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Brownian motors in variable-shape medium: Overdamped versus underdamped cases

M. F. Kepnang Pebeu,1,* R. L. Woulaché,1,2 and T. C. Kofane1,2

1Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P. O. Box 812, Yaounde, Cameroon
2Centre d’Excellence Africain en Technologies de l’Information et de la Communication, University of Yaounde I, Cameroon

(Received 24 April 2018; revised manuscript received 12 September 2018; published 7 November 2018)

In this paper, we investigate the statistical behavior of Brownian particles in a deformable traveling-wave
potential in the absence of external load. We model the deformation of the system by the modified Remoissenet-
Peyrard on-site potential, which is distinguished by its sine-Gordon shape. We examine numerically the effect
of the deformed on-site potential with traveling speeds on the transport properties in overdamped as well
as underdamped Brownian particles. Using the Langevin Monte Carlo method, we show that the average
velocity of Brownian particles is an increasing function of the shape parameter in the overdamped case, and
a decreasing function of the shape parameter in the underdamped case. It is found that, in the overdamped
case, the numerical behavior of the average velocity of Brownian particles validates its analytical results. In
the presence of the deformable traveling-wave potential, for negative as well as positive values of the shape
parameter, the underdamped case favors the transport properties in the medium. The average velocity needed to
cross the potential barriers is lowest in the underdamped case. Moreover, the effective diffusion coefficient in both
cases exhibits peaks, and the diffusion process enhancement is discussed for some values of the shape parameter.
Finally, in the underdamped case, by using the Smoluchowski equation and the finite-element methods, we
analyze the distribution of Brownian particles in the deformed system.
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I. INTRODUCTION

Brownian particles in periodic structures have attracted the
attention of many researchers due to their multidisciplinary
applications [1–10]. For instance, in biology, overdamped
Brownian particles are molecular motors moving along a
periodic structure performing basic tasks in living organisms,
and they do not necessarily need an external applied load to
accomplish their task, that is, carrying a load across a viscous
environment [11,12]. Importantly, with modern microscopic
techniques, superresolution has led to the discovery of a
multitude of anomalous diffusion processes in living cells and
complex fluids [13–16].

Likewise, Brownian particles have also been studied in
detail in connection with superionic conductors, Josephson
junctions, the dynamics of phase-locked loops [3,17–21], to
mention but a few. The common feature of these latter cases is
that they consist of species of high mobile particles considered
to be Brownian particles moving on a periodic structure with
diffusion coefficients comparable to those found in liquids
[22–24]. In either case, Brownian particles are nanomachines
that operate far from thermal equilibrium, using the thermal
energy imbalance to perform mechanical work so as to gen-
erate the directed transport, with noise playing an important
role in the process [25,26]. Thus, the drift of particles is
generated when conditions such as the presence of thermal
noise, the anisotropy of the medium, and the time dependence
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are supplied by external variations of the constraints on the
system [27]. Moreover, the interactions of the Brownian parti-
cles with the surrounding bath may be considered statistically
rather than treating each Brownian particle individually due
to the fluctuating forces described only by their statistical
properties [28].

Indeed, most of the studies in the field of Brownian parti-
cles are modeled by physical systems having a rigid-shape on-
site substrate potential. However, these systems with periodic
structure, although interesting, describe realistic systems only
with certain approximations. To obtain a physically more re-
alistic periodic substrate for Brownian particles, the effects of
physical parameters such as temperature and pressure should
be considered. Under such constraints, some physical systems
may undergo changes such as shape distortion, variation of
crystalline structures, or conformational changes. Hence, it
appears necessary to take into account the deformable charac-
ter of the medium in Brownian particles. Indeed, deformable
models have been considered both from mathematical and
physical points of view. From a mathematical point of view,
the foundations of deformable models represent a confluence
of geometry, physics, and approximation theory. Geometry
serves to represent object shape, physics imposes constraints
on how the shape may vary over space and time, and optimal
approximation theory provides the formal underpinnings of
mechanisms for fitting the models to measured data. From
a physical point of view, deformable models are viewed as
elastic bodies that respond naturally to applied forces and con-
straints [29,30]. In fact, the term “deformable models” stems
primarily from the use of elasticity theory at the physical level,
generally with a Lagrangian dynamics setting. Furthermore,
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in an overdamped case, aiming at a more realistic description
on the molecular level, some authors [9] have added an in-
ternal variable, which becomes necessary if the time required
to achieve, for instance, a conformational change is not small
compared with other time scales.

