation which is usually observed in
the single-spin-flip NER. The essential difference comes from
growing processes in ordering. While most spin updates take
place on boundaries of domains of the order parameter in
the single-spin-flip update, domains of the order parameter
merge into larger domains in the cluster-flip update. This in-
dicates, as explained in the previous section [see Eq. (4)], the
relaxational time in the cluster-flip update is proportional to
the correlation length. The nonequilibrium relaxation process
in the finite-dimensional (d = 2, 3, and 4) Ising model can
be different from the IR Ising model. In an ideal situation
like the IR Ising model, a major cluster merges immediate
clusters at each Monte Carlo step, and the correlation length
develops ballistically (ξ ∝ t). In the finite-dimensional model,
however, a growth rate of clusters fluctuates from place to
place, and the relative size of clusters surrounding a major
cluster tends to be smaller as the system evolves. If we assume
that the merging rate in Eq. (4) is

S(t ) = ctσ−1 (σ < 1), (7)

we obtain

ξ (t ) = c exp[(t/τ )σ ], (8)
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FIG. 1. (a) Magnetizations per site of IR Ising model as functions
of Monte Carlo step t for several system sizes. (b) Scaling plot of the
magnetization per site of IR Ising model in a linear scale and (c) the
same plot in a logarithmic scale. The curve shows the fitting result
of Eq. (6). The red broken line indicates the thermodynamic limit
value, 121/4�(1/2)/�(1/4). Error bars are smaller than the size of
the symbols.

where c and τ are constants. The stretched-exponential relax-
ation conforms to our previous results [13–15].

To examine the stretched-exponential development of the
correlation length, we estimate the correlation length as
a function of Monte Carlo step t , ξ (t ), by the two-point

FIG. 2. Two-point function for (a) the two-, (b) three-, and
(c) four-dimensional Ising models. Curves show the fitting results of
Eq. (11). Slopes are proportional to the inverse of correlation length.
As the correlation length develops with time, slopes of curves change
from steep to gentle. To avoid impairing the visibility of figures, error
bars are plotted for every eighth data point.

correlation function. The time-dependent two-point correla-
tion function is given by

g(t ; r ) = 〈σ (t ; r0)σ (t ; r0 + r )〉, (9)

where σ (t ; r ) is the Ising spin variable at time t and position
r . To estimate the two-point function effectively, an improved
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estimator is used,
g(t ; ri, rj ) = 〈δ(t ; ri, rj )〉, (10)

where δ(t ; ri, rj ) is unity if sites at ri and rj belong to the same
cluster at time t and is zero otherwise. The angle brackets
〈· · · 〉 denote a sample average. We estimate the correlation
length by assuming the functional form of the two-point
function as

g(t ; r ) = A

(
e−r/ξ (t )

rd−2+η
+ e−(L−r )/ξ (t )

(L − r )d−2+η

)
, (11)

where r , L, η, d, and A are, respectively, a spatial distance
between two spins, a system size, the critical exponent of
the correlation function, the spatial dimension, and a constant
[21]. The function form is symmetrized, taking account of pe-
riodic boundary conditions, which are imposed on our Monte
Carlo simulations. Figure 2 shows the two-point functions
for the two-, three-, and four-dimensional Ising model. For
the two-dimensional model, the temperature is set to the
critical temperature, Tc = 2/ ln(1 + √

2). For the three- and
four-dimensional models, critical temperatures are estimated
by durations to reach equilibrium states in NER, and they
are, respectively, 4.511525 for d = 3 and 6.680400 for d = 4.
The temperatures are given in Table I. Although more precise
estimations for the d = 3 [22] and 4 [23] Ising models are
available, we set the critical temperatures to those estimated
by NER. Our esimated temperatures are accurate enough for
the study of the cluster-flip NER [24], so the differences
in the estimated critical temperatures do not affect critical
cluster-flip NER. To obtain sample means, 104 independent
runs are executed for each system size.

