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A central concept in the connection between physics and information theory is entropy, which represents the
amount of information extracted from the system by the observer performing measurements in an experiment.
Indeed, Jaynes’ principle of maximum entropy allows to establish the connection between entropy in statistical
mechanics and information entropy. In this sense, the dissipated energy in a classical Hamiltonian process, known
as the thermodynamic entropy production, is connected to the relative entropy between the forward and backward
probability densities. Recently, it was revealed that energetic inefficiency and model inefficiency, defined as the
difference in mutual information that the system state shares with the future and past environmental variables,
are equivalent concepts in Markovian processes. As a consequence, the question about a possible connection
between model unpredictability and energetic inefficiency in the framework of classical physics emerges. Here,
we address this question by connecting the concepts of random behavior of a classical Hamiltonian system,
the Kolmogorov-Sinai entropy, with its energetic inefficiency, the dissipated work. This approach allows us to
provide meaningful interpretations of information concepts in terms of thermodynamic quantities.

DOI: 10.1103/PhysRevE.98.052109

I. INTRODUCTION

Dissipation, which occurs when systems are driven out-
of-equilibrium, is a fundamental subject in physics, since it
is related to reversibility of physical processes. Significant
developments have been achieved in the description of such
systems, specially concerning their energetics [1–4]. Since the
development of classical information theory [5] and Jaynes’
principle of maximum entropy [6]—the equilibrium probabil-
ity distribution maximizes information transfer in the mea-
surement process—several deep links between information
theory and thermodynamics have been discovered [7].

Based on the observation that logical irreversibility implies
thermodynamic irreversibility [8], a relation between the en-
ergy cost of computation, which is a physical process, and
the algorithmic complexity was derived [9]. The algorithmic
complexity of a system is defined as the shortest algorithm,
measured in bits, whose output is the actual physical con-
figuration of the system. Thus, it is a natural measure of
randomness, deeply linked with the information metric, i.e.,
distance between strings of bits.

An important relation between dissipation and informa-
tional entropy was obtained in Ref. [10]. Considering a driven
Hamiltonian system, initially in equilibrium, it was proven
that the dissipated work due to the driven process is propor-
tional to the Kullback-Liebler divergence (relative entropy)
between the forward and backward probability densities—
backward process defined by the time-reverse driven protocol.

*lucas@chibebe.org

This result directly leads to the second law of thermodynam-
ics, since relative entropy is a positive semi-definite quantity.

Another recent work has revealed that energetic ineffi-
ciency, i.e., the dissipated energy, and model inefficiency
(non-predictive power) are equivalent concepts in Markovian
processes [11]. There, predictive power is the information that
the system retains from the past and that is actually necessary
to predict the system future behavior [12–14]. Therefore, non-
predictive information is just the difference between all the
information that the systems have and the predictive power.

Using the mathematical formulation provided by Shannon
[5], Kolmogorov constructed a theoretical tool, currently
known as Kolmogorov-Sinai entropy (KSE), allowing to an-
alyze the random behavior of dynamical systems. It is a
parameter of the dynamical system which provides a criterion
to define chaos, since positive KSE is a feature of chaotic
behavior [15]. Despite such construction, the connection be-
tween thermodynamic entropy—or even the informational
one—and KSE for general systems remains unclear [16–18].

This raises the question of whether randomness and ener-
getic inefficiency are connected in the framework of classical
physics. The purpose of this work is to derive a mathematical
relation between the concept of random behavior of a classical
Hamiltonian system, measured by the KSE, and its energetic
inefficiency, measured by dissipated energy, in accordance
with the fluctuation relations. This connection is built by
describing a dynamical system in terms of communication
theory and is unambiguous, it paves the way for a novel route
to investigate quantities like work and heat in the framework
of quantum thermodynamics.

The paper is organized as follows. We start by defining
the class of systems under consideration, followed by a
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description of an informational-theoretic approach for dynam-
ical systems, in which the concept KSE of the dynamics is in-
troduced. Then, in the main part of the article, we present our
result, which establishes a lower bound on the dissipation in
terms of the randomness generated by the dynamics. We close
the paper with a proper discussion regarding the application
of the result in classical systems.

