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Log-periodicity in piecewise ballistic superdiffusion: Exact results
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Small log-periodic oscillations have been observed in many systems and have previously been studied via
renormalization-group approaches in the context of critical phenomena [Gluzman and Sornette, Phys. Rev. E
65, 036142 (2002); Derrida and Giacomin, J. Stat. Phys. 154, 286 (2014)]. Here we report their appearance in a
random walk model with damaged memory, and we develop an exact discrete-time solution, free from adjustable
parameters. Our results shed light on log-periodicity and how it arises. We also discuss continuous-time
approaches to the solution along with their limitations and advantages. We show that, as a direct consequence of
memory damage, the first moment for the model acquires piecewise ballistic behavior. The piecewise segments
are separated by regularly placed singular points. Log-periodicity in this model is seen to be due to memory
damage. Remarkably, piecewise ballistic behavior is only observed if one uses the discrete-time solution, because
the continuous-time solution does not correctly account for the model’s discrete-time dynamics.

DOI: 10.1103/PhysRevE.98.052102

I. INTRODUCTION

Diffusion is a subject of intense research in the natural
sciences, and it is one of the fundamental mechanisms of
material transport. The rigorous physical and mathematical
basis for the study of diffusion dates back to the beginning
of the 20th century with the explanation of Brownian motion
(BM) in terms of collisions between suspended particles
and erratic molecules [1,2]. Brownian diffusion is charac-
terized by a linear time dependence of the mean-squared
displacement (MSD). In complex systems, however, transport
dynamics are governed by anomalous diffusion (AD) [3–7],
whose distinctive feature is a nonlinear time dependence of
the MSD. The variance [8] typically scales according to
〈x2〉 − 〈x〉2 ∼ t2H , where the exponent H is known as the
Hurst exponent. Anomalous diffusion is termed subdiffusive
for H < 1/2 and superdiffusive for H > 1/2. The value
H = 1/2 is a necessary (but not sufficient) condition for
normal diffusion. For the models we consider in this paper,
the mean-squared displacement satisfies 〈x2〉 ∼ 〈x〉2 ∼ t2H .
Anomalous diffusion and transport phenomena cannot be
described in terms of Brownian diffusion models. However,
they can be modeled by incorporating memory effects into
the model’s dynamics [9–15]. Stochastic differential equation
models have been formulated to model anomalous diffusion
phenomena, such as continuous-time random walks (CTRWs)
[4,16–18], Langevin and generalized Langevin equations [19–
23], fractional kinetic equations [4,24], and the fractional
Fokker-Planck method [12,25].

Another important stochastic approach to the study of
anomalous transport has been provided by the use of ran-
dom walks (RWs) [26–33]. One successful example of mem-
ory implementation leading to anomalous behavior is the
elephant random walk (ERW) model [34], where decisions
made at the present time depend upon the entire history of
previous decisions. The model’s strong correlations give rise

to superdiffusive behavior for long times, and, despite their
nontrivial nature, the model can be solved analytically. The
solution of this model inspired many further studies (e.g.,
see Refs. [35–39]). Other ways to include memory effects
in the ERW dynamics have been devised, such as memory
loss (memory damage), also known as the Alzheimer random
walk [37,38], inclusion of intermittency or pauses to the walk
[39] giving rise to one more regime (subdiffusion), and the
minimal random walk model [40]. Newer solutions for the
ERW model, besides the original solution, have also been
proposed based on the CTRW [41], Fokker-Planck [38], and
martingale [42] approaches.

Log-periodic (LP) corrections to scaling have been ob-
served in many cases [43–46], and they are associated with a
breakdown of a continuous scale invariance symmetry into a
discrete symmetry [47]. Their presence has also been reported
in highly correlated memory random walks with available
analytical solutions [37,38,48,49], despite the strong non-
Markovian character of these models. Small-amplitude log-
periodic corrections have also been reported to appear in sev-
eral systems, such as family names, ferromagnetic interactions
on hierarchical lattices, diffusion-limited aggregation, rupture,
earthquakes, and financial crashes, and their appearance in
critical behavior has been studied via the renormalization
group approach [50,51]. Random walks have already been
used to account for log-periodic oscillations [52,53]. We
recently found that Alzheimer random walk related memory
correlated random walk models may also give rise to small
log-periodic oscillations [54]. The special interest in these RW
models comes from their analytical tractability, allowing for a
deeper understanding of the general mechanisms behind the
phenomenon of small log-periodicity, in particular the main
ingredients necessary for their emergence.

