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Quantum detailed balance conditions and fluctuation relations for thermalizing quantum dynamics
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Quantum detailed balance conditions and quantum fluctuation relations are two important concepts in the
dynamics of open quantum systems: both concern how such systems behave when they thermalize because of
interaction with an environment. We prove that for thermalizing quantum dynamics the quantum detailed balance
conditions yield validity of a quantum fluctuation relation (where only forward-time dynamics is considered).
This implies that to have such a quantum fluctuation relation (which in turn enables a precise formulation of
the second law of thermodynamics for quantum systems) it suffices to fulfill the quantum detailed balance
conditions. We, however, show that the converse is not necessarily true; indeed, there are cases of thermalizing
dynamics which feature the quantum fluctuation relation without satisfying detailed balance. We illustrate our
results with three examples.
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I. INTRODUCTION

Thermodynamics is a successful theory to describe (equi-
librium) properties of macroscopic open systems [1]. Among
the three laws of thermodynamics, the second law has a
fundamental and distinct feature. This law governs how open
systems interacting with their ambient environment tend to
equilibrate or thermalize with the environment, and in this
sense it naturally incorporates the concept of irreversibility.
This peculiar feature of the second law begs the question of
how one can explain its emergence from fundamental laws of
nature.

The “detailed balance condition” [1], roughly stating that
at equilibrium each elementary process (formally, “i”→“j”)
and its reverse (“j”→“i”) need to be equally probable
(p(eq)

i wi→j = p
(eq)
j wj→i , where p

(eq)
i and w denote, respec-

tively, the probability of a state at equilibrium and the state
transition rates), has gained a pivotal role in understanding the
process of equilibration (and thermalization). It was employed
by Boltzmann in proving his H theorem and by Maxwell
in the development of kinetic theory. The validity of this
condition has been attributed to fundamental symmetries of
the basic dynamical laws of nature under time-reversal, or to
the very concept of microscopic reversibility [2].

Another relevant and ubiquitous feature in the behavior of
open systems described by thermodynamics at equilibrium
is embodied by the fluctuations of their properties around
average values given by thermodynamics, which typically
diminish when the open system becomes large. A powerful
approach to study fluctuations of thermodynamic quantities is
provided by “fluctuation theorems” [3]. The interest in this
subject has been specially spurred and reinvigorated recently
by the derivation of interesting and important “fluctuation
relations” by Jarzynski [4] and Crooks [5]. Such relations
connect the work done on a classical system by an external

driving force to the equilibrium free energy difference be-
tween the initial and the final states of the system. The Crooks
relation, in particular, which is the more general of the two
and implies the Jarzynski equality as a corollary, compares the
probability of doing a certain amount of work under a driving
protocol in the forward-time direction with the probability of
extracting the same amount of work in the backward-time
(i.e., time-reversed) protocol, providing a refined statement
of the second law of thermodynamics. Other similar relations
have also been studied since then, also for thermodynamic
quantities other than work [6,7].

Given the fundamentally different features of quantum
mechanics and the diversity of quantum dynamics in contrast
to classical mechanics and dynamics, the situation with either
the detailed balance conditions and the fluctuation relations
becomes even more interesting for quantum systems. In fact,
both concepts have been extended to the quantum domain and
extensively studied in various aspects; see, e.g., Refs. [8–33]
(and the references therein). These subjects constitute part of
the emerging field of quantum thermodynamics [34–36].

Considering that time reversal is in the heart of both fluctu-
ation relations and detailed balanced conditions, it seems nat-
ural that these concepts should be intimately related. Indeed,
in the proof of the Crooks fluctuation relation the detailed
balance condition has been used [5,37]. Yet, and to the best of
our knowledge, a systematic and comprehensive investigation
of this relation and of the implications of either concept on the
other one is still lacking for quantum systems.

In this paper we partially bridge this gap for the more
general case of open-system quantum dynamics which ther-
malize. In particular, we rigorously prove that the quantum
detailed balance (QDB) conditions imply (a forward-forward
version of) the quantum fluctuation relations (QFRs), but the
converse is not necessarily valid. In doing so, we first extend
a recently proposed forward-forward version of the QFRs for
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heat exchange in open quantum systems [22], which in con-
trast to forward-backward Crooks-like QFRs deals with the
ratio of two probabilities along the forward path. We discuss
some conditions for thermalizing dynamics under which this
relation holds. Next we consider two versions of the QDB
condition and show how they can enable this QFR. We supply
examples to illustrate our results, and in particular to underline
the point that to have the QFR we do not necessarily need the
QDB condition, that is, QDB ⇒ QFR but QFR �⇒ QDB.

This paper is structured as follows. In Sec. II we review
some basics about the dynamics of open quantum systems
and define the class of dynamics we are interested in, namely,
those dynamics with a unique asymptotic state which is ther-
mal. In Sec. III we prove two results regarding the validity
of the QFR: (i) an asymptotic QFR for energy exchange in
an open quantum system undergoing a thermalizing dynam-
ics and (ii) a finite-time QFR for thermalizing dynamics of
qubits whose fixed-point states are also thermal. Section IV is
devoted to the description of two important QDB conditions
introduced in the literature. This property will be related to the
QFR in Sec. V. We illustrate our results with three examples
in Sec. VI, where in particular the last example demonstrates
that the QDB does not necessarily imply the QFR. The results
are summarized in Sec. VII.

II. THERMALIZING DYNAMICS

The dynamics of an open quantum system with the Hilbert
space H ≡ Cd , uncoupled with an environment initially at
time τ = 0, but later interacting with its environment is
described by a (one-parameter family of) linear completely
positive, trace-preserving (CPTP) quantum dynamical maps
or channels, which transform any initial density matrix �(0)
of the system into [38]

�(τ ) = Gτ [�(0)], τ � 0. (1)

To these dynamical maps one can also associate dual dynam-
ical maps G�

τ in the Heisenberg picture defined through

Tr[Gτ [σ ]A] = Tr[σG�
τ [A]], (2)

for all density matrices σ ∈ S(H) (the linear space of the linear
operators defined on H) and all bounded observables A [both
d × d complex matrices ∈ Md (C)].