II. PHYSICAL SETUP

The system is described by a Hamiltonian H (st ; λ) with
st = (q(t ), θ (t )) the set of generalized coordinates and canon-
ical conjugate momenta in phase space �. The control pa-
rameter λ is varied in time following an externally controlled
protocol λ(t ), denoted the work protocol. We assume that the
system is initially in thermal equilibrium with a reservoir at
inverse temperature β, thus the distribution function is given
by

ρ0(s0, λ0) = e−βH (s0;λ0 )

Z(λ0)
, (1)

where Z(λ) = ∫
�

ds exp{−βH (s; λ)} is the partition function
and λ0 ≡ λ(0). During the action of the work protocol, the
system is isolated from the reservoir. This means that the
energy exchange between the system and the external world
is determined by λ, and we denote this energy as the work W .

The dynamics in phase space is deterministic and governed
by the Hamilton equations

q̇i = ∂H (s; λ)

∂θi

, θ̇i = −∂H (s; λ)

∂qi

.

We denote the Hamiltonian flow, i.e., the time evolution map
that determines the trajectory st associated with each initial
condition s0, by st = φt (s0). Therefore, our dynamical system
is the triplet (�, p, φt ), a probability space, (�, p), equipped
with a one-parameter group of automorphisms of the proba-
bility measure space, φt , with each time evolution function φt

depending on time t [15,19,20]. Additionally, p : � → [0, 1]
is the initial probability measure over the sigma-algebra �.
For Hamiltonian systems, � is simply the set of all the subsets
of the phase space �. Finally, we would like to highlight that,
due to the Hamiltonian dynamics, Liouville’s theorem applies.

Let us now define, for every time t , the functional

S[ρt ] = −
∫

�

dsρt (s) ln ρt (s), (2)

which is the Shannon differential entropy associated to the
density ρt (s) at time t [21]. We observe that S is defined con-
sidering the support of the probability distribution. Initially,
as canonical equilibrium is assumed, this is equal to the ther-
modynamic entropy and thus, contains all the thermodynamic
information about the system. However, in general, this is no
longer true for t > 0, since the work protocol acting on the
system may lead it out of equilibrium.

III. RANDOMNESS

The main goal of the present study is to establish a connec-
tion between the dissipated energy during the work protocol
and the Kolmogorov-Sinai entropy (KSE). Therefore, as we

must define this entropy for the dynamical system, we should
seek an information-based description of the dynamical sys-
tem. Usually, in a communication process, the source emits
to the receiver discrete symbols (the messages) according
to certain probability distribution. The KSE quantifies the
randomness of this process. The goal is to compute it for a
dynamical system and associate randomness to chaos. Con-
sequently, in order to relate KSE to a dynamical system, we
need to define a discrete alphabet, which is accomplished by
partitioning the phase space � [15].

We say that a collection A of subsets is a partition
of the phase space �, if its elements α ∈ A are dis-
joint, i.e., ∀ α, α′ ∈ A, α ∩ α′ = ∅ if α 	= α′, and cover the
�,

⋃
α∈A α = �. Let us remark that, from two given parti-

tions, A and B, it is possible to define a new partition, A ∨ B,
by means of the refinement A ∨ B = {α ∩ β | α ∈ A , β ∈ B}.

Let us now focus on the Hamiltonian flow. In order to
simplify the analysis, we will consider a discrete version of the
dynamical system. This means that the time t is discrete, t ∈
Z, and the time evolution is generated by the iteration of the
automorphism φ ≡ φ1. Let us remark that such assumption
is physically sensible and reasonable, since it is in accor-
dance with the statement that any measurement is discrete
in time from an experimental point of view. In this context,
time evolution is introduced by means of the refinement of
partitions as follows. Let us consider some initial partition A,
whose elements are denoted by α. Then, an evolved partition
φ(A) is obtained by the application of the evolution map φ

on A, i.e., φ(A) = {φ(α) | α ∈ A}. Therefore, trajectories in
phase space provide us with a discrete sequence of partitions
A,φ(A), φ2(A), . . ., based on an initial partition A. This is
the required discrete alphabet to extend the definition of KSE
for dynamical systems [15].