In this paper, we study a non-Markovian random walk
model we proposed before [37], namely the Alzheimer
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random walk (ARW) model—a term coined by Kenkre [38].
In the model, long-range memory is introduced in the micro-
scopic dynamics by including an explicit history dependence
into the decision process. The evolution dynamics is the same
as in the ERW [34]. These models exhibit non-Markovian
behavior due to the strong memory correlation that is em-
bedded in their dynamics. The ARW model, in particular,
includes memory damage by restricting the working memory
to the memories of the distant past. We argue below that
memory damage is an essential ingredient in the rise of log-
periodicities in these models [37,54]. Loss of memory of
recent events is a common type of biological memory damage,
mostly associated with Alzheimer’s disease. Quantitatively,
the memory damage in the ARW model means that only
a fraction f t (f < 1) of the total time t is remembered,
i.e., the events that took place after f t are not immediately
available for use at decision time. Previous studies have shown
that random walkers with a tendency to undo past decisions,
which is known as the negative feedback regime, switch
from nonpersistent to persistent behavior when inflicted with
significant memory losses of the recent past. In this case,
their power-law behavior can be decorated with log-periodic
oscillations [37,38]. Log-periodic modulations small enough
to be mistaken for numerical errors were also discovered in
other memory-dependent RW models, now associated with
positive feedback [54]. A discrete-time solution (DTS) was
then provided to make sure the small oscillations were not
merely numerical artifacts. It is worth mentioning that in order
to prevent small log-periodicity signals from being averaged
out, a proper canonical averaging is recommended [55,56].
Canonical averaging has found application in studying rupture
in random media and in detecting log-periodicity in turbu-
lence. It was also found that the usual approach of taking
the continuous-time limit of a discrete-time equation could
not be adequate to describe the microscopic details of the
discrete-time problem [54,57]. On the other hand, we recently
discovered evanescent small log-periodic oscillations in the
ARW model. Their presence in the model went unnoticed
until now, due to their small amplitude and also to the
continuous-time solutions proposed, which were not adequate
to deal with evanescent oscillations.

Motivated by such findings, we are carrying out stud-
ies aiming at examining the small log-periodicities in the
ARW model and the question about the adequacy of the
continuous-time approach to understand the walk. This model
is very convenient for this study since its memory damage is
clearly defined and its first moment is amenable to analytical
treatments. We address questions regarding the characteristics
of the oscillations and their origins by comparing existing
continuous-time solutions with an exact discrete-time solu-
tion for the first moment. We show that all solutions of
the model are decorated with piecewise ballistic sections
that arise as a consequence of memory damage. Piecewise
ballistic processes have been reported recently in the context
of underdamped dynamics [58,59] and turbulent dispersion
[60]. As far as we know, this is the first time that piece-
wise ballistic phenomena have been found in non-Markovian
random walks, especially supported by first-principles exact
calculations. We discuss the advantages and limitations of
different solutions along with their adequacy to acknowledge

the occurrence of the oscillations. An explanation is provided
as to the origin of these phenomena in stochastic random walk
models in terms of memory damage and breakdown of self-
regulation mechanisms. We believe this study is important
to finding the ingredients associated with the emergence of
log-periodic oscillations and to understanding the limitations
of continuous-time solutions in random walk memory models.

The remainder of this paper is organized as follows. In Sec.
II we describe the models. Section III presents the results, and
Sec. IV outlines the discussions. Final conclusions are drawn
in Sec. V.

II. THE MODEL

In this section, we describe the non-Markovian Alzheimer
random walk model we consider in this paper. It is a one-
dimensional discrete-time RW that uses past decisions to
make decisions at the present time. In the ARW model, the
position Xt+1 is obtained in terms of the previous position Xt

using a recursive relation, namely

Xt+1 = Xt + σt+1. (1)