Let us also assume that the (bare) open quantum sys-
tem in absence of the environment is described by a time-
independent Hamiltonian

H =
d∑

m=1

Em|m〉〈m|, (Em ∈ R, 〈m|m′〉 = δmm′ ), (3)

and let us associate with that the following equilibrium or
thermal state at inverse temperature β:

�(β ) = e−βH /Tr[e−βH ]. (4)

It is known that any CPTP dynamical map (equivalently called
the quantum “channel” or “operation”) can always be written
through the Kraus representation

Gτ [·] =
∑

j

G(j )
τ · G(j )†

τ , (5)

where G
(j )
τ ∈ Md (C) and

∑
j G

(j )†
τ G

(j )
τ = I [38]. However,

under some specific conditions such as weak coupling with
the environment, the Born-Markov approximation, and the
secular approximation, one can show that the dynamics of the
system can be recast through the master equation [39,40]

∂τ�(τ ) = L[�(τ )], (6)

where

L[·] = −i[H, ·] +
d2−1∑
k,l=1

Ckl[Fk · F
†
l − (1/2){F †

l Fk, ·}] (7)

is the time-independent generator of the dynamics in the
Lindblad form, in the sense that ∂τ Gτ = L ◦ Gτ or Gτ = eτL,
C = [Ckl] is a positive semidefinite matrix, {Fk}d2

k=1 is a set
of suitable orthonormal basis matrices such that Fd2 = I/d

and Tr[F †
k Fl] = δkl , and the map composition ◦ is understood

as Gs ◦ Gt [·] = Gs[Gt [·]]. In this case Gτ would satisfy the
semigroup composition law

Gτ1+τ2 = Gτ1 ◦ Gτ2 , ∀τ1,2 � 0. (8)

It will be useful later in the paper to note that if the
dynamics is in the form of Eq. (6) with a Lindblad generator as
in Eq. (7) (i.e., Gτ = eτL), the dual dynamical map G�

τ = eτL�

on observables is given by the dual of the generator

L�[·] = i[H, ·] +
d2−1∑
k,l=1

Ckl[F
†
l · Fk − (1/2){F †

l Fk, ·}]. (9)

Now that we have explained what the state of an open
system can be and how to its observables one can associate
a dynamics as well, we end this section by stating two
definitions which are pivotal in this paper.

Definition. We call a dynamical map Gτ thermalizing to
inverse temperature β if for any initial state �(0) we have

�(∞) = lim
τ→∞ Gτ [�(0)] = �(β ), (10)

that is, �(β ) becomes the asymptotic state of the dynamics for
any initial state.

In particular, we shall be interested in the scenario where
the system initial state is thermal at inverse temperature βi,
�(0) = �(βi ), and the final one is thermal at inverse tempera-
ture βf , �(∞) = �(βf ) (with βf �= βi).

As we shall see later, thermalizing properties of the system
dynamics need not require that the environment be a heat
bath in equilibrium at inverse temperature βf . Furthermore,
the dynamical map Gτ may not obey a semigroup composition
law and may show memory and non-Markovian effects. In the
latter case, although �(βf ) is the asymptotic state for Gτ , in
general it is not Gτ -invariant.

Definition. A dynamical map is called fixed-point thermal-
izing (FPT) if it is thermalizing (to some inverse temperature
βf ) and the thermal state is its fixed point too,

Gτ [�(βf )] = �(βf ), ∀τ � 0. (11)
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III. QUANTUM FLUCTUATION RELATION (QFR)

The Crooks QFR for a dynamical system is a typical
instance of fluctuation relations. It states that

PF(+W; τ )

PB(−W; τ )
= eβ(W−�F), (12)

that is, the ratio of the probability of doing a certain amount of
work W under a driving protocol in the forward-time direction
(hence subscript “F”) and the probability of extracting the
same amount of work in the backward-time (“B”) protocol is
determined by the difference between the initial and final free
energies. This (forward-backward) relation has been extended
in numerous respects both for classical and quantum systems
and also for quantities other than work.

More recently, however, a distinct QFR has been proposed
in Ref. [22] for the case of irreversible dynamics that can-
not be run backward in time. In such a context, unlike the
typical case of forward-backward Crooks-like QFRs, both
probabilities are calculated along the forward-time direction
(hence “forward-forward”). Specifically, this QFR concerns
heat exchange in an open quantum system evolving in time
through a thermalizing Markovian dynamics and shows that
the probability P (+Q; τ ) of absorbing a certain amount of
heat Q from the environment at time τ is related to the prob-
ability of releasing the same amount of heat P (−Q; τ ) via an
exponential factor, which depends on Q and on the difference
between the initial inverse temperature of the system, βi, and
the asymptotic temperature determined by the dynamics, βf ,

P (+Q; τ )

P (−Q; τ )
= e�β Q, �β := βi − βf , (13)

where we have removed the subscript “F.” An interest-
ing feature of the above expression is that although both
P (+Q; τ ) and P (−Q; τ ) are time-dependent, their ratio is
time-independent. Comparing two probabilities both evalu-
ated along the forward-time path removes the issue of defining
the reverse path for an irreversible dynamics. Moreover, such
a result does not require unitary (closed-system) dynamics,
thus in these two specific senses this approach may be com-
plementary to a large part of the existing literature on QFRs.

Here we provide a generalized framework for the forward-
forward QFR. Given the setting of the previous section, the
probability that the d-level system (prepared initially at the
thermal state �(0) = �(βi )) absorbs a positive amount of en-
ergy E � 0 from the environment in the time interval τ is
given by

P (+E; τ ) =
∑
mn

pm(βi ) p(|m〉 → |n〉; τ ) δ[E − (En − Em)],

(14)
where p(|m〉 → |n〉; τ ) is the transition probability from the
state |m〉 to the state |n〉 in the time interval τ ,

p(|m〉 → |n〉; τ ) = 〈n|Gτ [|m〉〈m|]|n〉, (15)

and pm(βi ) is the probability that the system is found in the
state |m〉〈m|,

pm(βi ) = 〈m|�(βi )|m〉 = e−βiEm/Tr[e−βiH ]. (16)

In terms of the Kraus operators in Eq. (5) whose entries
are [G(j )

τ ]nm = 〈n|G(j )
τ |m〉 (with respect to the Hamiltonian

eigenbasis {|m〉}dm=1), we can rewrite

p(|m〉 → |n〉; τ ) =
∑

j

∣∣[G(j )
τ

]
nm

∣∣2
. (17)

Likewise, the probability that the system releases the amount
of energy E � 0 to the environment in the time interval τ is
given by

P (−E; τ ) =
∑
mn

pn(βi ) p(|n〉 → |m〉; τ ) δ[E − (En − Em)].