From these definitions, the entropy of a finite partition A

with respect to the probability measure p can be defined as
the Shannon entropy of the probability vector [p(α)]α∈A,

S(A) =
∑
α∈A

z[p(α)], (3)

where z(x) = −x ln x if x > 0, and z(x) = 0 if x = 0. We can
interpret this entropy as the amount of uncertainty concerning
the element of the partition in which the state is.

We are now ready to define the randomness of the dy-
namical system. Let us define the KSE associated with the
dynamics as [19]

h(φ) := sup
A∈P

lim
t→∞

S
[ ∨t−1

n=0 φ−n(A)
]

t
, (4)

where
∨t−1

n=0 φ−n(A) = A ∨ φ−1(A) ∨ · · · ∨ φ−t+1(A) and P

is the set of all finite partitions of the phase space. For the
sake of clarity, we have denoted as φ−n the application of
the inverse map (φ−1)n. Indeed, note that the Hamiltonian
flux φ is a bijection and hence, there exists its inverse.
Consequently, we can compute all the transition probabilities
only relying on the initial probability p0. If pt represents the
probability measure at time t , then pt [A ∨ · · · ∨ φt−1(A)] =
p0[φ−t+1(A) ∨ · · · ∨ A] = p[A ∨ · · · ∨ φ−t+1(A)]. This im-
plies that St [A ∨ · · · ∨ φt−1(A)] = S[

∨t−1
n=0 φ−n(A)] and
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Eq. (4) follows, where St is the Shannon entropy computed
at time t .

Starting from some initial condition s0, we can follow the
associated orbit and, at every instant of time t > 0, assign an
element of the partition, αt ∈ A, which contains the state st .
In other words, for every initial condition and every partition,
we can construct the path (α0, α1, . . . , αt ). Note that αt is an
element of the original partition A in which the system is
at time t , it does not necessarily mean that αt and αt+1 are
contiguous. This is done in order to avoid the introduction of
an extra index to label the elements of the partition.

Given the above definitions, we are interested in the proba-
bility of observing a specific path (α0, α1, . . . , αt ). According
to the theory of dynamical systems, such probability is defined
as [15,20]

p(α0, α1, . . . , αt ) = p[α0 ∩ φ−1(α1) ∩ · · · ∩ φ−t (αt )], (5)

from which the conditional probabilities can be calculated as

p(αt |α0, α1, . . . , αt−1) = p(α0, α1, . . . , αt )

p(α0, α1, . . . , αt−1)
. (6)

The KSE is a standard tool in the analysis of chaotic behav-
ior, in a sense that it quantifies the notion of randomness in the
coarse-grained phase-space dynamics. We can understand this
statement by looking at the equation

h(φ) = − sup
A∈P

lim
n→∞

1

n

n∑
t=1

∑
α0,...,αt−1

p(α0, . . . , αt−1)

×
∑
αt

z[p(αt |α0, . . . , αt−1)]. (7)

The right-hand side of the above equation is known as the
generalized Shannon entropy of the dynamical system. It mea-
sures our knowledge about the dynamics of the system [15].
Indeed, the higher the uncertainty about the dynamics, the
larger the randomness generated by it.

IV. A LOWER BOUND ON DISSIPATION

It is known that coarse-graining increases informa-
tional entropy, since we are effectively discarding informa-
tion [22,23]. Here, we are interested in studying the thermody-
namic entropy production rate during the dynamical evolution
of the system. We start by defining the conditional coarse-
grained density of states in the phase space as

ρcg (s|α0, . . . , αt−1) =
∑
αt∈A

p(αt |α0, . . . , αt−1)

v(αt )
1αt

(s), (8)

where we have defined the indicator function 1α (s) = 1 if
s ∈ α and 1α (s) = 0 otherwise, and the phase space volume
v(α) = ∫

α
ds.