The set of discrete time step directions {σt = ±1} constitutes
a binary random sequence that contains two-point correla-
tions carrying all the information on the walk history. The
walk starts at time t = 0 at Xt=0 = 0 and the first time step
is set to σt=1 = 1. As in the ERW model, at time t + 1
a previous time 1 � t ′ < t + 1 is randomly chosen from a
uniform distribution with equal a priori probabilities. The
current step direction σt+1 is then chosen either as σt+1 =
+σt ′ (with probability p) or σt+1 = −σt ′ (with probability
1 − p). According to this discrete-time dynamics, the decision
process acts to compensate for past behavior (reformer) if
p < 1/2, mimicking a negative feedback mechanism. It can
also act to reproduce past behavior (traditional) if p > 1/2,
which we call a positive feedback mechanism. We now cause
a disruption in the memory by restricting the memory usage
to only a fraction f t (0 < f � 1) of the total time steps,
and we refer to such disrupted memory simply as memory
damage. We can define the working memory as the portion of
the total memory that can be used in the decision process. The
(integer) size L = L(t ) of the working memory at time t can
be written as L = �f (t − 1)� + 1. Here y = �y� represents
the greatest integer less than or equal to y, and the +1 is here
to avoid a working memory of a zero length when f t < 1.
For example, for f = 0.01 we have L = 1 for 0 < t � 100,
L = 2 for 100 < t � 200, and so on. We see for f < 1 there
is a time delay, inversely proportional to f , for new memories
to be introduced in the working memory. This drastically
changes the behavior of the walk, as will be seen below. The
choice of the current step direction σt+1 is done as in the
ERW model. The non-Markovian character is retained for
f < 1, while for f = 1 we recover the full memory model.
The (f, p) phase diagram of the ARW at long times reveals
superdiffusion for p �= 1/2, according to the value of f . Log-
periodic corrections to scaling were found in superdiffusive
regimes for p < 1/2.

Log-periodic corrections in the ARW model are clearly due
to memory damage, because no such modulations exist in the
original ERW model. At first, they seemed to be restricted to
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negative feedback regimes [37,48]. However, small-amplitude
LP oscillations in the positive feedback region (p > 1/2) were
recently reported for binomial and δ-memory profile models
[54]. Motivated by such new results, after some careful inves-
tigation we were able to show that small oscillations also take
place in the simple rectangular memory model associated with
the ARW model. In fact, we believe that small oscillations
are directly associated with disruptions in the memory pattern
in general. As shown below, besides the “regular” (nons-
mall) log-periodic oscillations for p < 1/2 (negative feedback
regime), the ARW also exhibits small-amplitude log-periodic
oscillations, which only occur for p > 1/2. Moreover, all
solutions of the model are decorated with piecewise ballistic
branches that are carried through all finite values of t . Such
small oscillations are evanescent, i.e., they disappear at long
times. We also discuss possible analytic solutions for Eq. (1),
namely two continuous-time solutions derived by taking the
continuous-time limit of (1) and one discrete-time solution.
We have carefully examined all three solutions and compared
their advantages, limitations, and conveniences to understand
the long-time behavior of the ARW model. We show that
only the discrete-time solution can predict piecewise ballis-
tic behavior. Moreover it provides the best fit to numerical
data.

Damaged recent memory seems to be an essential ingre-
dient to the appearance of LP oscillations. In nondamaged
memory, as in the ERW model, the working memory is
readily updated, meaning that the decisions at time t − 1 are
immediately available for use in the decision process at time
t . In contrast, in the ARW’s damaged memory model, some
of the latest decisions only enter into the working memory
after a time delay. This leads to alternate persistence windows
[54] in 〈x(t )〉, which consist of steps predominantly in a given
direction. The step sizes grow exponentially with time leading
to log-periodic behavior.

In the next sections, we develop an exact discrete-time
solution to the model, which is then compared with existing
continuous-time solutions. The advantages, conveniences, and
limitations of each approach are discussed.

III. RESULTS AND DISCUSSION

In this section, we derive an exact discrete-time solution
to describe the walk introduced above. Continuous-time solu-
tions are also described below.

We start by writing the first moment x(t ) ≡ 〈x(t )〉 in terms
of a recursive equation by taking average of (1), namely

x(t + 1) = x(t ) + α

L
x(L)

= x(t ) + α

�f (t − 1)� + 1
x(�f (t − 1)� + 1),

(2)

where x(t ) = 〈Xt 〉 and α = 2p − 1. Here (α/L)x(L) repre-
sents the walker’s average speed [61].

We now derive an exact discrete-time recursive solution
for Eq. (2), free from adjustable parameters, that describes
correctly the details of the walk for any t , big or small.