(18)
Rather than comparing two probability distributions re-

lated to different dynamics, e.g., corresponding to a “for-
ward” protocol and a “backward” protocol (as usually done
in the literature about QFRs [11]), following the approach
presented recently in Ref. [22], we concentrate on the ratio
P (+E; τ )/P (−E; τ ). In particular, in the following sections
we shall provide instances of dissipative QFR of the form [cf.
Eq. (13)]

R(E; τ ) ≡ P (+E; τ )

P (−E; τ )
= e�β E, (19)

where �β = βi − βf , with βf being the asymptotic inverse
temperature reached by the thermalization process.

Note that, if this relation holds, when βi < βf , that is,
when the initial temperature is larger than the final one, the
probability of absorbing a certain amount of energy E > 0
by the system is exponentially smaller than the probability of
releasing the same amount of energy to the environment. If we
assume that the thermalization process is due to the interaction
with a thermal environment at inverse temperature βf , and that
there is no “work” contribution to the exchange of energy,
Eq. (19) constitutes a precise mathematical statement for the
observation that heat is expected to flow from the hot body to
the cold one, in accordance with the Clausius statement of the
second law of thermodynamics [1].

We remark that if the system dynamics is generated by
a Lindblad-like time-dependent generator Lτ whose form is
akin to the form (7) but with a time-dependent Hamiltonian
Hτ and a time-dependent matrix C(τ ), then the total energy
exchange rate between the system and the environment at time
τ amounts to

∂τ Tr[�(τ ) Hτ ] = Tr[�(τ ) ∂τHτ ] + Tr[∂τ�(τ ) Hτ ]. (20)

The first term describes the work exchange rate and the
second the heat exchange rate; only the latter contributes if
the system Hamiltonian Hτ is not explicitly time-dependent,
whence the energy E absorbed or released by the system can
be interpreted as exchanged heat.

Before investigating the connection between the QFR (19)
and the QDB conditions, we prove two results about the QFR.
We need to point out to two useful relations for the transition
probabilities:

(1) It is immediate to see that when

e−βf Em p(|m〉 → |n〉; τ ) = e−βf En p(|n〉 → |m〉; τ ), (21)

the QFR (19) evidently holds.
(2) For any FPT dynamical map we have∑

n

pn(βf ) p(|n〉 → |m〉; τ ) = pm(βf ). (22)
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This can be verified as

pm(βf )
(11)= [Gτ [�(βf )]]mm

(15)=
∑

n

p(|n〉 → |m〉; τ ) pn(βf ).

Now we show that although arbitrary thermalizing dynam-
ical maps do not necessarily satisfy the QFR (19) instanta-
neously, they all fulfill this property for asymptotically long
times.

Theorem 1. For any thermalizing dynamical map Gτ ,

R(E,∞) = e�β E. (23)

Proof. We have

p(|m〉 → |n〉; ∞)
(15)= 〈n|G∞[|m〉〈m|]|n〉 (10)= 〈n|�(βf )|n〉.

(24)
Thus Eq. (21) holds, which in turn yields relation (19). �

For the case of FPT dynamical maps, no advantages follow
compared to Theorem 1 except for qubits (d = 2), where we
have the following theorem.

Theorem 2. Every FPT dynamical map for qubits satisfies
the QFR (19).

Proof. We have

p1(βf )
(22)= p(|1〉 → |1〉; τ ) p1(βf ) + p(|2〉 → |1〉; τ ) p2(βf ).

However, in the case of a qubit, p(|1〉 → |1〉; τ ) =
1 − p(|1〉 → |2〉; τ ), whereby the above equation fulfills
Eq. (21). �

Before progressing further, it is helpful to make two re-
marks and summarize our findings thus far. (1) The QFR (19)
can also be formulated for discrete-time dynamics, where both
of the above theorems will still apply. (2) Although Ref. [22]
assumed a Markovian Lindblad form for the thermalizing
dynamics, thus far we have not assumed any particular type
of open-system dynamics. Yet we have shown that the dy-
namics suffices to be thermalizing to enforce the QFR at least
asymptotically, and, further, if it has the extra property that
its asymptotic thermal state is also its fixed point, this will
guarantee the finite-time QFR at least for qubits. Although
Theorems 1 and 2 show some cases of thermalizing dynamics
where the QFR (19) holds, it still remains to find general
sufficient conditions for an open-system dynamics to fulfill
the QFR for finite times. This is exactly where we employ the
QDB condition.

IV. QUANTUM DETAILED BALANCE (QDB)

Among numerous existing extensions of the classical de-
tailed balance conditions to quantum systems, we shall follow
the general approach proposed in Refs. [28–31] for their gen-
erality (see Ref. [33] for a review). This is based on turning the
algebra of observables Md (C) into a d2-dimensional Hilbert
space H �,s by means of the scalar product

〈〈A,B〉〉s = Tr[�1−sA†�sB], A,B ∈ Md (C), (25)

where s ∈ [0, 1] and � is a given full-rank reference state (i.e.,
� > 0). This scalar product makes the matrix algebra Md (C)
a Hilbert space H �,s (isomorphic to Cd2

). The structure of
this scalar product is reminiscent of the so-called Bogoliubov
inner product (which includes the integral over s from s = 0
to s = 1 and � is a Gibbsian state) [41], which has found

numerous applications, e.g., in quantum statistical mechanics
and quantum estimation theory [42].