In the present work, we study the transport properties of
Brownian particles in a deformable traveling-wave potential
both in overdamped and underdamped limits. Note, however,
that the traveling-wave potential has been introduced by Bor-
romeo et al. [31] to study Brownian surfers. They have shown
that the traveling wave has the capability of dragging Brown-
ian particles along. Moreover, the traveling-wave potential has
been used by Li et al. [32] to characterize the orientation of a
molecular motor’s internal electric dipole in order to describe
the nature of the interaction between the motors and the
filaments, as well as the interplay of the interaction and ATP
hydrolysis, in order to understand the physical mechanism of
molecular motors. However, some works have been done on
the dynamics of Brownian particles using the variable shape
potential [33,34]. For example, in the overdamped case an
optimal transport may be obtained by changing the shape of
the system [33]. Moreover, in the presence of the deformable
traveling-wave potential, systems with sharp wells and broad
barriers may favor the transport under the influence of an
applied load [34].

Most of the above-mentioned works deal with overdamped
deformable Brownian systems in which the inertial term due
to the finite mass of the particles is neglected. To the best
of our knowledge, underdamped Brownian particles in the
presence of a traveling variable shape potential have yet to
be investigated.

Therefore, underdamped Brownian particles in the de-
formable traveling potential could model driven laser plasma
waves, known to accelerate classical charged particles trapped
by perpendicular propagating electrostatic waves [35], and
where the deformed on-site potential can represent a substrate
that has abnormalities and defects. This deformable substrate
potential could also model ionic solids, whose species, consid-
ered to be noninteracting Brownian particles, occupy vacant
sites of the rigid framework diffusing through a lattice [2].

This paper examines the dynamic properties of free Brow-
nian particles under the influence of the deformable traveling-
wave potential in the overdamped and underdamped cases,
using the Langevin Monte Carlo method [36,37]. Since the
traveling-wave potential speed can induce a nonzero current
in the absence of any external force, we subsequently an-
alyze, in both cases, the effective diffusion coefficient of
particles moving in a periodic deformable traveling-wave
potential.

The paper is organized as follows. In Sec. II we introduce
the global model of free Brownian particles moving in a
deformable traveling-wave potential, and the quantities of
interest, such as the average velocity, the effective diffusion
coefficient, and the Monte Carlo error. Analytical results of
the transport properties of the overdamped Brownian particles
are presented in Sec. III A along with a validation of the
method using direct numerical simulations. The transport
properties of the underdamped Brownian particles based on
the Fokker-Planck equation are addressed in Sec. III B. Fi-
nally, our results are summarized in Sec. IV.

FIG. 1. Schematic representation of V (x; r ) as a function of x

for a few values of the shape parameter r , with ω = 0.

II. MODEL

We consider a Brownian particle of mass m free from
any external load moving in a periodic traveling-wave po-
tential with shape deformation. In this work, we choose the
Remoissenet-Peyrard (RP) potential [38], modified according
to [39]

V (x, t ; r ) = U

[
(1 + r )2[1 − cos(x − ωt )]

(1 − r )2 + 2r[1 − cos(x − ωt )]
− 1

]
, (1)

where |r| < 1 represents the deformation parameter. We rep-
resent the RP potential for the traveling potential speed ω = 0
(see Fig. 1). The RP potential reduces to a sinusoidal shape
for r = 0; it provides broad wells separated by narrow bar-
riers and deep narrow wells separated by broad flat barriers,
respectively, for r < 0 and r > 0, with U the potential height.

The dynamical behavior of the Brownian particles can be
modeled by a stochastic differential equation of Langevin type
written as [3]

mẍ + γ ẋ = −dV (x, t ; r )

dx
+

√
2γKBT ε(t ), (2)

which depicts the Markov process of Brownian particles. In
Eq. (2), the overdot indicates differentiation with respect to
time t . γ represents the friction coefficient of the medium,
D = KBT/γ is the diffusion coefficient of the Brownian
particle, KB is the Boltzmann constant, and T is the tem-
perature of the bath. Assuming the environment to be an
equilibrium heat bath with independent collisions, ε(t ) is
the Gaussian white noise of zero mean [〈ε(t )〉 = 0], and
it satisfies the fluctuation-dissipation relation 〈ε(t )ε(t ′)〉 =
2Dδ(t − t ′), where δ(t ) denotes the Dirac delta function, and
t and t ′ are different times. The Dirac δ function is a very
convenient “function.” More exactly, it is the limiting case of
a family of functions [40]. It has the property of singling out
a particular value of a function f (t ) at a value t = t0. The
function is characterized by the following properties:

δ(t − t0) =
{

0 if t �= t0,

∞ if t = t0,
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in such a way that for any ε > 0,
∫ t0+ε

t0−ε

δ(t − t0)dt = 1, (3)

which means that the function δ(t − t0) has a very sharp peak
at t = t0, but the area under the peak is unity.

