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Effect of shape and friction on the packing and flow of granular materials
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The packing and flow of aspherical frictional particles are studied using discrete element simulations.
Particles are superballs with shape |x|s + |y|s + |z|s = 1 that varies from sphere (s = 2) to cube (s = ∞),
constructed with an overlapping-sphere model. Both packing fraction, φ, and coordination number, z, decrease
monotonically with microscopic friction μ, for all shapes. However, this decrease is more dramatic for larger s

due to a reduction in the fraction of face-face contacts with increasing friction. For flowing grains, the dynamic
friction μ̃—the ratio of shear to normal stresses—depends on shape, microscopic friction, and inertial number
I. For all shapes, μ̃ grows from its quasistatic value μ̃0 as (μ̃ − μ̃0 ) = dIα , with different universal behavior for
frictional and frictionless shapes. For frictionless shapes the exponent α ≈ 0.5 and prefactor d ≈ 5μ̃0 while for
frictional shapes α ≈ 1 and d varies only slightly. The results highlight that the flow exponents are universal and
are consistent for all the shapes simulated here.
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Granular materials are ubiquitous in engineering, indus-
trial, and natural settings. Understanding packing, mechanics,
and flow of granular materials like metallic and polymeric
powders or rocks and soils is not only of fundamental physical
interest but also of important practical concern. Significant
advances have been made understanding the nature of gran-
ular statics and dynamics through extensive experimental and
computational studies of monodisperse spheres [1,2].

It is well established that the microscopic particle friction,
μ, strongly influences the stability of static packings of spher-
ical particles, allowing sphere packs to span the density range
from random close packing, nominally identified with the
packing fraction, φrcp ≈ 0.64 at μ = 0, down to random loose
packing, φrlp ≈ 0.55 for μ � 0.5 [3–9]. Correspondingly, the
coordination number z, the average number of contacting
particles, also exhibits a continuous decrease from zrcp = 6 to
zrlp ≈ 4 [4,5,9,10]. From a dynamic view, granular materials
similarly express a rich rheology, particularly flows of dense,
cohesionless grains [11–13]. Computer simulations continue
to prove useful by providing further insight into the rheology
of granular materials, especially the role of particle friction
[14–16], and by offering ways to test and validate efforts to
develop constitutive models [17].

The behavior of aspherical particles is less studied, al-
though it is known that particle shape has an important role
in modifying packing [18–28], flow [29–32], and quasistatic
mechanical properties [33–37]. At a practical level, most
real particulates are frictional and far from spherical, from
grains of sand and stones to corn kernels and coffee beans.
While shape tends to cause the packing density of frictionless
packings to increase with increasing asphericity, at least until
the particle aspect ratio exceeds some threshold [38,39], there
are some hints that despite differences in shape, frictional
nonspherical particles share similarities with spheres [40].

To address the role that particle shape plays in influencing
the packing and flow properties of aspherical, frictional mate-
rials, we choose a series of particle shapes that can be system-
atically controlled. One particular class of particle shapes that
has received attention are superquadric particles, or superballs
[41–46], which are defined by the surface equation:
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Here, we restrict our study to shapes with a = b = c where
a is the characteristic particle length, and to a single shape
parameter s = t = v. These shapes lie on the spectrum from
a sphere of radius a for s = 2, to a cube of side 2a for s =
∞. We study the values s = 2.0, 2.5, 3.0, 4.5, and 6.0 that
represent the transition from spherical to cubelike shapes, as
shown in Fig. 1(a).

Although granular simulations of frictionless aspherical
particles is now a well-established technique [24,39,47–59],
implementation of the contact mechanics between individual
rigid bodies can be cumbersome, especially when tracking
static friction forces for the duration that two rigid bodies
remain in contact. To overcome contact-detection issues for
arbitrarily shaped, composite rigid bodies, we implement a
clustered-overlapping sphere algorithm [60] to construct
superballs comprised of many component spheres of
different sizes. The overlapping-sphere algorithm efficiently
packs spheres of variable diameter to fill an arbitrary
three-dimensional shape with an algorithm similar to other
efforts [53]. Although the overlapped-sphere representation is
not perfect, with small gaps between the spheres and surface
corrugation relative to the ideal analytic shape, we maintain
a balance between the number of spheres used in a shape
representation and the fidelity of the representation by using
representations that fill at least 95% of the ideal shape volume
with as few spheres as possible. For s = 2.0, 2.5, 3.0, 4.5,
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FIG. 1. (a) Superballs created using the overlapping sphere al-
gorithm. From left to right: s = 2.0, 2.5, 3.0, 4.5, and 6.0. Bottom:
Static packings for s = 6.0 superballs with microscopic friction (b)
μ = 0.0 and (c) μ = 1.0.