In addition, given a linear map O on H �,s , one can define
its adjoint O 	 relative to this scalar product by

〈〈A, O[B]〉〉s = 〈〈O 	[A], B〉〉s . (26)

Note the difference in notation between the adjoint operation
“†” with respect to the standard scalar product 〈 , 〉 on Cd and
the adjoint operation “	” with respect to the scalar product
〈〈 , 〉〉s on Md (C).

The first QDB condition refers to a dynamical semigroup
map Gτ = eτL with the generator in the Lindblad form (7) and
its dual map G�

τ = eτL�

with the generator (9).
Definition 1. Let L�	 be the adjoint of L� in Eq. (9) with

respect to the scalar product (25). We say a dynamical map
Gτ = eτL (or equivalently G�

τ = eτL�

) has the QDB property
with respect to a reference state � > 0 if

L�[A] − L�	[A] = 2i[H,A], ∀A ∈ Md (C). (27)

It is straightforward to see that such a requirement is
satisfied (with a vanishing right-hand side) in the case of the
generator of a classical Pauli equation, of which Eq. (27) is
a quantum generalization accounting for the presence of a
contribution coming from the commutator with a Hamiltonian
H . In addition, an immediate consequence of this condition
(if it holds) is that the reference state must be Gτ -invariant.
This can be seen as follows. Equation (9) implies L�[I] = 0,
which in turn combined with the above QDB condition gives
L�	[I] = 0. Now, if we replace A = I and O = L� in Eq. (26),
we obtain

Tr[� L�[B]] = Tr[�1−sL�	[I] �sB] = 0, ∀B ∈ Md (C).

This yields that L[�] = 0, that is, Gτ [�] = �.
Since not all dynamical maps have the semigroup property,

it is important to consider a second QDB condition which
does not refer to the semigroup properties of a dynamical map
Gτ , but only to its behavior with respect to the time-reversal
operation T defined as

T [A] = �A†�†, ∀A ∈ Md (C), (28)

where � is the time-reversal operator [43]. We give a brief
review of the definitions and properties of these operations in
Appendix A.

Definition 2. A dynamical map G�
τ (in the Heisenberg

picture) is said to have the QDB property with respect to a
reference state � if

〈〈A†, G �
τ [B]〉〉s = 〈〈T [B†], G �

τ [T [A]]〉〉s , ∀A,B ∈ Md (C).

(29)

Such a condition is based on the principle of microreversibil-
ity that links the equilibrium probabilities of forward-time
processes with those of their backward-time or time-reversed
images.

In summary, the first QDB condition (27) relies on the
semigroup structure of the dynamics and imposes a constraint
on its generator; whereas the second condition (29) concerns
general dynamical maps (independently of any composition
law possibly holding among them) but employing a time-
reversal linear map. It is interesting to see that how the second
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definition (29) compares with Eq. (27) when the dynamics is
governed by a CPTP semigroup map generated by L�. It has
been shown that the condition (29) matches the condition (27)
if the dissipative part of the generator, i.e., L�[·] − i[H, ·], and
the Hamiltonian are both invariant under time-reversal [29].
Nevertheless, note that inserting A = I into Eq. (29) yields
Tr[� G�

τ [B]] = Tr[� T[B]] which, unlike the comment after
Definition 1, does not imply Gτ -invariance of the reference
state �.

V. QFR AND QDB

In this section we study the relations between the two
QDB conditions of Sec. IV and the QFR (19) and prove our
main results in two theorems. We shall first consider the case
of dynamical semigroup maps Gτ = eτL and next the case
of generic CPTP maps Gτ . The reference state in the QDB
conditions will be chosen to be the asymptotic thermal state
� = �(βf ).

A. QFR for dynamical semigroups

Let us decompose L� as L� = L�

H + L�

D , where

L�

H = 1
2 (L� − L�	)

(27)= i[H, ], (30)

L�

D = 1
2 (L� + L�	), (31)

thus L�	

H = −L�

H and L�	

D = L�

D .
Before stating our main results (Theorems 3 and 4), we first

prove some useful results.
Lemma. Let K be a linear map on H �,s .
(1) If K is self-adjoint with respect to the scalar product

(26) and (K[A])† = K[A†] [∀A ∈ Md (C)], then

e−βf Em〈m|K[|n〉〈n|]|m〉 = e−βf En〈n|K[|m〉〈m|]|n〉. (32)

(2) If (K[A])† = K[A†] and (K	[A])† = K	[A†] [∀A ∈
Md (C)], then the linear map R s[·] = �1−2s · �2s−1 from H �,s

into itself satisfies K ◦ R s = R s ◦ K.
(3) Let G�

τ = eτL�

be a dynamical semigroup map with
self-adjoint Lindblad generator L�. Let � be a full-rank state
with eigenvectors {|m〉}dm=1, H �,s the Hilbert space with the
scalar product (25). Then the R s-invariant subspace generated
by the operators {|m〉〈m|}dm=1 and its complement (the sub-
space orthogonal to the former) are left-invariant by G�

τ .
Proof. (1). Replace A = |m〉〈m| and B = |n〉〈n| in

Eq. (26), where H |m〉 = Em|m〉 and � = �(βf ).
(2). We adapt the argument presented in Ref. [24]. For

arbitrary A,B ∈ H �,s we have

〈〈K ◦ R s[A], B〉〉s
= 〈〈R s[A], K	[B]〉〉s
= Tr[�1−s (�1−2sA�2s−1)†�sK	[B]]

= Tr[�sA†�1−sK	[B]]

= Tr[�1−s (K	[B†])†�sA†]

= 〈〈K	[B†], A†〉〉s
= 〈〈B†, K[A†]〉〉s
= Tr[�1−sB�s K[A†]].