We focus now on our main objective, which is to connect
the randomness generated by the dynamics with the dissipated
work (thermodynamic entropy production). We know that the
entropy production is related to an entropic quantity by means
of the fluctuation relation [10]. Therefore, we need to establish
the connection between this entropic quantity and the KSE
given by Eq. (7). In order to achieve this goal, we will compute
the averaged Shannon entropy of the density of states in phase

space, given by Eq. (8), Ep(α0,...,αt−1 )S[ρcg (α0, . . . , αt−1)] :=
ES[ρcg

t ], which is lower bonded by (see the Appendix for
details)

ES
[
ρ

cg
t

]
� S[ρt ] + ct (A) + dt (A), (9)

where

ct (A) =1 −
∑

α0,...,αt∈A

p(αt |α0, . . . , αt−1)

× ṽ(αt−1, αt−2, . . . , α0|αt ) (10)

and

dt (A) := −
∑
αt∈A

p[φ−t (αt )] ln v[αt ]. (11)

We note that we defined p(α0|α0) := p(α0) and v(α0|α0) :=
1. The renaming terms (t > 1) of p(αt |α0, . . . , αt−1) and
v(αt |α0, . . . , αt−1) are defined as usual. We note that the tilde
over any quantity means that we are looking at the time-
reversed trajectory.

In the present setup, the dissipated work is given by
〈Wd〉 = β−1S(ρ||ρ̃ ) with S(·||·) denoting the relative entropy
between its arguments, while 〈·〉 stands for phase space aver-
age. Now, by taking the time average of this equation and also
of Eq. (9), we can relate the obtained results with the KSE
through Eq. (7) (see the Appendix for details). The result is,
hence,

β〈Wd〉 � β(〈H 〉 − F (λt )) − I t (A). (12)

In this equation, we define F (λt ) := β−1 ln Z(λt ) as the refer-
ence free energy at time t and It (A) = h(φ) − ct (A) − dt (A).
Equation (12) is the main result of this work.

A. Examples

Let us consider as a first example of dynamical system the
rotation of the unit disk in the two-dimensional phase space.
The Hamiltonian function that generates such dynamics is the
quadratic form H (q, θ ) = q2 + θ2, where the dimensionless
energy is constrained to be smaller than one. This is just a
harmonic oscillator. Setting the unit of time as the time spent
in a rotation of π radians and considering the trivial partition
A = {�}, the quantity I t (A) is equal to zero, since h(φ) = 0
for integrable dynamics. The bound is then saturated in the
infinite temperature limit. If we consider a different partition
A = {[q > 0], [q � 0]}, where [q > 0] ([q � 0]) represents
the states in the unit disk with positive coordinate q (non-
positive coordinate q), we have I t (A) = 1 − ln2, thus imply-
ing in a negative, trivial bound. This simple example highlight
the fact that the result is dependent on the chosen partition,
which is expected since KSE is partition dependent, being
maximal for the generating one. This is the case in which our
result is not informative, since we do not have external driven
and the dissipated work is zero.

Let us now move to a more interesting example by con-
sidering the case of a chaotic system, the paradigmatic kicked
top. The system Hamiltonian can be written in the form H =
αJx + κJ 2

z

∑
n δ(t − n), where Ji is the ith component of the

angular momentum and we choose a unit period of the kicks.
It is easy to see that the total angular momentum is conserved,
thus restricting the phase space to a sphere. Choosing the
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energy scale appropriately we have that the system is chaotic
for κ � 2, in the sense that the greatest Lyapunov exponent
becomes positive. We are interested here in the complete
chaotic regime, in which the entire phase space is chaotic.
This happens for κ � 5.

In this regime we can compute the time averages that ap-
pear in Eq. (12) by considering the fact that the system quickly
thermalize, i.e., all points in phase space have the same
probability. Let us start with ct (A), which is the most difficult
quantity to numerically compute. In our case the trajectories
of the system would be so sparse that, for any sequence
α0, . . . , αt−1, the system will assume equal probabilities
for the event αt . Mathematically p(αt |α0, . . . , αt−1) = 1/n,
where n is the number of elements in the considered partition.
Due to the same reason, the conditional volume reduces sim-
ply to ṽ(αt−1, αt−2, . . . , α0|αt ) = (1/n)t . Plugging this into
Eq. (10) results in ct (A) = 0 for the complete chaotic case.

