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A tomographic or image representation of three-dimensional (3D) porous media is a primary tool for the
consistent correlation and prediction of multiple physical properties. For multiscale media a single imaging scale
may not be sufficient, and a compromise between field of view and resolution is required. The resulting lower
resolution compared to relevant length scales in part of the tomogram impacts on the quality of petrophysical
cross-correlations. This situation is overcome in geostatistics by carrying out stochastic simulations with
lower resolution constraints and propagating uncertainty from smaller scales through upscaling procedures
capturing the behavior of the system at smaller scales. Applying this technique to full tomograms requires
a fast high-resolution reconstruction technique. We propose a local-similarity statistic reconstruction (LSSR)
method to reconstruct 3D high-resolution porous structure by combining a set of increasing resolution micro-
computed-tomography (micro-CT) images with decreasing field of view (FOV) to overcome this limitation.
The reconstruction technique is based on two assumptions, universally existent local similarity at a given scale
and fixed image degradation when downscaling by the same factor between corresponding cubes of high- and
low-resolution images. Utilizing the flexibility of micro-CT images in terms of resolution and FOV, a sample
was scanned first with low resolution, and then a subset was taken from this sample and scanned with high
resolution. A significant number of small cube pairs are extracted from corresponding parts of the low-resolution
and high-resolution images, where both high- and low-resolution images are accessible. These cube pairs contain
abundant information about features of local porous structure under different resolutions allowing reconstruction
of a higher-resolution micro-CT image. Instead of the “Search-Statistic” strategy popularly used in current
reconstruction algorithm a “Decomposition-Reconstruction” strategy is applied to accelerate computations and
improve the reconstruction accuracy. Local porosity theory and the Minkowski measures are used to estimate
the performance of reconstruction algorithms. Compared to multipoint statistics we improve computational
efficiency by employing a sparse representation and principal component analysis for compression, while also
improving on reconstruction accuracy.
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I. INTRODUCTION

A three-dimensional (3D) representation of disordered
porous media is frequently used to predict transport properties
and derive consistent cross-correlations of physical properties.
This is particularly the case for materials with strong property
contrasts, e.g., at the pore scale, and where heterogeneity
exists at multiple scales. For this class of materials bounds on
effective physical properties may be less tight (e.g., the lower
Hashin-Shtrikman bounds [1] may be zero). The complexity
of multiscale heterogeneous materials makes it difficult to
choose effective medium theories with implicit microstructure
representing their physical properties for consistent cross-
correlations ([2,3]) while higher-order correlation functions
as used in the Milton bounds [4] to constrain effective phys-
ical property predictions would be difficult to apply. Conse-
quently, imaging methods have been used [5] with constantly
improving field of view (FOV) and resolution. The latter are
two opposing targets where a compromise needs to be made:
large FOV allows the effective characterization of larger-scale

*c.arns@unsw.edu.au

heterogeneity, yet to the detriment of resolution necessary to
calculate transport properties accurately. A potential solution
to this problem are stochastic methods which honor low-
resolution imaging data offering a large field of view, while
capturing small-scale structural variability as basis for the
calculation of consistent cross-correlations. In the following
we recapture some of the common reconstruction techniques
before setting out the organization of this article in detail.
We target the development of a fast reconstruction technique
for integrating small-scale variability into micro-computed-
tomography (micro-CT) images by applying subresolution
stochastic modeling.