Similarly,

〈〈R s ◦ K[A], B〉〉s
= Tr[�1−s[�1−2s (K[A])�2s−1]†�sB]

= Tr[�sK[A†]�1−sB]

= Tr[�1−sB�sK[A†]],

which coincides with the previous relation.
(3). Let �|m〉 = hm|m〉, where � defines the QDB condi-

tion (27). We have

R s[|m〉〈n|] = (hn/hm)2s−1|m〉〈n|, (33)

that is, the operators |m〉〈n| are the eigenoperators of
R s . These operators are orthogonal in the sense that
〈〈|m〉〈n|, |m′〉〈n′|〉〉s ∝ δmm′δnn′ , and the R s-invariant subspace
of H �,s corresponding to the eigenvalue 1 is spanned by the
eigenoperators {|m〉〈m|}dm=1. Since G�

τ preserves Hermiticity,
part (2) of the lemma ensures that G�

τ ◦ R s = R s ◦ G�
τ so that

the invariant subspace of R s is mapped into itself by the
dynamics as well as its orthogonal subspace linearly spanned
by the eigenoperators |n〉〈m| (n �= m). �

Theorem 3. For a dynamical semigroup map G�
τ , if its

Lindblad generator L� satisfies the first QDB condition (27)
with respect to the thermal state �(βf ), then the QFR (19) holds
for all τ � 0.

Proof. On the one hand, since L�

D is self-adjoint on H �,s ,
part (3) of the above lemma yields, for some fm ∈ R,

L�

D[|n〉〈n|] =
d∑

m=1

fm|m〉〈m|. (34)

On the other hand, L�

H [|n〉〈n|] = 0. Thus, using the Lie-
Trotter relation [38]

G�
τ = eτ (L�

H +L�

D ) = lim
k→∞

(
e(τ/k)L�

H e(τ/k)L�

D

)k
, (35)

it follows that G�
τ [|n〉〈n|] = eτL�

D [|n〉〈n|]. Additionally, since
L�

D is a self-adjoint operator on H �,s , such is G�
τ (in the

restricted Hilbert space generated by |n〉〈n|s); then part (1)
of the above lemma [Eq. (32)] applies,

〈m|G�
τ [|n〉〈n|]|m〉 = e−βf (En−Em )〈n| G�

τ [|m〉〈m|]|n〉,
whence Eq. (21) (and the QFR) holds. �

B. QFR for general dynamical maps

Let us restrict ourselves to systems whose Hamiltoni-
ans are invariant under time reversal, T[H ] = H . It is then
straightforward to see that this property carries over to all
eigenprojectors |m〉〈m| of the Hamiltonian H too,

T[|m〉〈m|] = |m〉〈m|. (36)

This can be shown by noting T[Hk] = (T[H ])k (∀k ∈ N) and
employing the resolvent representation of the eigenprojectors
as |m〉〈m| = (2πi)−1

∮
cm

(zI − H )−1 dz, where cm is a circle
centered around the eigenvalue Em of H without encircling or
passing over any other eigenvalue [44].

Theorem 4. If a dynamical map G�
τ satisfies the second

QDB condition (29) with respect to the thermal state �(βf ) and
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the system Hamiltonian is invariant under time reversal T, then
the QFR (19) holds for any time τ � 0.

Proof. Setting A = |m〉〈m| and B = |n〉〈n| in Eq. (29)
with H |m〉 = Em|m〉, and using Eq. (36), one obtains

〈m|G�
τ [|n〉〈n|]|m〉 = e−βf (En−Em )〈n|G�

τ [|m〉〈m|]|n〉,
which is a case where Eq. (21) applies. �

A caveat is in order here. Although from Theorems 3 and
4 we see that when a thermalizing dynamics has the QDB
property (in either forms) the QFR (19) holds, the converse is
not necessarily valid. In fact, in the next section we present an
example showing that the QDB and QFR are not equivalent to
each other because one may have thermalization without the
QDB condition.

VI. EXAMPLES

In the following, three examples are presented to highlight
our results. The first example concerns a qubit dynamics
which is thermalizing but not a semigroup with a Lindblad
generator. In fact, this dynamics possesses an asymptotic
thermal state which is not time-invariant (namely, not a fixed
point of the dynamics). We show that the QFR does not
hold; rather, a time-dependent correction appears in the ratio
R(E; τ ), which disappears asymptotically, in agreement with
Theorem 1. The second example is based on the so-called
quantum optical master equation, which describes a two-level
atom in interaction with the quantized electromagnetic field,
the latter acting as a thermal environment at inverse temper-
ature βf . We show that the resulting dynamics is FPT, thus
Theorem 2 applies in this case and the QFR holds. Moreover,
such a dynamics respects the QDB condition, so that one can
equivalently argue the validity of the QFR from the results
of the previous section. The last example demonstrates that
the QFR and QDB condition are not equivalent, providing an
FPT semigroup dynamics which satisfies the QFR but fulfills
neither QDB conditions.

A. A thermalizing non-FPT dynamics

Here we consider an example of a non-Markovian thermal-
izing map acting as a qubit “generalized amplitude damping
channel” [38]. In particular, we show how by tuning some
parameters of the dynamics in a suitable manner it is possible
to construct a dynamics which is thermalizing but not FPT
[45]. In this case, it turns out that the QFR does not hold at
finite times, whereas it is recovered asymptotically, as also
expected from Theorem 1.

Consider a quantum operation (5) with

G(1)
τ = √

qτ (|1〉〈1| +
√

1 − ξτ |2〉〈2|),
G(2)

τ =
√

qτ ξτ |1〉〈2|,
G(3)

τ =
√

1 − qτ (
√

1 − ξτ |1〉〈1| + |2〉〈2|),
G(4)

τ =
√

(1 − qτ )ξτ |2〉〈1|,
where qτ , ξτ ∈ [0, 1]. Given an initial state described by

�(0) = d(0)|1〉〈1| + [1 − d(0)]|2〉〈2|
+ k(0)|1〉〈2| + k∗(0)|2〉〈1|,

the state of the system at time τ becomes

�(τ ) = d(τ )|1〉〈1| + [1 − d(τ )]|2〉〈2| + k(τ )|1〉〈2|
+ k∗(τ )|2〉〈1|, (37)

where

d(τ ) = (1 − ξτ )d(0) + (1 − qτ )ξτ , (38)

k(τ ) =
√

1 − ξτ k(0). (39)

Except for the constraint imposed by the initial condition,
namely ξ0 = 0, one can freely (but smoothly) adjust the
parameters qτ and ξτ . As is evident from Eqs. (38) and
(39), one can impose a unique asymptotic state to exist for
this dynamical map by means of the condition ξ∞ = 1; in
other words, this condition guarantees that all the information
related to the initial state �(0) is lost at long times. More-
over, requiring q∞ = (1/2)[1 − tanh(βfω/2)] ensures that the
unique asymptotic state is indeed a thermal state at inverse
temperature βf . Hence, such a dynamics is thermalizing but
not FPT, unless we consider qτ = q∞ for any τ � 0. In the
following, however, we assume that qτ is time-dependent.