A. Discrete-time solution

The initial conditions for (2) are set as x(0) = 0 and
x(1) = 1, and we start looking for an exact iterative process
to get a solution. We then write

x(2) = 1 + α,

x(3) = 1 + 2α,

...
...

x(t + 1) = 1 + αt,

(3)

while t � 1/f . For t > 1/f , we write

x(1/f + 2) = 1 + (1/f )α + α

2
(1 + α),

x(1/f + 3) = 1 + (1/f )α + 2
α

2
(1 + α),

...
...

x(t + 1) = 1 + (1/f )α + α

2
(1 + α)t

(4)

for 1/f < t � 2/f . For t > 2/f , we write

x(2/f + 2) = 1 + (1/f )α + (1/f )
α

2
(1 + α) + α

3
(1 + 2α),

x(2/f + 3) = 1 + (1/f )α + (1/f )
α

2
(1 + α) + 2

α

3
(1 + 2α),

...
...

x(t + 1) = 1 + (1/f )α + (1/f )
α

2
(1 + α) + α

3
(1 + 2α)t

(5)

for 2/f < t � 3/f , and we proceed likewise for t > 3/f . We
see that within the intervals [n/f, (n + 1)/f ], the behavior
of x(t ) is linear with t , characterizing what we refer to as
discrete-time ballistic behavior. This discrete-time iterative
process can be represented by a single recursive equation,
namely

x(t ) = 1 +
t−1∑

j=1

α

�f (j − 1)� + 1
x(�f (j − 1)� + 1). (6)

Notice the absence of any adjustable parameters in this equa-
tion. This discrete-time approach thus predicts a piecewise
ballistic decoration to 〈x(t )〉 with period 1/f , which is not
contemplated by the previous solutions. It is worth noting that
these decorations to the first moment curve could actually be
predicted directly from the basic equation of motion, namely
Eq. (2), if it is written as

�x = α

�f (t − 1)� + 1
x(�f (t − 1)� + 1).

We see that the speed of the walker dx/dt ≈ �x de-
pends on L = �f (t − 1)� + 1, which remains constant for t ∈
[n/f, (n + 1)/f ], with n ∈ {0, 1, 2, . . . }. Within these time
intervals 〈x(t )〉 is a straight line, i.e., x(t ) = at + b. This
piecewise ballistic behavior is caused by the memory damage.
The decisions taken while t runs within one of these inter-
vals are not within the range of the working memory. Thus
the time intervals tn = n/f up to tn+1 = (n + 1)/f define
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memory chunks within which the working memory does not
change. The effect of memory damage in the model affects
the walker’s speed in such a way that speed changes depend
exclusively on a fixed position point until the next update
in the working memory occurs, characterizing the piecewise
ballistic behavior.

Equation (6) represents a first-principles solution for
〈x(t )〉, free from adjustable parameters, which reproduces all
the microscopic details of the walk, even for small times.
It correctly accounts for all the log-periodic modulations
that appear in the ARW model, both “regular” and small,
along with the piecewise decorations to the first moment, as
shown in the discussions below. An added convenience is the
possibility of avoiding using numerical simulations to analyze
the walk behavior. In fact, this solution provides data faster
and more accurately than computing simulations.

B. Series expansion continuous-time solutions

Another approach to study this problem consists in writing
a continuous-time limit for Eq. (2) by taking into account the
first derivative, i.e.,

dx(t )

dt
= α

f t
x(f t ), (7)

from which continuous-time solutions can be obtained. We
actually used this approach before [37,62]. Notice, however,
that while (7) provides a good representation of the walk for
very large times, it definitely fails to do so for small values of
t . Therefore, one should not expect continuous-time solutions
to be able to describe the microscopic details of the walk. In
particular, the damaged memory pattern of the model leads to
microscopic details in the walk that can only be seen in finite
times. Indeed, as we shall see below, only the full discrete-
time solution can fully describe all details of the walk for finite
times and small value parameter f .