Since Eq. (2) is a stochastic differential equation, we con-
sider a statistical ensemble of stochastic processes belonging
to independent realizations of the random fluctuations ε(t ).
The equivalent of the Langevin equation (2) is the Fokker-
Planck or Smoluchowski equation for the distribution function
P (x, v, t ) in phase space (x, v), written as

∂

∂t
P (x, v, t ) = LF P (x, v, t ), (4)

with the Fokker-Planck operator LF ,

LF = −v
∂

∂x
+

(
∂

∂v

)(
∂V (x, t ; r )

∂x
+ γ v

)
+ D

∂2

∂v2
. (5)

To understand the behavior of the Brownian particles in
our system, we focus on the average velocity of Brownian
particles. In fact, the average velocity of Brownian particles
is perfectly sufficient to describe its dynamics in a system as
well as its transport properties. In the overdamped case, an an-
alytical expression of the average velocity for a Fokker-Planck
equation was obtained earlier in previous works [34]. Here,
we recall its expression (for more details of computation, see
Ref. [34]),

〈v〉 = ω + 2πC, (6)

with

C = D
[
1 − exp

(
2πω
D

)]
∫ 2π

0 dα
∫ 2π

0 dx exp
(

V (x+α;r )−V (x;r )+ωα

D

) . (7)

Due to the nonlinearity of the RP potential, no analytical
solution of Eq. (2) is available in the underdamped case. Thus,
only its numerical solution is presented in this work. For
the numerical treatment in both cases, we define the average
velocity of Brownian particles in the long-time limit as

〈v〉 = lim
t→∞

〈x(t )〉
t

, (8)

where 〈· · · 〉 means the ensemble average, which is the statis-
tical average of the quantity inside the angular brackets at a
given time over all systems of the ensemble. Other important
quantities taken into account are the fluctuations around the
average velocity of Brownian particles, Vav = 〈v2〉 − 〈v〉2,
and the effective diffusion coefficient given by

Deff = lim
t→∞

〈x(t )2〉 − 〈x(t )〉2

2t
, (9)

while the Monte Carlo error is

σ = 1√
L

√
〈v2〉 − 〈v〉2, (10)

with L the number of realizations of the fluctuating forces.
The Brownian particles thus move with a velocity in the

range 〈v〉 ≡ [〈v〉 − σ, 〈v〉 + σ ]. As previously mentioned by
Machura et al. [41], if σ is greater than 〈v〉, the Brownian
particles may move in the opposite direction, making the
displacement of the particles less effective and complex.

III. NUMERICAL RESULTS AND DISCUSSION

Focusing on the transport properties of the deformable sys-
tem, the long-time limit of statistical quantities of interest is
determined in terms of the statistical average over different re-
alizations of the process in Eq. (2). We perform our numerical
studies with the Euler algorithm. The time step is h = 10−2.
For initial conditions, x = 0 at t = 0, the Brownian particle
is at rest at the bottom of the deformable traveling-wave
potential (ẋ = 0). All quantities are averaged over 500–1000
different realizations, each of which evolves over tmax = 103

for an overdamped case and tmax = 104 for an underdamped
case.

A. Overdamped Brownian motion

1. The average velocity in the overdamped Brownian motion

We represent first the average velocity of the Brownian
particles as a function of the traveling speed obtained through
a numerical integration of Eq. (2), and second some analytical
results [see Eq. (6)] for r = −0.5, 0.0, and 0.5 (see Fig. 2). In
fact, the average velocity increases approximatively from 3%
to 86% when r increases from 0 to ±0.5 [34]. We note that
our numerical solution is in good agreement with the analytic
solution. However, this behavior requires a comment. Indeed,
referring to Fig. 2, which depicts the average velocity of the
Brownian particle as a function of the traveling-wave potential
speed ω, there exists a slight discrepancy with Fig. 2 of
[34]. Moreover, as illustrated in these numerical simulations,
the deformed system dissipated less thermal energy than the
nondeformed system. In Ref. [34], the maximum average

FIG. 2. Numerical solution of the average velocity obtained from
Eq. (2) as a function of the traveling speed ω for r = −0.5 (black
line), r = 0 (blue line), and r = 0.5 (green line). Also represented is
its analytical solution [Eq. (5)] for r = −0.5 (black open circle), r =
0 (blue closed circle), and r = 0.5 (green square). Other parameters
used are U = 20, γ = 1, and D = 0.5.
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velocity of Brownian particles obtained from numerical simu-
lation was greater for r = 0.5 than that of r = −0.5, given
by 18.7910 and 19.9589, respectively, whereas in Fig. 2,
by using Eq. (8), the average velocities are greater for the
shape parameter r = −0.5 than r = 0.5, which are given by
32.1434 and 31.4817, respectively. Consequently, this last
case exhibits a good enough agreement with the analytical
result that we have derived [see Eq. (6)] [34]. In fact, in [34]
the Kasdin algorithm was used to numerically simulate the
stochastic differential equation, and then the formula

〈v〉 = 1

L

L∑
i=1

1

tmax

∫ tmax

0
v(t )dt (11)

was used to computed the average velocity of Brownian
particles. Thus, in this context, it turns out that the use of
Eq. (8) seems to be more reliable to address the stochastic
differential equation since it matches well effectively with the
theory proposed in [34]. Nevertheless, from a phenomenolog-
ical point of view, the average velocity of Brownian particles
in both cases presents the same shape. However, by varying
the shape parameter with both formulas, some discrepancies
related to numerical methods take place. This suggests that
Eq. (11) is more appropriate when the system is subjected to
an external periodic excitation [41–43], while Eq. (8) is more
appropriate for systems that are not externally perturbed by a
periodic excitation [21,44].