Regarding the calculation of the quantity dt (A), consider
the following reasoning, which is similar to the one used
above for ct (A). First, let us point out that p[φ−t (αt )] is
just the probability of finding the system state in αt at
time t , as implied by Liouville’s theorem. Since the dy-
namics is chaotic, there is an instant of time t that the
probability p[φ−t (αt )] is approximately equal to the volume
v(αt )/v(�). Then, the quantity dt (A) is approximately equal
to −∑

α[v(α)/v(�)] ln v(α). If A is a partition such that
its cells have equal volume the quantity dt (A) reduces to
−n[v(α)/v(�)] ln v(α). Note that if n tends to infinity, then
v(α)/v(�) tends to zero. Therefore, Eq. (12) reduces to

β〈Wd〉 � β(〈H 〉 − F (λt )) − h(φ) + n[v(α)/v(�)] ln v(α).

(13)

We can compute the value of KSE by means of Pesin identity.
Therefore the case κ = 5 (and α = π/2) is h(φ) = 0.8768.

Regarding the saturation of our result, we note that the
inequality appearing in Eq. (12) of the main text is a con-
sequence of the approximation considered in Eq. (A1) of
the Appendix. Therefore, inequality (12) saturates when the
time average of coarse-grained entropy (averaged over all
trajectories) is equal to the entropy itself. This implies that
the KS entropy must be equal to the initial thermodynamic
entropy (Boltzmann constant is equal to 1) per unit time.

V. DISCUSSION

We can understand Eq. (12) in the following way. The
difference between the Shannon entropies before and after im-
posing the coarse-graining is called hidden information [23].
This is the information ignored by coarse-graining the system.
Hence, according to this definition, the quantity d0(A) can be
interpreted as the minimum amount of hidden information,
since S[p(α)] − S[ρ0] � d0(A) (c0(A) = 0). The equality
holds when ρ0 is the uniform distribution. In this way, the
quantity S[p(α)] − d0(A) represents the maximum informa-
tion that is not hidden, i.e., the information which is not related
to the coarse-graining procedure. This is the maximum value
which the differential entropy can assume.

Following this line of reasoning, the quantity
Ep(α0,...,αt−1 )S[p(αt |α0, . . . , αt−1)] − S[ρt ] ≡ Ih

t is naturally

interpreted as the average hidden information. Thus, the
quantity ct (A) + dt (A) represents the minimum average
hidden information, since Ih

t � ct (A) + dt (A). Therefore,
the quantity It (A) represents the maximum average of the
information that is not hidden information—A is the partition
that maximizes Ih

t . This is the information generated by the
system dynamics.

The study of out-of-equilibrium systems is, in general,
a very hard task. For instance, the result in Ref. [10]
established a powerful connections between information
theory and thermodynamics, relating the dissipated work in
a Hamiltonian process to the asymmetry between the time
evolution of the system and its time-reverse counterpart.
The purpose of the present study is to provide new tools
for investigating the thermodynamics of out-of-equilibrium
Hamiltonian systems. Indeed, based on the understanding
of dynamical systems in terms of communication theory,
we were able to derive a lower bound on the dissipated
work (entropy production) in terms of the complexity of the
dynamics, measured by the KSE. In other words, we build
a connection between a dynamical quantity, KSE, and a
macroscopic physical one, the dissipated work.

In the development of the present work, we have as-
sumed that Liouville’s theorem applies, which is the case
for closed Hamiltonian systems. Based on some results in
literature dealing with fluctuation relations for open classical
systems [24], we do believe that our results can be extended to
such scenario, including non-Markovian dynamics. However,
the connection between communication theory and dynamical
maps in this case must be defined very carefully.

Regarding the extension of our work to quantum systems,
the author of Ref. [25] defined a dynamical entropy by propos-
ing an adequate definition of quantum stochastic processes.
However, we have currently a much deeper understanding of
such processes [26], and establishing a connection between
them and quantum communication theory should be possible.
This path might lead us to an unambiguous definition of KS
entropy in the quantum setting.