In a previous work [61], we employed a continuous-time
solution for Eq. (7) given in terms of a time-series expansion,
namely

x(t ) =
∞∑

r=0

ai sin [Bi ln (t ) + Ci]t
δi . (8)

The choice of coefficients in this time series was motivated
by numerical results, which indicated the presence of log-
periodic oscillations. Only the dominant term of the series
was kept since we were interested mainly in the model’s
diffusive behavior in the long-time limit. The simplicity of
(8) offers great help in the overall analysis of the problem,
a major advantage being that it can be used straightfor-
wardly to determine the Hurst exponent H in superdiffusive
regimes. In fact, H can be obtained by replacing the dominant
term of (8) into (7) and solving the resulting transcendental
equations. This approach was successfully used to draw the
phase diagram H = H (f, p) for the ARW model for large
t . As expected, solution (8) is also able to account for the
nonsmall nonevanescent log-periodicities for p < 1/2 (the
negative feedback regime) providing excellent agreement with
numerical calculations (details can be found in [49,61]). This
solution represents an exact solution to Eq. (7), valid in the
asymptotic limit. It also provides a transcendental equation

H = αf H−1 for p > 1/2 (α > 0), which can be easily linked
to the Lambert W function W (u),

H = 1

ln(1/f )
W (u), (9)

with u = α/f . This function can be expanded in the form [63]

W (u) = ln(u) + 2πık − ln[ln(u) + 2πık]

+
∞∑

k=0

∞∑

m=1

ckm lnm[ln(u)+2πık][ln(u) + 2πık]−k−m.

This complex exponent could represent a log-periodic be-
havior on x(t ). However, the exact solution (6) indicates
an evanescent log-periodic behavior that disappears in the
asymptotic limit. Therefore, the unique solution for the Hurst
exponent for α > 0 is given by (9) with k = 0. Then the
imaginary part of H does not contribute to the leading term of
the series for x(t ). In other words, the log-periodicity appears
only in the correction to scaling terms, and it is non-negligible
for finite (even large) t (for some values of parameters f

and p).
Another point worth mentioning concerns the piecewise

ballistic decorations that appear in the solutions of the ARW
model for all p �= 1/2. These decorations are due to the
microscopic consequences of the memory damage and are
incorporated in Eq. (2). Solutions to the continuous-time
equation (7) smooth the discrete results and cannot display
these microscopic details.

FIG. 1. Computing simulations (black open circles) and ana-
lytical results (Kenkre’s solution as full black triangles and exact
discrete-time exact results as blue solid lines) for the first moment
〈x(t )〉 vs time for f = 0.01. The period of the oscillations is equal to
ln(1/f ) ≈ 4.6 (see the text) and the Hurst exponents (H = 0.806 11
for p = 0.3 and H = 0.909 64 for p = 0.8). The main figure in
(a) shows ln[|〈x〉|/tH ] for p = 0.3 with numerical data (103 runs
and tmax ≈ 9 × 106 time units each) along with discrete-time exact
results and Kenkre’s solution. Note that the simulation results adjust
perfectly well to the exact curve. The log-periodic curve in this case
(p < 1/2) represents a nonsmall log-periodic oscillation. A small
log-periodic oscillation corresponding to p = 0.8 is also drawn for
comparison (solid blue curve in the middle). Note that the amplitude
is so small that the oscillation is barely noticed in this scale. In (b)
numerical data (2 × 105 runs and tmax ≈ 9 × 106 time units each) and
exact results are shown in a 〈x〉/tH vs ln(t ) plot with p = 0.8. This
small log-periodic oscillation is evanescent. The zoom emphasizes
a cusp indicating a singularity in the exact curve. Note that the
oscillatory aspect of the curve is clearly seen now, along with the
presence of the singularity.
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FIG. 2. Discrete-time exact results for f = 0.01 and p = 0.3.
The main curve equally sized straight line time segments are repeated
periodically every �t = 1/f = 100 time units. The diffusion is
ballistic [〈x(t )〉 ∼ t] within each straight line section of the curve
characterizing piecewise ballistic behavior repeated with period
�t = 1/f . The derivative of the main curve is shown in the inset
for an easy view of the size of the time sections. Note that the whole
curve consists of piecewise sections that persist for long times.

Another continuous-time solution for Eq. (7) was provided
by Kenkre [38], which is written as

x(t ) = x0

∞∑

r=0

[
(α/f ) ln (1/f )

( ln (t/t0 )
ln (1/f ) − r

)]r

r!

× H(t − t0(1/f )r ), (10)

where H stands for the Heaviside step function, i.e., H(t ) = 1
for t � 0 or H(t ) = 0 for t < 0. This equation is also an
exact solution to Eq. (7), valid for all t . For this reason,
it accounts for the model’s log-periodicities, both small and
nonsmall. However, it is not adequate for determining the
Hurst coefficient, for example. Moreover, like Eq. (8), it does
not explain the ballistic branches of the walk.