To understand the displacement of the Brownian particles
in the traveling deformable system, we compute Eq. (10)
together with Eq. (2) using the numerical method outlined
above. It turns out that the Monte Carlo error σ as a function of
the driving speed presents the same evolution as the average
velocity for each value of the shape parameter. These fluc-
tuations are always smaller than the corresponding average
velocity (see Fig. 3). Also presented is the average velocity
of Brownian particles given by Eq. (8) as a function of r

(Fig. 4). The general behavior of 〈v〉 is almost the same
when the absolute value of r increases for a fixed value of

FIG. 3. Monte Carlo error σ vs ω for different values of the
shape parameter r , with U = 20.0, D = 0.5, and γ = 1. Note that
σ follows the same shape as the average velocity when |r| increases.

FIG. 4. Schematic representation of the average velocity of the
Brownian particle in the overdamped case as a function of r for
U = 20.0, D = 0.5, and ω = 20.0. This curve has nearly symmetric
variations as the shape parameter evolves.

the traveling speed. Although the effect of each collision
between the particle and its surrounding is important in the
overdamped regime, the Monte Carlo errors prove that the
transport properties of Brownian particles are performed with
less turn-back. In the deformed system, and in the overdamped
regime, the transport properties of Brownian particles are
shown in the directed direction. Moreover, thermal energy is
less dissipated in the deformable potential compared to the
sinusoidal shape (r = 0).

2. Diffusion in the overdamped Brownian motion

The behavior of the effective diffusion coefficient of the
Brownian particle Deff as a function of the traveling speed
of the deformable potential for different values of the shape
parameter r is investigated in the overdamped case. It exhibits
a pronounced “resonance” peak at ω = ωopt for different
values of the shape parameter r (see Fig. 5). In fact, the
presence of thermal fluctuations and/or the difference between
the traveling speed of the potential and the velocity of the

FIG. 5. Schematic representation of the effective diffusion of the
Brownian particle in the overdamped regime as a function of the
traveling speed ω for a few values of r . The other parameters are
U = 20, D = 0.5, and γ = 1.
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FIG. 6. Representation of the average velocity as a function of
ω for different values of the shape parameter r in the underdamped
case. The transport properties are controlled by the shape parameter.
The average velocity is higher for the negative value of the shape
parameter, r = −0.5, than the positive values, r = 0 and 0.5. Note
also that due to the presence of inertia, the potential energy is
minimized. Other simulation parameters are KBT = 0.56, γ = 0.4,
and m = 1.

surrounding medium may induce the motion in the system,
thus inducing the diffusion of a Brownian particle. The effec-
tive diffusion is closely linked to the geometry of the system
since peaks change when the shape parameter varies from
sinusoidal to nonsinusoidal (see Fig. 5). For example, the peak
of the effective diffusion coefficient is approximatively equal
to 5, 14, and 18 times the Einstein diffusion (D = KBT/γ )
for r = 0, −0.5, and 0.5, respectively.

B. Underdamped Brownian motion

1. The average velocity in the underdamped Brownian motion

In this subsection, we use the same numerical method as
in the previous section to study the case in which the term
mẍ is not neglected. The results of numerical simulations of
the average velocity of Brownian particles 〈v〉 as a function of
the traveling speed ω of the deformable potential are plotted
in Fig. 6, while the corresponding Monte Carlo error σ as a
function of the traveling speed of the deformable potential ω

is plotted in Fig. 7.
It should be noted that in the underdamped case, the

weight of the Brownian particle plays an important role in
its displacement in the system. It contributes to reducing
the height of the potential barrier, as well as the time of
displacement of the Brownian particle in the system. We can
say that the dynamical behavior of the system, which is more
regular, is controlled by the shape parameter r , as can be seen
in Fig. 6. What is remarkable in this case is the behavior
of Brownian particles whose average velocity decreases as
the shape parameter r takes positive values. This behavior
is contrary to what we observed in Fig. 2 in the case of
overdamped Brownian motion. In fact, we notice that in the
overdamped case, more energy is needed for the Brownian
particle to cross the potential barrier. Thus, in the overdamped