and 6.0, the rigid bodies contain n = 1, 163, 71, 179, and 229
spheres, which, respectively, fill 1, 0.9866, 0.9760, 0.9674,
and 0.9633 of the ideal superquadric volume. To test the
effect of shape fidelity, we also created spheres using n = 73
by applying the overlapping-sphere algorithm after placing
the first sphere off-center, and a superball with s = 3.0 using
n = 125 spheres. These systems are denoted by s = 2∗ and
3∗, respectively, in Fig. 2.

The net force and torque between two contacting rigid
bodies are computed from the set of all forces between
each pair of contacting spheres that compose the two bodies.
Spheres interact via an established linear spring-dashpot con-
tact interaction model [61,62], with normal (n) and tangential
(t) forces parametrized by spring constants kn,t and damping
factors γn,t , respectively. In this work, kn = 2kt = 200 000
and γn = 2γt = 33.5τ−1, throughout, such that the coefficient
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FIG. 2. (a) Packing fraction, φ, and (b) coordination number, z,
of superball packings over a range in shape parameter, 2 � s � 6,
and particle friction coefficient, 0 � μ � 1.0. Symbols at 5 × 10−4

represent results for μ = 0 (solid) and from Jiao et al. [43] (open).
The * symbols represent bodies of different fidelity as described in
the main text.

of restitution, e = 0.84, where time is normalized by the
time unit τ = √

m/kn, with m the characteristic mass of a
rigid body. The microscopic, sphere friction coefficient, 0 �
μ � 1, represents realistic friction values. All lengths in the
simulation are scaled by a, the characteristic length. Particle
motion was integrated via the velocity-Verlet algorithm while
that of the rigid bodies used the method of quaternions [63]
within the open-source LAMMPS software package [64]. The
stiffness of the sphere sets the scale for energy and stress,
therefore stress and pressure are scaled by kn/a.

Mechanically stable packings were generated, adapting
an isotropic compression protocol with periodic boundary
conditions in all three directions [9], close to the limit
of marginal stability with a packing pressure P ≈ 10−5.
Figure 2 shows our results on the packing fraction (a) and
coordination number (b) as a function of microscopic friction
μ over the range 2 < s < 6. We also use Fig. 2 to illustrate the
effectiveness of the overlapping sphere model implemented
here by comparing our data to the results of hard-particle,
event-driven dynamics simulations of Jiao et al. [43] (open
symbols) for μ = 0 only. While the fidelity of the overlapping
sphere method leads to minor deviations from the “exact”
(μ = 0) results, packing fraction values deviate within just
a few percent between the different overlapping-sphere
representations and the hard-superball simulations [65]. As
Fig. 2 displays, superball packings exhibit similar features
to spheres: A monotonic decrease in the packing fraction
φ and coordination number z with increasing μ, for all s.
One striking feature is that in the large-μ limit, packings of
different shapes tend to converge to a similar state. In other
words, the reduction in φ and z with μ is more dramatic for
larger s, causing frictional superballs with different s to all
approach similar values in φ and z. Similar to previous studies
of frictionless shapes, we also observe that for s � 3 the μ =
0 contact numbers are approximately constant [43]. Indeed,
z values for the entire μ range are very similar for s � 3. Our
μ = 0 z values lie about 7%–10% below those of Jiao et al.,
while our values for φ are in significantly better agreement
[43]. These differences arise from several factors including
the computational methodology, the shape interactions
(hard vs soft sphere), and especially the overlapping sphere
representation, which leads to overly “rounded” shapes and
can lead to multiple contacts between pairs of shapes. In
particular, the overlapping-sphere representation works to
reduce the contact number for a given s value in the jammed
state. In contrast, our contact number results for s = 2 and
s = 2∗ agree within 1%–2% with previous results, suggesting
that the representation and packing protocol is more important
for shapes than for spheres. The change in φ with μ and s

shown in Fig. 2 arises from the difference in stability of
various contact topologies, such as face-face, edge-face, and
corner-face, at different friction values, as described below.