The correlation lengths estimated from the two-point func-
tions for the two-, three-, and four-dimensional Ising models
are plotted in insets of Fig. 3. To examine the development of
the correlation length, we assume the following form for the
stretched-exponential relaxation:

ξ (t ) = A exp(tσ /ρ), (12)

where A, ρ, and σ are constants. Since the dimension of the
correlation length is L, we obtain a dimensionless parameter
by dividing the correlation length by the system size L,

ξ (t )/L = A exp[(tσ − ρ ln L)/ρ]. (13)

The normalized correlation length gives a system-size-
independent measure of ordering. The normalized corre-
lation length as a function of t [Eq. (13)] indicates the

TABLE I. Parameters used for our simulations. While the critical
temperatures Tc are exact for the d = 2 and ∞ (the IR Ising model),
those for the d = 3 and 4 are estimated by the nonequilibrium rela-
tion method. The exact critical exponents β/ν are used for the d = 2
Ising model. For the d = 4 and ∞ models, the mean-field values are
used. For the d = 3 model, the values estimated in Ref. [25] are used.

d Tc β/ν

2 2/ ln(1 + √
2) 1/8

3 4.511525 0.5181489
4 6.680400 1
∞ 1 1

FIG. 3. Scaling plots of normalized correlation lengths for the
(a) two-, (b) three-, and (c) four-dimensional Ising models. Insets
show the normalized correlation lengths as a function of Monte Carlo
step t . Error bars are plotted but are barely visible.

scaling variable of ξ (t )/L is tσ − ln Lρ , and the two- and
three-dimensional data are well scaled by the variable [see
Figs. 3(a) and 3(b)]. The parameters for the FSS plot are,
respectively, σ = 0.314(2) and ρ = 0.290(4) for the two-
dimensional model and σ = 0.241(7) and ρ = 0.29(2) for
the three-dimensional model. While the development of the
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correlation length is described by the stretched-exponential
function for the two- and three-dimensional Ising models, the
FSS scaling plot using Eq. (13) fails for the four-dimensional
Ising model. The failure stems from the smallness of the
parameter σ . In the limit σ → 0, Eqs. (4) and (7) deduce a
power-law relaxation,

ξ (t ) = Atα, (14)

where A and α are constants. The normalized correlation
length for the power-law relaxation is given by

ξ (t )/L = A(t/L1/α )α, (15)

so that the scaling variable is tL−1/α . Figure 3(c) shows
the finite-size scaling plot of the normalized correlation
length for the four-dimensional Ising model. The dynamical
exponent z(= 1/α) is estimated as 0.61(1). The upper critical
dimension of the Ising model is four, and the power-law form
conforms to the result of the IR Ising model. However, the
dynamical exponent is smaller than that of the IR Ising model,
z = 1.

To see that ξ (t )/L is an essential measure of the cluster-
flip dynamics, absolute magnetizations per site are plotted as
functions of ξ (t )/L in Fig. 4. In the usual FSS scaling for
equilibrium states, (T − Tc )L1/ν[∝ (L/ξ )1/ν] is used as the
scaling variable, and we replace it with ξ (t )/L. The modified
FSS expression for the absolute magnetization per site is

〈|m(t )|〉 = L−β/νm̃(ξ (t )/L), (16)

where m̃ is a scaling function (see Appendix C). In the
left-hand side, the thermal average of the absolute value of
the magnetization per site is estimated, since the sign of
the magnetization frequently flips, accompanying a flip of
a major cluster. The exact critical exponents, β = 1/8 and
ν = 1 for the two-dimensional and β = 1/2 and ν = 1/2 for
the four-dimensional Ising model, are used for the scaling
plot for the two- and four-dimensional data. For the three-
dimensional data, β/ν = 0.5181489(10) is used, which is
obtained from the conformal bootstrap with mixed correla-
tors [25]. The critical exponents are given in Table I. At
the beginning of the nonequilibrium relaxation, the scaling
function m̃ is proportional to the power of ξ (t )/L. Solid lines
in Fig. 4 are fitting results, and their powers are, respectively,
0.8947(4), 0.9423(7), and 0.901(2) for the two-, three-, and
four-dimensional Ising models.