FIG. 7. Monte Carlo error representation in the underdamped
case. Others simulation parameters are γ = 0.4, KBT = 0.56, and
m = 1.

and underdamped Brownian motions, this crossover energy
depends strongly on the shape parameter r . Once the particle
crosses the potential barrier, there is a smooth decreasing of
the energy provided by the potential as ω increases and the
Brownian particle slowly moves to a stable position where it
oscillates. This behavior is illustrated by the smooth decrease
seen in Fig. 2. Meanwhile, in the underdamped case the
influence of both inertia and damping contributes to lower the
potential barrier, so that when the particle crosses the barrier,
it jumps quickly to the equilibrium position (see Fig. 6).
The Monte Carlo error plotted in Fig. 7 follows the same
behavior as 〈v〉, but it always remains lower. Thus, in both
cases (overdamped and underdamped), the Brownian particle
moves in the directed direction.

To gain good insight into the motion of the Brownian
particle in the deformed traveling-wave potential in the under-
damped case, we have plotted in Fig. 8 the maximum average

FIG. 8. Schematic representation of the maximum average ve-
locity of the Brownian particle as a function of the shape parameter r

in the underdamped case. Note here that, contrary to the overdamped
case, the average velocity decreases as the shape parameter r evolves
from negative values to positive ones.
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FIG. 9. Numerical simulation of the average velocity as a func-
tion of the shape parameter r for different values of ω. We can
see the decrease of the average velocity as the shape parameter r

evolves from negative values to positive values for three values of
the traveling potential speed. We also remark that the form of these
curves follows the same shape as that of Fig. 8. This decrease comes
from the fact that the necessary thermal energy for the particle to
make a transition to the adjacent potential well is less dissipated in
the deformable potential with broad wells and narrow deep wells,
and the particle in this case has the necessary momentum to cross
the potential barrier. Other simulation parameters are KBT = 0.56,
γ = 0.4, and m = 1.

velocity of the Brownian particle as a function of the shape
parameter r for several values of m, and the evolution of
the average velocity obtained by direct simulation of Eq. (2)
for m = 1 (Fig. 9). It is shown in Figs. 8 and 9 that the
error bars are much pronounced in the underdamped case.
However, in all cases the maximum of 〈v〉 is a decreasing
function of the shape parameter r . So, we observe that the

FIG. 10. Plot of the effective diffusion Deff as a function of the
traveling potential speed ω for some values of the shape parameter r

(r = −0.5, 0, and −0.5) as indicated in the figure. Other parameters
of simulation are U = 5, KT = 0.56, γ = 0.4, and m = 1.

maximum average velocity of Brownian particles increases
when the mass of the system decreases, thus evolving into
the overdamped case, where the error bars are weak (see
Fig. 8). This behavior of the average velocity may be due
to the complex displacement of the Brownian particle in the
system in the presence of inertia and thermal noise. These
results are in good agreement with the theory of the chaotic
behavior in the system when inertia is taken into account
[45]. Moreover, we observe an abrupt decrease of the average
velocity of the Brownian particles as a function of r compared
to the overdamped case. One can say that the inertia has a
positive influence on the transport properties of the system
since it reduces the effect of fluctuations in the system and
controls the transport properties.

This behavior of the Brownian particle in the underdamped
case could be advantageous in the sense that even with lower
energy, the unpinning of the system may be possible, but due
to the inertia, the cargo may or may not reach the target.

2. Diffusion in the underdamped Brownian motion

In Fig. 10, we depict the effective diffusion as a function
of the traveling-wave potential speed ω, obtained numeri-
cally from Eqs. (2) and (9) for some values of the shape
parameter r . Indeed, recent investigations have shown that
under the effect of weak noise, and regardless of the value
of the friction coefficient, there can appear a giant enhanced
diffusion when the system undergoes an external constant load
[1,21,46]. This is due to the presence of the locked-to-running
transition that takes place when the Brownian particle diffuses
on a one-dimensional periodic substrate and is subjected to
a weak tilt. However, it has also been demonstrated through
a Fokker-Planck equation that, in the absence of external
constant load in the overdamped regime, a traveling-wave
potential could induce a nonzero current 〈ẋ(t )〉 �= 0 if the
total energy of the Brownian particle is higher than that of the
potential barrier [34]. Thus, when the particle drifts under the
force exerted by the potential, the random switches between
locked and running states also take place and cause an average
spreading R(t ) = 〈[x(t ) − 〈xCM(t )〉]2〉 of particles around its
average position. In our case (see Fig. 10 for m = 1), this
diffusion regime is very pronounced for negative values of
the shape parameter r , and thus the optimum values of the
traveling-wave potential speed that can be generated by the
shape parameter r are also higher for the negative values
of r (deep barriers and broad wells) than the positive ones.
Moreover, for each peak corresponding to each value of the
shape parameter r , there exists a value of ωopt for which the
effective diffusion takes its maximum, which is slightly higher
than that of the transition (ωopt, for average velocity). Indeed,
for r = −0.5, ωopt = 6.3, Deffmax = 2.3181 × 104; for r = 0,
ωopt = 5.3, Deffmax = 1.398 × 104; and finally for r = 0.5,
ωopt = 4.4, Deffmax = 1.3158 × 104.