Figures 1(a) and 1(b) show numerical data and discrete-
time results for 〈x(t )〉 versus ln t for p = 0.3 (“normal”
amplitude) and p = 0.8 (small amplitude), respectively, with
f = 0.01. The Hurst exponents in these cases, obtained from
(9), characterize superdiffusion with H = 0.806 11 for p =
0.3 and H = 0.909 64 for p = 0.8. The Hurst exponents
in both cases were determined using the dominant term of
Eq. (8). Notice that the small log-periodic oscillations are
evanescent. The relative sizes of the two oscillations can be
noticed by comparing the solid curve for p = 0.8 drawn in the
middle in Fig. 1(a), with the main curve drawn for p = 0.3.
Kenkre’s solution provides a good fit for p = 0.3 and a fairly
good fit to the small oscillations occurring for p = 0.8. The
main point here is that solution (10) is able to acknowledge
the presence of the small oscillations occurring for p > 1/2.
We see that the exact discrete-time solution adjusts perfectly
to the numerical data in both cases, as expected. Notice the
small cusp by the zoom indicating a singularity in the exact

solution. The presence of the singularity can also be noticed
from the numerical data, but it can only be definitely settled
by the exact results.

In Fig. 2, a section of the log-periodic curve for (f, p) =
(0.01, 0.3) is shown in detail using only discrete-time solution
points. As shown, the log-periodic curve is composed of
straight line time segments of equal size �t = 1/f . Such
piecewise ballistic behavior is repeated periodically in time
every �t = 1/f and is sustained for large t and disappears
for t → ∞.

IV. CONCLUSIONS

We have studied possible solutions for a non-Markovian
random walk model with long-range memory correlations
and damaged memory. We note that by memory damage in
the model, we simply mean that only the ancient part of
the memory is available to the decision process, or, more
generally, two different parts of the memory are treated
differently. It is shown that memory damage and discrete
time lead to the truncation term in Eq. (2), which ultimately
causes the emergence of the piecewise ballistic behavior for
small f . Specifically, it is shown that, besides the already
reported asymptotic nonsmall log-periodic oscillations in the
negative feedback region (p < 1/2), the model also presents
small amplitude evanescent LP corrections to scaling in the
positive feedback regime (p > 1/2). It is also shown that, as
a direct consequence of memory damage, the first moment
curve is characterized by an assembly of straight line time
segments regularly separated by singular points. The singular
points are placed evenly over the 〈x(t )〉 versus t curve and
constitute an infinite discrete set. The straight line sections
decorate all solutions for the first moment except for p = 1/2,
representing piecewise ballistic branches over the entire curve
for all finite values of t . The model is thus far richer than we
first thought.

The small log-periodic behavior along with the straight
line branches and singularities are studied via two existing
continuous-time solutions for the model. The conveniences
and limitations of the solutions are discussed. They are shown
to represent suitable choices to study the large time macro-
scopic aspects of the walk, like the period of the oscilla-
tions and the Hurst exponent. It is shown that neither of
the continuous-time solutions resolves the decorations char-
acterized by the piecewise ballistic behavior. Despite its non-
Markovian character, the ARW model offers the great advan-
tage of analytical tractability. An exact discrete-time recursive
solution was then developed, free from adjustable parameters,
that is able to account for all the microscopic details of the
walk, particularly the piecewise ballistic sections.

Our results leave open some questions and suggest pos-
sible directions for future work. A primary and challenging
task would be to obtain a series expansion solution for the
discrete-time approach to replace Eq. (6). Another interesting
question involves the implications of the small log-periodic
oscillations to the underlying symmetry of the model. In fact,
small log-periodic oscillations can be nonevanescent [54]. It
might be worthwhile to investigate their consequences to the
model’s symmetry. We also have found indications that other
singularities, besides the ones leading to piecewise ballistic
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behavior, may exist. This array of singular points in the first
moment indicates that the probability density function for
these non-Markovian processes can be more complex than
we first thought [35]. The results show that the description
of inherently discrete problems using continuous-time ap-
proaches must be done with care. The findings in this work
can provide guidance on investigations involving transitions
from discrete-time equations to continuous-time equations.
They can also lead to new insights on questions regarding

the ingredients leading to the appearance of log-periodic
corrections to scaling, both normal and small.
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