IV. CLUSTER NONEQUILIBRIUM RELAXATION
METHOD USING NORMALIZED CORRELATION LENGTH

The analysis of the nonequilibrium relaxation of the cor-
relation length in the present paper shows the FSS analysis
using the normalized correlation length ξ (t )/L is markedly
effective. Although the FSS analysis using ξ/L has been
widely used for the analysis of the thermally equilibrated
systems [26–28], it is worthwhile to describe a procedure of
the FSS analysis for the nonequilibrium relaxation.

The procedure is as follows: (i) As in the usual FSS
analysis of equilibrium simulations, the transition temperature
is estimated at first. The correlation length as a function

FIG. 4. Finite-size scaling plots of the magnetization for the
(a) two-, (b) three-, and (c) four-dimensional Ising models. Lines
show fitting results for the scaled magnetizations as functions of the
power of ξ (t )/L.

of Monte Carlo step t converges to certain values at off
critical temperatures, while it constantly develops to the or-
der of the system size at the critical temperature. (ii) Af-
ter the critical temperature is estimated, critical exponents
are estimated by adjusting the vertical scaling factor Lω/ν

for a quantity in the nonequilibrium relaxation as shown in
Fig. 4. Replacing the Monte Carlo step t by the normalized
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correlation length ξ (t )/L as the FSS variable, we no longer
need to estimate the dynamical exponent z, which is indis-
pensable for the estimation of critical exponents in the NER
method [4].

The essence of the method is to describe physical quantities
by a dimensionless variable like the normalized correlation
length. The normalized correlation length directly reflects cor-
relations of the system, and it helps us to gain insight into rela-
tions between physical quantities and the correlation length. In
this paper, the normalized correlation length is chosen as the
dimensionless variable. However, any dimensionless variables
can be used to suit various purposes. For example, the Binder
ratio [29] is an alternative dimensionless variable for the
cluster NER method [30]. The Binder ratio can be utilized as
an indicator of the distribution of order parameter, which takes
a trivial value at a trivial fixed point and a nontrivial value at
a nontrivial fixed point. Since the Binder ratio is composed of
moments of macroscopic order parameters, the analysis using
the Binder ratio could be efficient for systems which exhibit a
nonuniformly ordered phase.

V. SUMMARY AND DISCUSSION

The nonequilibrium relaxations at the critical points with
the cluster update in the Ising models are examined in view of
the development of clusters. The analytic form of the nonequi-
librium relaxation function of the IR Ising model clarifies that
the relaxation is described by the product of the power and
simple exponential function. The NER is described by the
power-law relaxation at the very beginning, and it shows the
simple exponential relaxation just before reaching the ther-
mally equilibrium state. Furthermore, using the peculiarity of
the complete graph, it is shown that the system-size depen-
dence of the cluster-flip dynamics is ballistic. These features
in the IR Ising model are different from the results observed
in the two- and three-dimensional Ising models, in which the
relaxation is described by the stretched-exponential form and
the system-size dependence of the dynamics is not the usual
power law. In the four-dimensional case, which is the upper
critical dimension of the Ising model, the system exhibits the
power-law relaxation at the very beginning, and the finite-size
time scale is proportional to Lz. These features are equivalent
to those of the IR Ising model, while the dynamical exponent
z is smaller than that of the IR Ising model. This difference in
z would come from the finite-size correction. We expect that
z is unity in the four-dimensional case since the fluctuation
is suppressed enough in the upper critical dimension and
the merging rate described in Eq. (5), which deduces z =
1, would also be realized in the four-dimensional system.
In addition, at the upper critical dimension, the estimation
of the critical exponents is difficult because the logarithmic
correction severely affects the estimation. There is another
possibility that the dynamical exponent depends on the di-
mensionality and that it converges to unity in the limit of
d → ∞. The examination of the dimensional dependence of
the dynamical exponent is left for future studies.