Next, we focus our attention on the effects of the shape
parameter of the system on the peak values of the diffusion
of Brownian particles in the underdamped case and the corre-
sponding optimal deformable traveling-wave potential speed
ωopt for several values of m (m = 0.5, 1, 1.5). To achieve this
purpose, Fig. 11 represents two plots. In the upper panel of
this figure, the maximum value of the effective diffusion of
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FIG. 11. Maximum values of the effective diffusion for m = 1
of the Brownian particle and the corresponding traveling potential
speed ωopt as a function of the shape parameter r .

the Brownian particle as a function of the shape parameter
r is plotted for m = 0.5, 1, 1.5. In the lower panel, the cor-
responding deformable traveling-wave potential speed ωopt

as a function of the shape parameter r is depicted for the
same values of m. It can be seen in the upper panel of this
figure that the maximum value of the effective diffusion is
a decreasing function of the shape parameter r for m = 1
and 1.5. However, for m = 0.5 one notes an almost parabolic
behavior of the maximum diffusion. One should note that
this case obviously gets closer to the overdamped case. In
the lower panel, the corresponding traveling potential speed
ωopt is also a decreasing function of the shape parameter r

for all values of m. This behavior of the diffusion of the
Brownian particle in the presence of the deformable traveling-
wave potential may be due to the fact that, when the potential
wells get narrow, the particle does not acquire the necessary
space to cross the potential barrier, and then finds it difficult
to disperse in the system, involving also the decrease of ωopt

as the shape parameter evolves from negative to positive
values. To completely illustrate the behavior of the effective
diffusion in the deformable medium, we plot for m = 1 the
effective diffusion as a function of the shape parameter r

for some values of the traveling-wave potential speed ω = 5,

FIG. 12. Effective diffusion as a function of the shape parameter
r for a particle moving in the deformable traveling potential for some
values of potential speed ω = 5, 5.3, and 6, with the parameters
previously used.

5.3, and 6.3 (Fig. 12). When ω = 5 the red curve presents a
maximum at r = 0.2, for ω = 5.3 the blue curve presents a
maximum at r = 0, while for ω = 6.3 the green curve shows
a maximum at r = −0.5. As one might expect, the effective
diffusion in this last case is very pronounced compare to the
previous ones. This observation from numerical simulation
corroborates effectively the previous observation, that is, in
addition to the inertia term, the geometry of the potential,
particularly the flat bottom, enhances the effective diffusion.

3. The Fokker-Planck treatment

In this subsection, an analysis of the distribution for vari-
ous shape parameters r is presented. These distributions are

FIG. 13. Approximate solution of the Fokker-Planck equation
showing the distribution of the Brownian particle in a deformable
potential for r = 0 at t = 1. This case reduces to the sine-Gordon
case. The distribution exhibits two peaks corresponding to two
adjacent minima of the potential.
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FIG. 14. Numerical simulation of the Fokker-Planck equation in
a deformable potential for r = 0, obtained from the finite-element
method at t = 1.

plotted for r = −0.5, 0, and 0.5 at t = 1, 2 in the phase space
(x, v) and also as the traveling potential speed is switched off
(ω = 0). Thus, by using the semianalytic method developed
in the Appendix as well as the numerical method (the finite-
element method) for r = 0, we observe in Figs. 13 and 14 the
presence of two narrow peaks corresponding to the minimum
of the potential. For r = −0.5, we observe a large peak that
also corresponds to the minimum of the potential (see Figs. 15
and 16). However, for r = 0.5 we observe a splitting of the
number of peaks. Let us recall here that the Fokker-Planck
equation has been computed over two periods, characterized
by the presence of two peaks. Indeed, for r = −0.5 the
peaks are large compared to r = 0 and 0.5, respectively;
this corresponds to a large dispersion of particles inside the
potential well, indicating that the particles are spread out over
a wider range of values due to the flat potential well and
narrow barrier. However, for r = 0.5, which corresponds to
a narrow well and a flat barrier, we observe a splitting of the
number of peaks that pass from two peaks to four peaks (see

FIG. 15. Approximate solution of the Fokker-Planck equation
giving the distribution of the Brownian particle in a deformable
potential for r = −0.5 at t = 2. This case also exhibits two modes
corresponding to two adjacent minima of the potential.

FIG. 16. Numerical simulation of the Fokker-Planck equation
in a deformable potential for r = −0.5, obtained from the finite-
element method at t = 2.