From the transition probabilities

p(|1〉 → |2〉; τ ) = 〈2|�[τ |d(0) = 1]|2〉 = ξτ qτ , (40)

p(|2〉 → |1〉; τ ) = 〈1|�[τ |d(0) = 0]|1〉 = ξτ (1 − qτ ), (41)

we have

p(|1〉 → |2〉; τ )

p(|2〉 → |1〉; τ )
= qτ

1 − qτ

, (42)

which is independent of the parameter ξτ , and in the limit
τ → ∞ it tends to e−βf (E2−E1 ). Introducing fτ = q∞ − qτ one
obtains

R(E; τ ) = F (τ ) e�β E, (43)

where F (τ ) = [1 − fτ /q∞]/[1 + fτ /(1 − q∞)]. Note that
limτ→∞ F (τ ) = 1, whence we retrieve R(E; ∞) = e�β E, in
agreement with Theorem 1. Moreover, if fτ = 0 ∀τ , the dy-
namics becomes FPT, and, as expected, the QFR holds at finite
times.

B. An FPT dynamics satisfying the QDB condition

In this example we consider a qubit evolving in time
according to the so-called “quantum optical master equation”
[40]

∂τ� = − i
ω

2
[σz, �] + γ n̄(ω, β )

(
σ+�σ− − 1

2
{σ−σ+, �}

)
+ γ [n̄(ω, β ) + 1]

(
σ−�σ+ − 1

2
{σ+σ−, �}

)
, (44)

where σ± = (1/2)(σx ± iσy ), γ is a positive damping rate,
and n̄(ω, βf ) = (eβf ω − 1)−1 is the bosonic occupation num-
ber in thermal equilibrium, and we have dropped the τ de-
pendence of � to lighten the notation. Note also that here we
have used the convention σz|i〉 = (−1)i |i〉 (i ∈ {1, 2}) in this
example. This kind of dynamics is used, for example, to model
a two-level atom interacting with a thermal bath of photons
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at inverse temperature βf and has been widely studied in the
literature. Here we investigate the validity of the QFR (19) and
the QDB condition (27) for this dynamics.

First, we show that this dynamics is FPT, and hence the
QFR holds because of Theorem 2. If we parametrize the state

in the Bloch form as

�(τ ) = (1/2)[I + r(τ ) · σ ], (45)

where r = (rx, ry, rz) is a vector with ‖r‖ � 1 and σ =
(σx, σy, σz), the solution of the dynamics is given by

�(τ ) = 1

2

(
1 + rz(0)e−γ̄ τ + tanh(βfω/2)[e−γ̄ τ − 1] [rx (0) − iry (0)]e−(iω+γ̄ /2)τ

[rx (0) + iry (0)]e−(−iω+γ̄ /2)τ 1 − rz(0)e−γ̄ τ − tanh(βfω/2)[e−γ̄ τ − 1]

)
, (46)

where we have set γ̄ = γ [2n̄(ω, βf ) + 1] = γ coth(βfω/2).
From this solution it is immediate to see that this is a ther-
malizing dynamics, and for any initial condition the system
relaxes to a thermal state �(∞) = �(βf ), corresponding to the
Hamiltonian H = (ω/2)σz.

In addition, note that the thermal state �(βf ) is also station-
ary because the dynamics (44) obeys the semigroup composi-
tion law, that is, this dynamics is FPT, and hence the QFR is
met due to Theorem 2.

Alternatively, one could also have argued that the QFR is
met because of Theorem 3. Indeed, according to Ref. [28],
in the qubit case, the most general semigroup of CPTP maps
satisfying the QDB condition (27) with respect to the state
�(βf ) is the solution of the following Lindblad master equation:

∂τ� = − i
ω

2
[σz, �] + μeβf ω

(
σ−�σ+ − 1

2
{σ+σ−, �}

)
+ μ

(
σ+�σ− − 1

2
{σ−σ+, �}

)
+ η(σz�σz − �), (47)

where μ and η are positive parameters. One can thus clearly
observe that Eq. (44) is a special case of the latter when η = 0
and μ = γ n̄(ω, βf ); note that n̄(ω, βf ) + 1 = n̄(ω, βf )eβf ω.
Thus, the quantum optical master equation describes a dynam-
ics satisfying both the QDB condition and the QFR.

The following example, however, provides an instance of
dynamics where the QFR (19) is fulfilled but neither QDB
conditions (27) and (29) hold.

C. An FPT dynamics not satisfying the QDB condition

This example demonstrates that the QDB condition is not
equivalent to the QFR (19). Indeed, in the following we
present a dynamics for a qubit which is FPT, thus obeying
the QFR according to Theorem 2, but does not satisfy the
QDB condition. In doing so, it is more convenient to vectorize
the state of the system as |�〉 ≡ (1, rx, ry, rz). Any linear
operation acting on � can then be represented as a 4 × 4
matrix acting on the vector |�〉.

As already mentioned in the first example (VI A), ac-
cording to Ref. [28], in the qubit case, the most general
semigroup of CPTP maps satisfying the QDB condition (27)
with respect to the state �(βf ) is the solution of the Lindblad
master equation (47). This equation can be recast as

∂τ |�(τ )〉 = −2L|�(τ )〉, (48)

where

L =

⎛⎜⎝ 0 0 0 0
0 � ω/2 0
0 −ω/2 � 0

�− 0 0 �+

⎞⎟⎠, (49)

with

� = η + μ(1 + eβf ω ),

�± = 2μ(1 ± eβf ω ).