As the finite-size dependence of the time scale depends on
the dimensionality, the relaxational dynamics also depends on
the dimensionality. While the stretched-exponential relaxation

is observed at d = 2 and 3, the nonequilibrium relaxation is
described by the product of the power and simple exponential
function at d = 4 and d = ∞ (the IR Ising model). Therefore,
there is a dynamical transition point between d = 3 and 4.
Even though they are rough analyses, Eqs. (4) and (7) grasp
the mechanism of cluster growth. In the IR Ising model, all the
sites reside on the surface of clusters, and the major cluster is
able to merge minor clusters at every site. The ease of merging
brings about the rapid decrease of minor clusters and of the
merging rate. On the other hand, in the finite-dimensional
Ising models, only the sites on the surface are able to merge
minor clusters. The restriction of the merging process mod-
erates the decrease of the merging rate, and it causes the
dynamical transition depending on the dimensionality. The
merging rate described in Eq. (7) could be too simplified, but
it indicates that the dimensionality of the system and cluster
surface contribute to the essential feature of the cluster-flip
dynamics. According to the droplet theory [1], it is known
that the decay of the temporal autocorrelation function in the
ordered phase is stretched-exponential for d < 3, while it is
simple exponential decay for d > 3. Although the cluster-flip
dynamics in the nonequilibrium state is different from those
dealt with in the droplet theory, our results imply the droplet
theory would also be effective for analyzing the cluster-flip
dynamics. Further investigation is required to understand the
universality class of the cluster-flip dynamics.

A method for investigating critical phenomena with the
nonequilibrium cluster-flip update is described in Sec. IV. The
applicability of the method is restricted to systems in which
the cluster-flip update is effective. However, the method does
not require us to equilibrate systems, and an acceleration of
relaxation by the cluster-flip update reduces computational
time significantly. Combining this method with the Kibble-
Zurek scaling ansatz will deepen our understanding of the
cluster-flip dynamics.

While relaxational dynamics with the single-spin-flip up-
date are intensively studied, studies of those with the cluster-
flip update are not necessarily enough. One reason for its
being overlooked is that the cluster-flip update merely seems
to be useful but its dynamics are thought to be nonphysical.
However, our results show that its dynamics reflect states of
systems, and extracting features of systems is possible by an-
alyzing nonequilibrium cluster-flip relaxations. Equilibrium
cluster-flip dynamics of the q-state Potts model are studied by
analytical [31] and numerical methods [32–35]. Moreover, the
cluster-flip dynamics in noninteger q-state Potts models are
also investigated [36]. It would be interesting to examine the
relation between cluster dynamics and correlation lengths and
cluster surfaces [Eq. (4)] in other q-state (including noninteger
q) Potts models. There still remains much to be clarified
in the cluster-flip dynamics, and further investigations will
develop computational methods and deepen an understanding
of dynamics in spin systems.
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APPENDIX A: MAGNETIZATION OF THE
INFINITE-RANGE ISING MODEL NEAR THE

CRITICAL POINT

Using the Hubbard-Stratonovich transformation, the parti-
tion function of the IR Ising model [Eq. (2)] is given by [37]

Z = eK/2

√
NK

2π

∫ ∞

−∞
exp{−Ng(K; m)}dm, (A1)

where g(K; m) is

g(K; m) = K

2
m2 − ln(2 cosh Km). (A2)

Here N is the number of sites, and K (= βJ ) is the exchange
interaction multiplied by the inverse temperature. Assuming
m 
 1, we expand g(K; m) up to the fourth order in m and

obtain

g(K; m) � − ln 2 + K (1 − K )

2
m2 + K4

12
m4. (A3)

By replacing NK4m4 by 12μ2, the partition function is
written as

Z = 2N−1(12N )1/4

√
2πK

exp

(
K

2
+ 3(1 − K )2N

4K2

)
I, (A4)

where I is

I =
∫ ∞

0
μ−1/2 exp

⎧⎨
⎩−

(
μ + (1 − K )

√
3N

2K

)2
⎫⎬
⎭dμ. (A5)

This integral I is represented by the summation of gamma
functions by replacing (μ + √

ε)2 by t ,

I = 1

2

∫ ∞

ε

t−1/2(t1/2 − ε1/2)−1/2e−t dt

= 1

2

∫ ∞

ε

∞∑
n=0

(2n − 1)!!