From the radial distribution function g(r ), shown in
Fig. 3(a), there is a distinct shift and broadening of the
primary, nearest-neighbor, first peak for s = 6 as μ increases,
a feature that is absent for spheres [5]. For μ = 0, the nearest-
neighbor peak represents face-face contacts which leads to
efficient packing. The inset of Fig. 3(a) shows the dramatic
decrease in the fraction of particles with at least one face-face
contact with increasing μ. While the presence of face-face
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FIG. 3. (a) Radial distribution function, g(r ), for s = 6.0 with
particle friction μ = 0.0 and μ = 1.0. The images reflect likely
local structures: face-face, edge-face, and face-face-face, at their
respective separations, r . Inset: The fraction of particles for s = 6.0
that have at least one face-face contact as a function of the surface
friction μ. Bottom: The distribution P (f ), of the normalized, normal
contact forces f for s = 2.0 and s = 6.0 packings for (b) μ = 0 and
(c) μ = 1.

contacts has been shown to stabilize packings of friction-
less Platonic solids [66], for frictional particles other contact
topologies such as face-edge contacts become more prevalent.
At μ = 1.0, many of these face-face contacts are replaced
by local face-edge or face-corner contacts with increasing
s, as surmised from the shift of the primary peak in g(r ).
In addition, the distinctive split in the second peak that is
apparent for dense sphere packings is smoothed in the case
of superballs, and broadens with increasing friction. As a
consequence, these structural dilatational effects cause a de-
crease in φ with increasing s, as all shape packings approach
similar values of φ and z in the large friction limit. Despite
these differences, the distributions of normal contact forces,
P (f ), shown in Figs. 3(b) and 3(c), where we compare sphere
and cube packings, suggest that shape has little effect on the
packing mechanical properties for μ = 0, indicating similar
behavior to two- dimensional shapes [67]. Whereas, at μ = 1
subtle differences such as enhancement of the large-force tail
and an increase in the fraction of smaller forces occur.

We now turn our attention to flow. Our flow results are
shown in Figs. 4 and 5. Numerous studies of granular flows
[14–17,68–70] have highlighted the influence of microscopic
friction on the ratio of the shear stress to the normal stress. It is
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FIG. 4. Rheology curves for flowing superballs with s = 2.0,
3.0, and 6.0. (a) Dynamic friction coefficient μ̃ as a function of
the inertial number, I . At small I , all curves approach a constant
value. Values of μ̃0 used in (b) are indicated by open symbols at
I = 0.16. (b) The scaled dynamic friction coefficient μ̃/μ̃0 − 1 for
s = 2.0, 3.0, and 6.0 at zero friction. Inset: The shifted dynamic
friction coefficient μ̃ − μ̃0 for frictional shapes.

useful to think of this ratio as the bulk, macroscopic, dynamic
friction coefficient, or stress anisotropy, μ̃. This dynamic
friction coefficient scales with inertial number I according to
the rheological law,

μ̃ = μ̃0 + dIα, (2)

FIG. 5. The dynamic friction coefficient μ̃0, in the quasistatic
limit (I → 0), as a function of the microscopic friction μ, for shape
parameter s = 2.0, 3.0, 4.5, and 6.0. Inset: A schematic of the flow
sample showing how the wall velocity and pressure are applied.
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with μ̃0 the value in the quasistatic limit I → 0. The inertial
number I = 2γ̇ a

√
ρ/Pxx is a dimensionless number that de-

pends on the strain rate γ̇ , particle diameter 2a, particle den-
sity ρ, and confining pressure Pxx . For spheres, the power-law
exponent, α, is distinct for frictionless and frictional particle
flows: For μ = 0, α ≈ 0.5, while for μ > 0, α ≈ 1.0 [71].