Now consider another qubit dynamics which is a general-
ized form of the above one and is described by

Lth =

⎛⎜⎝0 0 0 0
0 ν ω/2 0
0 −ω/2 α 0
χ 0 0 ζ

⎞⎟⎠. (50)

This dynamics is physically legitimate because it is CPTP
[46]. Moreover, it can be solved analytically,

ri (τ ) = ui+eτk+ + ui−eτk− , i ∈ {x, y},
rz(τ ) = e−2ζ τ rz(0) − (1 − e−2ζ τ )χ/ζ,

where

ux± = ±k∓ + 2ν

k− ± k+
rx (0) ± ω

k− ± k+
ry (0),

uy± = ±k∓ + 2α

k− ± k+
ry (0) ∓ ω

k− ± k+
rx (0),

k± = −(α + ν) ± i
√

ω2 − (α − ν)2.

This solution implies that the dynamics is FPT. There is a
unique asymptotic state |�(∞)〉 = (1, 0, 0,−χ/ζ ) which is
also a fixed point at finite times, because the dynamics obeys
the semigroup composition law. Moreover, by comparison we
see that the time evolution satisfying the QDB condition (48)
is a special case of Eq. (50) in which

χ = 2μ(1 − eβf ω ),

ζ = 2μ(1 + eβf ω ),

ν = α = η + μ(1 + eβf ω ).

Since in general one can have ν �= α, it can be concluded
that there exist cases of qubit FPT dynamics which do not
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satisfy the QDB condition (27). Moreover, the time-invariant
asymptotic state corresponds to a thermal state �(βf ) with
H ∝ σz. Thus, the QDB condition (29) with time reversal
implemented by complex conjugation relative to the σz eigen-
basis (C as in the Appendix) is not satisfied. As a result, then,
the QFR (19) is not equivalent in general to having the QDB
condition in either forms (27) and (29).

VII. SUMMARY

We have considered thermalizing open quantum dynam-
ics in its general form and the special case of dynamics
with semigroup property generated by Lindblad generators.
We have formulated an extended version of the quantum
fluctuation relation which compares the probabilities of ab-
sorbing a given amount of energy and releasing the same
amount to the environment, both evaluated for the forward-
time dynamics. We then have sought sufficient conditions for
an open-system dynamics to fulfill the quantum fluctuation
relation. Specifically, we have shown that (1) all thermalizing
dynamics (irrespectively of the Hilbert-space dimension of
the system) satisfy the quantum fluctuation relation asymp-
totically, (2) if the thermalizing dynamics for qubits has the
property that its thermal state is also stationary, it shows the
quantum fluctuation property at any finite time too, and (3)
the quantum detailed balance condition (for each type of open
dynamics) suffices to satisfy the proposed quantum fluctu-
ation relation. We have, however, argued that the quantum
fluctuation relation and the quantum detailed balance condi-
tion are not equivalent; one can find the former without the
latter.

Our study may shed light on how two important concepts
in quantum thermalization and second law of thermodynamics
for quantum systems are connected and may enable further
analysis of the emergence of other peculiar features of ther-
malizing dynamics or when systems may thermalize.
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APPENDIX: REVIEW OF THE TIME-REVERSAL
OPERATIONS � AND T

In standard quantum mechanics [43], it is argued that
the time-reversal operator �:H �→ H is an antiunitary op-
erator defined by its action on the position and momentum

operators,

�R�† = R, (A1)

�P�† = −P, (A2)

where R = (x, y, z) and P = (px, py, pz). By antiunitarity
we mean the following properties satisfied together:

�(α1|v1〉 + α2|v2〉) = α∗
1�(|v1〉) + α∗

2�(|v2〉), (A3)

〈̃v2 |̃v1〉 = 〈v1|v2〉, (A4)

for all α1, α2 ∈ C and |v1〉, |v2〉 ∈ H, with |̃v〉 ≡ �(|v〉).
Equation (A4) implies that �†� = ��† = I. As a result, if
{|ej 〉}dj=1 is an orthonormal basis set for H, so is the set
{�(|ej 〉)}dj=1. More importantly, one can show that for all
A ∈ Md (C) and |v1〉, |v2〉 ∈ H [43]

〈v1|A|v2〉 = 〈̃v2|�[A†�†(|̃v1〉)]. (A5)

For spinless quantum systems, it can be seen that � is
tantamount to complex conjugation C with respect to a chosen
orthonormal basis {|ej 〉}dj=1 for H, which is the antilinear
operation defined through

C [|ψ〉] = C

⎡⎣∑
j

〈ej |ψ〉|ej 〉
⎤⎦ =

∑
j

〈ej |ψ〉∗|ej 〉. (A6)

Note that C† = C and CC† = C†C = I. Obviously, C in the
position representation we have C†RC = R, whereas C† PC =
−P , from whence the orbital angular momentum operator
(L = R × P) fulfills C†LC = −L. Similarly, for two-level
systems, C with respect to the σz-eigenbasis acts as C†σxC =
σx , C†σyC = −σy , and C†σzC = σz.

The situation is, however, different for general angular
momentum J (including spin degree of freedom; J = L + S).
Although C† JC = −J , it can be shown that in general

� = e−iπJy C, (A7)

which for spin-1/2 reduces to � = −iσyC. As a result, �2 =
+I for integer and �2 = −I for half-integer J [43].

Equation (A5) motivates the definition of the time-reversal
operation T as in Eq. (28). One can show that [33] T
is indeed a linear, norm- and trace-preserving map in
the sense that (i) T [α1A1 + α2A2] = α1T [A1] + α2T [A2]
[∀α1, α2 ∈ C and ∀A1, A2 ∈ Md (C)]; (ii) ‖T [A]‖ = ‖A‖
[∀A ∈ Md (C)], where ‖ · ‖ is the induced norm on Md (C)
[44]; and (iii) Tr [T [A]] = Tr [A] [∀A ∈ Md (C)], which has
the extra properties (iv) T [A†] = (T [A])† [∀A ∈ Md (C)], (v)
T [AB] = T [B] T [A] [∀A,B ∈ Md (C)], (vi) T [A] being a
linear operator ∈ Md (C) for all A ∈ Md (C), and (vii) T ◦ T =
I (with I being the identity map).
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[21] V. Jakšić, C.-A. Pillet, and M. Westrich, J. Stat. Phys. 154, 153

(2014).
[22] M. Ramezani, M. Golshani, and A. T. Rezakhani, Phys. Rev. E

97, 042101 (2018).
[23] A. Kossakowski, Rep. Math. Phys 3, 247 (1972).
[24] R. Alicki, Rep. Math. Phys 10, 249 (1976).
[25] A. Frigerio, V. Gorini, A. Kossakowski, and M. Verri, Commun.