2nn!
t−(2n+3)/4εn/2dt

= 1

2

∞∑
n=0

(2n − 1)!!

2nn!

{
�

(
−2n − 1

4

)
− γ

(
−2n − 1

4
, ε

)}
εn/2, (A6)

where, ε = 3(1 − K )2N/(4K2), �(a) is the gamma function, and γ (a, x) is the lower incomplete gamma function. The lower
incomplete gamma function has the following asymptotic equation [38]:

γ (a, x) = �(a)xae−x

∞∑
n=0

xn

�(a + n + 1)
. (A7)

Using the asymptotic equation, the integral I is rewritten as

I = 1

2

∞∑
n=0

(2n − 1)!!

2nn!
�

(
−2n − 1

4

)(
εn/2 − ε1/4e−ε

∞∑
k=0

εk

�((5 − 2n)/4 + k)

)
. (A8)

Therefore, the partition function up to the fourth-order in m is given by

Z = 2N−2(12N )1/4eK/2

√
2πK

∞∑
n=0

(2n − 1)!!

2nn!
�

(
−2n − 1

4

)(
εn/2eε − ε1/4

∞∑
k=0

εk

�((5 − 2n)/4 + k)

)
. (A9)

In a similar manner, the thermal average of the magnetization times the partition function, 〈|m|〉Z, can be obtained as

〈|m|〉Z = 2 eK/2

√
NK

2π

∫ ∞

0
m exp{−Ng(K; m)}dm

= 2N−2
√

12eK/2

√
2πK3

�

(
1

2

)(
eε − ε1/2

∞∑
k=0

εk

�(3/2 + k)

)
. (A10)

Combining Eqs. (A9) and (A10), we obtain the magnetization near the critical point as

〈|m|〉 =121/4�(1/2)

N1/4K

(
eε − ε1/2

∞∑
k=0

εk

�(3/2 + k)

){ ∞∑
n=0

(2n − 1)!!

2nn!
�

(
−2n − 1

4

)

×
(

εn/2eε − ε1/4
∞∑

k=0

εk

�((5 − 2n)/4 + k)

)}−1

. (A11)
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The Taylor series expansion of 〈|m|〉 with respect to ε1/4 is
given by

〈|m|〉 = 121/4�(1/2)

N1/4�(1/4)K

(
1 +

∞∑
n=1

cnε
n/4

)
, (A12)

where cn is the nth Taylor coefficient. From Eq. (A12), by
setting the variables to the critical values K = 1 and ε = 0, we
obtain the value of the absolute magnetization at the critical
point,

〈|mc|〉 = 121/4�(1/2)

N1/4�(1/4)
. (A13)

APPENDIX B: NONEQUILIBRIUM RELAXATION OF THE
MAGNETIZATION IN THE IR ISING MODEL

Using the peculiarity of the complete graph, we derive
the development of magnetization of the infinite-range Ising
model at the critical point as a function of Monte Carlo
step. The magnetization depends on the density of bonds,
which are fundamental elements in the graph representation,
and we consider the time evolution of the density of bonds
rather than the magnetization directly. In the Swendsen-
Wang cluster algorithm, we put bonds between parallel
spins with the probability p. Denoting the magnetization
at the Monte Carlo step n − 1 by Mn−1, the number of
spins parallel to the magnetization N+ and the number of
spins antiparallel to the magnetization N−, respectively, are
given by