ACKNOWLEDGMENTS

Discussions with Iñigo L. Egusquiza and Kavan Modi
are greatly acknowledged. M.C. and L.C.C. acknowledge
financial support from the Brazilian funding agencies CNPq
(Grants No. 401230/2014-7, No. 305086/2013-8, and No.
445516/2014-), CAPES (Grant No. 6531/2014-08), and the
Brazilian National Institute of Science and Technology of
Quantum Information (INCT/IQ). M.S. and E.S. are grateful
for the funding of Spanish Ministerio de Economía y Com-
petitividad/FEDER Grant No. FIS2015-69983-P and Basque
Government Eusko Jaurlaritza IT986-16. This material is
also based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advance Scientific
Computing Research (ASCR), under field work Proposal No.
ERKJ335. The authors also acknowledge support from the
projects QMiCS (Grant No. 820505) and OpenSuperQ (Grant
No. 820363) of the EU Flagship on Quantum Technologies.
L.C. acknowledges the warm hospitality of QUTIS group at
the University of the Basque Country.

052109-4



KOLMOGOROV-SINAI ENTROPY AND DISSIPATION IN … PHYSICAL REVIEW E 98, 052109 (2018)

APPENDIX: DERIVATION OF THE LOWER BOUND FOR THE DISSIPATED WORK

The Shannon entropy of ρcg (s|α0 . . . αt−1) averaged over all possible paths (α0, . . . , αt−1) can be compared to the Shannon
entropy of ρt

ES
[
ρ

cg
t

] − S[ρt ] =
∫

dsρt (s) ln ρt (s) −
∑

α0,..., αt

p(α0, . . . , αt ) ln
p(αt |α0, . . . , αt−1)

v(αt )

=
∑

α0,... αt

∫
αt∩φ(αt−1 )∩···∩φt (α0 )

dsρt (s)

[
ln ρt (s) − ln

p(αt |α0 . . . αt−1)

v(αt )

]

�
∑

α0,... αt

∫
αt∩φ(αt−1 )∩···∩φt (α0 )

ds

[
ρt (s) − p(αt |α0 . . . αt−1)

v(αt )

]

= 1 −
∑

α0,...,αt

p(αt |α0 . . . αt−1)
v[αt ∩ φ(αt−1) ∩ · · · ∩ φt (α0)]

v[αt ]
, (A1)

where the inequality follows from the relation x(ln x − ln y) � x − y, ∀ x, y ∈ R∗
+. It is possible to rewrite the quantity ct

considering the volume measure as a time-reversed measure. Since ψ := φ−1 preserves volume measure due to Liouville’s
theorem, it follows that

v[αt ∩ · · · ∩ φt (α0)] = v[ψt (αt ) ∩ · · · ∩ α0] = ṽ(αt , . . . , α0), (A2)

which will below lead to Eq. (10) for ct . As the time rate of ES[ρcg
t ] + ∑

αt∈A p[φ−t (αt )] ln v[αt ] is equivalent to KSE, when
calculated for the finite partition which maximizes it, it follows the lower bound on KSE:

h(φ) � S[ρt ] + ct (A) + dt (A), (A3)

where

ct (A) := 1 −
∑

α0,...,αt

p(αt |α0 . . . αt−1)
v[αt ∩ φ(αt−1) ∩ · · · ∩ φt (α0)]

v[αt ]
(A4)

and

dt (A) := −
∑
αt∈A

p[φ−t (αt )] ln v[αt ]. (A5)

The free energy is defined as the Legendre transformation F (λ0) := 〈H 〉ρ0 − β−1S[ρ0]. Note that the initial distribution is a
equilibrium one and thus, by using Liouville’s theorem, it follows the relation S[ρt ] = β(〈H 〉ρ0 − F [x0]), ∀t ∈ R. Additionally,
the dissipated work up to time t, 〈Wd〉t = [〈H 〉ρt

− 〈H 〉ρ0 ] − [F (λt ) − F (λ0)] [10], which can be calculated in processes like
the ones considered here as

β〈Wd〉t = −S[ρt ] + β[〈H 〉ρt
− F (λt )]. (A6)

Finally, by solving for S[ρt ] and using inequality (A3), we achieve the desired lower bound given by Eq. (12).
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