Math. Phys. 57, 97 (1977).
[26] W. A. Majewski, J. Math. Phys. 25, 614 (1984).
[27] W. A. Majewski and R. F. Streater, J. Phys. A 31, 7981 (1998).
[28] F. Fagnola and V. Umanità, Infin. Dimens. Anal. Quantum

Probab. Relat. Top. 10, 335 (2007).

[29] F. Fagnola and V. Umanità, Math. Notes 84, 108 (2008).
[30] F. Fagnola and V. Umanità, Commun. Math. Phys. 298, 523

(2010).
[31] F. Fagnola and V. Umanità, Banach Center Pub. 89, 105 (2010).
[32] R. Duvenhage and M. Snyman, J. Phys. A 48, 155303 (2015).
[33] E. Q. Miranda, Master’s thesis, University of Trieste, 2017.
[34] J. Gemmer, M. Michel, and G. Mahler, Quantum

Thermodynamics—Emergence of Thermodynamic Behavior
within Composite Quantum Systems (Springer, Berlin, 2009).

[35] R. Kosloff, Entropy 15, 2100 (2013); S. Vinjanampathy and
J. Anders, Contemp. Phys. 57, 545 (2016).

[36] S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S.
Marcantoni, and A. T. Rezakhani, Sci. Rep. 6, 35568 (2016).

[37] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).
[38] M. A. Nielsen and I. L. Chuang, Quantum Information and

Quantum Computation (Cambridge University Press, Cam-
bridge, 2000).

[39] We have assumed throughout the paper that kB ≡ h̄ ≡ 1.
[40] H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2002); Á. Rivas
and S. F. Huelga, Open Quantum Systems: An Introduction
(Springer, Heidelberg, 2012).

[41] O. Bratteli and D. W. Robinson, Operator Algebras and
Quantum Statistical Mechanics, Vol. 2 (Springer, Berlin,
1997).

[42] D. Petz and G. Toth, Lett. Math. Phys. 27, 205 (1993).
[43] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley,

Reading, MA, 1999).
[44] S. Hassani, Mathematical Physics—A Modern Introduction to

Its Foundations (Springer, New York, 1999).
[45] S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini, and A. T.

Rezakhani, Sci. Rep. 7, 12447 (2017).
[46] F. Benatti and R. Floreanini, Int. J. Mod. Phys. B 19, 3063

(2005).

052104-9

http://arxiv.org/abs/arXiv:cond-mat/0007360
http://arxiv.org/abs/arXiv:cond-mat/0009244
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/PhysRevLett.102.210401
https://doi.org/10.1103/PhysRevLett.102.210401
https://doi.org/10.1103/PhysRevLett.102.210401
https://doi.org/10.1103/PhysRevLett.102.210401
https://doi.org/10.1088/1742-5468/2008/10/P10023
https://doi.org/10.1088/1742-5468/2008/10/P10023
https://doi.org/10.1088/1742-5468/2008/10/P10023
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.89.012127
https://doi.org/10.1103/PhysRevE.89.012127
https://doi.org/10.1103/PhysRevE.89.012127
https://doi.org/10.1103/PhysRevE.89.012127
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1007/s10955-013-0826-5
https://doi.org/10.1007/s10955-013-0826-5
https://doi.org/10.1007/s10955-013-0826-5
https://doi.org/10.1007/s10955-013-0826-5
https://doi.org/10.1103/PhysRevE.97.042101
https://doi.org/10.1103/PhysRevE.97.042101
https://doi.org/10.1103/PhysRevE.97.042101
https://doi.org/10.1103/PhysRevE.97.042101
https://doi.org/10.1016/0034-4877(72)90010-9
https://doi.org/10.1016/0034-4877(72)90010-9
https://doi.org/10.1016/0034-4877(72)90010-9
https://doi.org/10.1016/0034-4877(72)90010-9
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1007/BF01625769
https://doi.org/10.1007/BF01625769
https://doi.org/10.1007/BF01625769
https://doi.org/10.1007/BF01625769
https://doi.org/10.1063/1.526164
https://doi.org/10.1063/1.526164
https://doi.org/10.1063/1.526164
https://doi.org/10.1063/1.526164
https://doi.org/10.1088/0305-4470/31/39/013
https://doi.org/10.1088/0305-4470/31/39/013
https://doi.org/10.1088/0305-4470/31/39/013
https://doi.org/10.1088/0305-4470/31/39/013
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1007/s00220-010-1011-1
https://doi.org/10.1007/s00220-010-1011-1
https://doi.org/10.1007/s00220-010-1011-1
https://doi.org/10.1007/s00220-010-1011-1
https://doi.org/10.4064/bc89-0-5
https://doi.org/10.4064/bc89-0-5
https://doi.org/10.4064/bc89-0-5
https://doi.org/10.4064/bc89-0-5
https://doi.org/10.1088/1751-8113/48/15/155303
https://doi.org/10.1088/1751-8113/48/15/155303
https://doi.org/10.1088/1751-8113/48/15/155303
https://doi.org/10.1088/1751-8113/48/15/155303
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1038/srep35568
https://doi.org/10.1038/srep35568
https://doi.org/10.1038/srep35568
https://doi.org/10.1038/srep35568
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1007/BF00739578
https://doi.org/10.1007/BF00739578
https://doi.org/10.1007/BF00739578
https://doi.org/10.1007/BF00739578
https://doi.org/10.1038/s41598-017-12595-x
https://doi.org/10.1038/s41598-017-12595-x
https://doi.org/10.1038/s41598-017-12595-x
https://doi.org/10.1038/s41598-017-12595-x
https://doi.org/10.1142/S0217979205032097
https://doi.org/10.1142/S0217979205032097
https://doi.org/10.1142/S0217979205032097
https://doi.org/10.1142/S0217979205032097