N+ = N + Mn−1

2
, (B1)

N− = N − Mn−1

2
. (B2)

The number of bonds between parallel spins B‖ is

B‖ = N+(N+ − 1)

2
+ N−(N− − 1)

2
. (B3)

The probability of a putting bond is

p = 1 − e−2K/N . (B4)

For large enough N , the probability p near the critical point
(K ∼ 1) is approximately represented as

p � 2

N
. (B5)

The density of bonds at Monte Carlo step n, bn, is given by

bn = B‖
B

p,

= 1

N
+ 1

N
m2

n−1, (B6)

where B is the number of bonds and mn is the magnetization
per site at Monte Carlo step n. Near the critical point, the
magnetization per site m [see Eq. (A12)] is given by

m(x) = AN−1/4

(
1 −

∞∑
i=1

Cie
−3x4/4xi

)
, (B7)

where A is a constant, Ci is an expansion coefficient, and
x = [(1 − K )/K]1/2N1/4. In the quench process, we assume
x 
 1 and (1 − K )/K ∝ bc − b, where bc is the density of
bonds at the critical point, and b is the density of bonds. Con-
sidering the slowest term to converge, Eq. (B6) is rewritten as

bn = 1

N
+ A1

N3/2
{1 − A2N

3/2(bc − bn−1)}, (B8)

� 1

N
− A1A2(bc − bn−1). (B9)

Here, A1 and A2 are constants. Solution of this recurrence
relation [Eq. (B9)] is given by

bn = b∞ − (b∞ − b0)rn, (B10)

where r = A1A2 and b∞ = (1/N − rbc )/(1 − r ). Combin-
ing Eqs. (B10) and (B7), the magnetization at Monte Carlo
step n, mn, is given by

mn � AN−1/4[1 − C{bc − b∞ + (b∞ − b0)rn}1/2N3/4].
(B11)

In the critical region, the inside of the curly brackets is
proportional to N−3/2, and we obtain

mn � AN−1/4[1 − c1(1 + c2e
−n/τ )1/2], (B12)

where c1 and c2 are constants.

APPENDIX C: CRITICAL SCALING OF
THE ABSOLUTE MAGNETIZATION

The thermal average of the absolute magnetization
〈|m(L)|〉 obeys the same finite-size scaling as the spontaneous
magnetization. Using the distribution function of the magne-
tization P (L; m), the absolute magnetization is written as

〈|m(L)|〉 =
∫ μ

0 mP (L; m)dm∫ μ

0 P (L; m)dm
, (C1)

where μ is the upper bound of the magnetic distribution. In the
scaling region (T ∼ Tc), the distribution function is written as

P (L; m) = Lβ/νP̃ (mLβ/ν ), (C2)

where L is the system size, β is the critical exponent of the
order parameter, ν is the critical exponent of the correlation
length, and P̃ (mLβ/ν ) is the dimensionless distribution func-
tion. By substituting Eq. (C2) into Eq. (C1), we obtain

〈|m(L)|〉 =
∫ μ

0 mLβ/νP̃ (mLβ/ν )dm∫ μ

0 Lβ/νP̃ (mLβ/ν )dm
,

= L−β/ν

∫ μLβ/ν

0 m̂P̃ (m̂)dm̂∫ μLβ/ν

0 P̃ (m̂)dm̂
, (C3)

where m̂(= mLβ/ν ) is the dimensionless magnetization. In
the scaling region, the upper bound μ is proportional to
(Tc − T )β ∝ ξ−β/ν , where ξ is the correlation length. The
integrals in Eq. (C3), therefore, are written by a function of
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the normalized correlation length, ξ/L(∝ (μLβ/ν )−ν/β ). As a
result, Eq. (C3) is written as

〈|m(L)|〉 = L−β/νm̃(ξ/L), (C4)

where m̃ is a dimensionless scaling function. Equation (C4)
tells us that the absolute magnetization obeys the same finite-
size scaling as the spontaneous magnetization.
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