Figs. 17 and 18). A similar behavior is observed by adopting
the semianalytic method, although the two other peaks are not
well visible. To explain all these behaviors, let us analyze
the different periods of oscillation of particles in different
forms of potential. The period of oscillation around the ground
states in the deformable potential is Tr = 2π/ωr , with ωr =
V ′′(x0) given by ωr = U (1+r )2

1+r2 . Thus, the oscillation periods
for r = −0.5, 0, and 0.5 are given by T1 = 10πU , T2 =
2πU , and T3 = 1.11πU , respectively. In fact, the time that
the particles take in shrinking the potential well to perform
oscillations is smaller with respect to r = 0 and −0.5. For
r = 0.5, as has been said before, the particles do not acquire
the necessary momentum to cross the potential barrier to the
adjacent well and consequently oscillate continuously around
several equilibria positions due to the thermal energy, so
that the metastable positions can take place leading to the
appearance of new extrema (multimodality) in the probability
distribution.

FIG. 17. Approximate solution of the Fokker-Planck equation
showing the distribution of the Brownian particle in a deformable
potential for r = 0.5 at t = 2. This case tends to split in several
modes.
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FIG. 18. Numerical simulation of the Fokker-Planck equation in
a deformable potential for r = 0.5 at t = 2, obtained from the finite-
element method. We observe a complete splitting of modes that pass
from two modes in the previous cases to four modes. This may be
due to the metastable states that take place in the system, which is
due to a deep-well potential and broad barriers.

IV. CONCLUSION

In this work, we have studied the behavior of Brown-
ian particles in a deformable traveling medium, taking into
account a white-noise source. Two aspects of the dynamics
have been examined: the case without inertia (the overdamped
case), and the case with inertia (the underdamped case).
We have focused our attention on the statistical properties
of Brownian particle motion (average velocity, Monte Carlo
error bars, effective diffusion, and distribution) in the de-
formable traveling-wave medium. It was revealed that in the
presence of the deformable traveling-wave potential, in the
overdamped as well as underdamped Brownian motions, each
maximum value of the average velocity of Brownian particles
is a function of the shape parameter r . However, the effective
diffusion in both cases (overdamped and underdamped cases)
and the distribution of Brownian particles depend strongly
on the shape parameter r . It is also shown that even in
the presence of the deformable traveling-wave potential, the
average velocity needed for the Brownian particle to cross
the potential barrier, for each value of the shape parameter,
is always smaller in the underdamped case. The Brownian
particles are increasingly affected by inertia and also by
damping. Comparing the behavior of the Brownian particle
in both cases, the maximum average velocity values increase
with the shape parameter r in the overdamped case, while
in the underdamped case the transport properties are con-
trolled by the shape parameter r , i.e., the average velocity
of Brownian particles increases when the potential wells
broaden. When the deformable traveling potential speed in-
creases, the Brownian particle experiences significant reverse
motion, and it is almost at rest very quickly compared with
the overdamped case. A comparative analysis between the
values of the maxima of the average velocity of Brownian
particles and the direct numerical simulation of the nonlinear
stochastic differential equation has shown that in the under-
damped case, the average velocity of the particle depends
on the deformable traveling potential speed ω. Moreover, we

have observed that the interplay between the mass, the noise,
and the force generated by the potential can lead to complex
behavior of Brownian particles. Monte Carlo error bars have
confirmed the directed motion of the Brownian particle in
the overdamped and underdamped cases. It has also been
shown that in the absence of any external load, the system
in both the overdamped and underdamped cases undergoes
an enhancement diffusion. Indeed, in both cases the effective
diffusion is always greater than that of Einstein, regardless
of the shape parameter r . Moreover, in the underdamped case
we have observed a “giant” enhancement diffusion induced by
the geometry of the system. Then, the particle diffuses more
freely in the potential with r < 0 compared with r > 0, due to
the presence of the mass of the Brownian particle. However,
in the overdamped case the effective diffusion exhibits a peak
for different values of the shape parameter r , and these peaks
are less pronounced compare with the underdamped case.

We have also shown numerically and by the semianalytical
method, through the Fokker-Planck equation in the under-
damped case, that the distribution can present several modes
for positive values of the shape parameter. This comes from
the fact that the metastable states can take place in the system,
while for the negative value of the shape parameter and the
sine-Gordon case (r = 0), the birth of each mode obviously
corresponds to a minimum of the potential, although for r < 0
the distribution is very large.
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APPENDIX: SEMIANALYTICAL TREATMENT OF THE
FOKKER-PLANCK EQUATION

In the case of r = 0, we have the particular case of the sine-
Gordon potential, which leads to the sinusoidal case. There-
fore, the analytical solution of the Fokker-Planck equation
can be easily approximated by the matrix continued fraction
(MCF) shown in Refs. [3,47,48] and more recently in [21].
Nevertheless, we are going to use the spectral method, or
again a “semianalytical” method, to approximate the solution
[49]. In fact, according to Refs. [3,21,48] we set