Flowing states contain N = 6250 superballs of radius ratio
1 : 1.4 and number ratio 1.43 : 1 to preserve equal volumes
of each species and to avoid ordering during flow. Initially,
dilute samples are compressed along the x direction by two
rigid walls, with the y and z directions periodic. The sheared
system has geometry Lx ≈ 90a, Ly = 70a, Lz = 10a, as
shown in the inset to Fig. 5. The x position of the upper
wall is pressure controlled, according to the equation ẋupp =
[P (t ) − Pxx]A/�, with damping parameter � = 44m/τ , the
cross-sectional area A, and with a target normal pressure
Pxx = 10−3. Shear flow was imposed by applying a constant
y velocity vupp to the top wall. We varied vupp to span a
range of dimensionless inertial number I , from rapid flow
(I ≈ 0.1), through the inertial regime, down to the quasistatic
limit, I < 10−4.

Rheology data over the full range of I shown in Fig. 4(a)
show the quantitative dependence of the dynamic friction on
shape. The results span a wide range of inertial number I for
several values of surface friction μ and shape s. Estimates of
the quasistatic friction value μ̃0 for each s and μ are shown
on the right as open symbols at I = 0.16 [72]. We discuss the
data for frictionless and frictional shapes separately below.

In Fig. 4(b) the frictionless data are presented. For friction-
less particles, we measure that all our data follow the same
power law with exponent, α(μ = 0) ≈ 0.5, independent of
shape. This exponent is slightly larger than previous measure-
ments for spheres, circles, and pentagons [73,74]. We note
that we do not determine precise exponents within our data,
but rather aim to compare between frictionless and frictional
particles. Further, the excellent collapse of μ̃(I )/μ̃0 − 1 as a
function of I implies that μ̃0 and d are proportional, and we
estimate that d(μ = 0) ≈ 5μ̃0. These results indicate the uni-
versality of the α ≈ 0.5 scaling for frictionless particles and
that the dynamic friction of frictionless particles is controlled
by the quasistatic limit. We note that these results appear
independent of how the shapes are represented.

The inset panel of Fig. 4(b) contains data for frictional
particles, plotted with the quasistatic value μ̃0 subtracted,
μ̃ − μ̃0. All data exhibit approximately linear dependence,
indicating α ≈ 1. Also, all the data have a similar slope,
suggesting that d is approximately independent of particle
shape when microscopic friction is present [75]. The depen-
dence of slope on microscopic friction μ cannot be ruled

out by our data, which is consistent with previous results for
frictional flow of disks in two dimensions [16]. We speculate
that dimensionality and particle shape may shift the phase
diagram proposed previously [16] while maintaining the same
qualitative features.

Values of the quasistatic limit of the dynamic friction
coefficient μ̃0 are shown in Fig. 5 for s = 2.0, 3.0, 4.5,
and 6.0 over a range of particle microscopic friction μ. The
data indicate that μ̃ monotonically increases with s and μ,
saturating at a shape-dependent value at large μ.

In conclusion, we have shown that the static packing
fraction and contact number for superball packings depend
on shape parameter s and microscopic friction μ, yet follow
trends similar to that of spheres. As particles become more
aspherical, face-edge and face-corner contacts stabilize at
high friction, replacing the face-face contacts that pack
more densely. Results show that the rheology of aspherical
particles shares similarities with spheres. In particular, the
power-law exponent of the I dependence is α = 0.5 for
frictionless particles and α = 1.0 for frictional particles,
independent of shape. This result suggests that results
previously found in two dimensions extend also to three
dimensions [73]. Interestingly, the distinction between μ = 0
and μ > 0 also applies to the quasistatic value of the dynamic
friction coefficient μ̃0 and the prefactor d with d ∼ μ̃0(s) for
frictionless particles, and d approximately constant for the
frictional shapes simulated here. These results indicate both
common and distinct aspects of packing and flow between
spherical and aspherical particles. On the one hand, the
microscopic properties of grains can be somewhat overlooked
when discussing general qualitative behavior, while on the
other, specific bulk material properties require a more detailed
understanding of the constituent particles.
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