P (x, t, v) =
∞∑

n=0

Cn(x, t )ψn(v), (A1)

where Cn(x, t ) are the expansion coefficients. As was men-
tioned before, the coupled system of Cn(x, t ) may be solved
using matrix continued fraction methods, notably for the
cosine potential, parabolic, and so on. The ψn(v) is the
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nth-order Hermite polynomial, and its factorial factor is cho-
sen so that the coefficient matrix of the induced partial differ-
ential equation system for Cn is symmetric, which implies that
this partial differential equation is hyperbolic. The Hermite
functions obey the following recurrence relations:

dψn(v)

dv
= −α

√
2(n + 1)ψn+1(v), (A2)

d2ψn(v)

dv2
= −α2

√
4(n + 1)(n + 2)ψn+2(v), (A3)

v
dψn(v)

dv
=

√
(n + 1)(n + 2)ψn+2(v) − (n + 1)ψn(v)

(A4)

vψn(v) =
(

α√
2

)
(
√

n + 1ψn+1(v) + √
nψn−1(v)). (A5)

By inserting Eq. (A1) in the time-dependent Fokker-Planck
equation, Eq. (4), and applying Eqs. (A2)–(A5), we obtain the
following coupled system, which constitutes a partial differ-
ential equation system that obeys the expansion coefficients:

∂Cn(x, t )

∂t
= − α

√
n√

2

∂Cn−1(x, t )

∂x
− α

√
n + 1√

2

∂Cn+1(x, t )

∂x

−
√

2n

α
[V ′(x, t )]Cn−1 − γ nCn(x, t )

+
√

n(n − 1)

(
2γKT

α2
− γ

)
Cn−2(x, t ). (A6)

To solve Eq. (A6), we use the spectral method of or-
der N . This method consists of solving the first (N +
1) equation of (A6) for the N + 1 expansion coefficients
C0, C1, C2, . . . , CN . Thus, all the functions Cn(x, t ), n �
N + 1, are set to 0, i.e., take the approximate solution to
P (x, v, t ) as the following truncated series PN (x, v, t ).

C denotes an (N + 1)-dimensional column vector de-
fined by C = C(x, t) = [C0(x, t ), C1(x, t ), . . . , CN (x, t )]T .
The coupled system (A6) becomes

∂C
∂t

= −αR
∂C
∂x

+ SC, (A7)

where R and S are (N + 1) × (N + 1) matrices given by

R =

⎛
⎜⎜⎜⎜⎝

0 α1

α1 0 α2

. . .
. . .

. . .

αN αN

⎞
⎟⎟⎟⎟⎠ (A8)

and

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 · · ·
−

√
2

α
A −γ 0 · · ·

0 − 2
α
A −2γ 0 · · ·

0 0 −
√

6
α

A −3γ · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A9)

with A = ∂V (x,t )
∂x

and αn = √
n/2. R is a symmetric matrix,

so the set of its eigenvectors is also an orthogonal matrix;
let us define the eigenvectors as U = [u0, u1, . . . , uN ]. It is
easily verified that UT RU = � = diag[λ0, λ1, λ2, . . . , λN ].
If we multiply Eq. (A7) by UT , we obtain

∂C̃

∂t
= −α�

∂C̃

∂x
+ S̃C̃, (A10)

with C̃ = UT C and S̃ = UT SU . Since Eq. (A10) is a nonlin-
ear and coupled system, it is difficult to obtain an analytical
solution for all the different modes; thus, the finite-difference
method should be used to approximate the solution C̃(x, t ). It
is for this reason that we call it the “semianalytic method.” To
ensure the stability of the finite-difference method in our case,
the different schemes are used according to the sign of the
eigenvalue of the matrix R. So, for λi < 0, the forward space
difference scheme should be used, and for λi > 0, the back-
ward space difference scheme should be used. Combining all
this, we obtain the following different numerical schemes:

C̃i (x, t + dt ) = C̃i (x, t ) − αλidt

dx
[C̃i (x, t ) − C̃i (x − dx, t )]

+ dt (S̃C̃)i (x, t ) (A11)

for λi > 0,

C̃i (x, t + dt ) = C̃i (x, t ) − αλidt

dx
[C̃i (x + dx, t ) − C̃i (x, t )]

+ dt (S̃C̃)i (x, t ) (A12)

for λi < 0, and

C̃i (x, t + dt ) = C̃i (x, t ) + dt (S̃C̃ )i (x, t ) (A13)

for λi = 0. So, the Ci (x, t ) are substituted into Eq. (A1) to
approximate the solution of the Fokker-Planck equation. To
illustrate this, we chose N = 9, and some results displayed in
the text show the different approximation forms.
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