A. Common stochastic reconstruction methods

There are two common ways to derive the 3D structure of a
porous material: statistical reconstruction and direct imaging.
Before the widespread use of micro-CT and focused ion
beam ablation combined with scanning electron miscroscopy
numerical reconstruction used to be the main approach to 3D
porous structure modeling. Statistical reconstruction remains
popular because of relative cost advantages and convenience
and by extending the application of 3D imaging methods
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like micro-CT. For a long time since Fatt carried out flow
simulations in a regular two-dimensional (2D) network model
[6] porous media reconstruction and flow simulation were
restricted to the 2D case because of computational limitations.
Quiblier [7] proposed a 3D porous structure reconstruction
method based on the measurements of characteristics using
2D thin sections of porous media. This method is based
on successively passing a normalized uncorrelated Gaussian
random field through a linear and then a nonlinear filter to
generate the discrete values representing the phases of the
structure [8]. This method is quite general [9] and robust
[10], which attracted a large number of researchers to ap-
ply and develop it further in the subsequent two decades
[8,11–14]. Kikkinides [15–17] proposed a porous structure
reconstruction method based on fractional Brownian motion
(fBm) models which has been successfully applied in porous
media such as sandstone and membranes. The method is based
on the midpoint displacement and successive random addi-
tion technique, which is, essentially, a graphical reproduction
technique for the generation of self-affine media that follow
fBm statistics. Using one- and two-point probability functions
to reproduce more complex porous structures [8] may not
reproduce connectivity properties critical for transport [18].
Morphological descriptors containing connectivity informa-
tion were introduced as additional constrains into the recon-
struction process, e.g., a two-point cluster function, lineal-
path length, and chord-length function [8,13,19,20]. Since
it is difficult to incorporate these new descriptors into the
aforementioned filtering method, a simulated annealing (SA)
method was proposed to reconstruct images subject to various
statistical constrains [8,21,22]. Although reconstructions of
several materials including sandstone [23] and chalk [24]
were successful, the resulting images do not always capture
the long-range connectivity of pore space, namely, for low
porosity and particular media [25]. Another recent approach
is process-based reconstruction, which mimics the geological
process of the forming of sedimentary rocks [26–35]. A
necessary precondition for use of this method is an adequate
understanding of the physical and chemical processes essen-
tial to the formation of the porous structure and which is
always difficult, especially in carbonates and shale.

A Markov chain Monte Carlo (MCMC) reconstruction
method was developed by Wu et al. [36] to simulate 2D soil
images effectively. This algorithm was extended to 3D porous
structure modeling in their subsequent work through using
three perpendicular 2D sections. These three sections are used
as prior in determining the transition probabilities controlling
the Markov chain process. The MCMC method was further
generalized to multipoint statistics (MPS) by Okabe and Blunt
[9,37], which was introduced in geostatistics to represent
connected geobodies at field scale by Strebelle et al. [38].
Since then, the reconstruction of 3D images is based mainly
on 2D images. With the increasing availability of micro-CT
images of porous structures, a tomography-associated MPS
method has been developed [39] as well as grain-based recon-
struction methods including tomographic information [40]. In
these methods macropores are identified by micro-CT, while
micropores are provided by MPS or grain reconstruction
and then superimposed to obtain the final image with an
improved connectivity. Another recent approach introduces

a reconstruction method utilizing low-resolution information
and a subpixel model, where the latter correlates subresolution
pore size to the porosity of voxels, which are not completely
void [41].

B. Computational cost of MPS

The accuracy of the MPS method depends on the size of
the scanning template and the number of replica that can
be searched in the training image. Larger template sizes are
computationally much more demanding and also imply a
reduced number of replicas available for training. Comunian
et al. [42] summarize time requirements for the MPS method
against template size and show that using a 3D template with
a size of 7 × 7 × 7 voxel will consume more than two orders
of magnitude greater computing time than required by using
a 2D template. Thus, the main problem is balancing template
size and number of replicas.

C. Work flow and organization of this article

To overcome the contradiction between resolution and
FOV, we propose a mathematical method called local-
similarity-based statistical reconstruction (LSSR) to recon-
struct a high-resolution micro-CT image. We use a sparse
presentation algorithm to determine (train) a dictionary by
which to reconstruct the expected high-resolution cubes. A de-
composition step is introduced that projects the low-resolution
cube onto a trained low-resolution dictionary and derives its
projection coefficients (namely, sparse coefficients). Recon-
struction is then a linear combination of high-resolution dic-
tionary entries based on these projection coefficients. Because
of local-similarity features (defined in detail in Sec. II), iden-
tical sparse coefficients are used in low- and high-resolution
dictionary training. Figure 1 illustrates the six steps in the
work flow of the LSSR algorithm. Step 1 and step 2 are carried
out interactively.

First. a tomogram of a relatively large sample (e.g.,
25.4 mm diameter and 38 mm length) is acquired by micro-
CT with a relatively low resolution (e.g., 16 μm). Then a
cylindrical subplug is extracted from this large sample and
scanned by micro-CT with a relatively high resolution (e.g.,
4 μm). This process guarantees that there exists an overlap
area where both high- and low-resolution images are accessi-
ble. In step 3, both the large FOV low-resolution image and
the smaller FOV high-resolution subset are segmented into a
limited number of discrete phases. In step 4, a large number of
high- and low-resolution image cube pairs are extracted from
the overlap area, and these image cubes record the structural
characteristics of local structure under different resolution. In
step 5, the high- and low-resolution dictionaries are trained via
a sparse representation algorithm based on these image cube
pairs. These two dictionaries can be treated as prior for the
subsequent reconstruction work, and the calculation of these
two dictionaries is the core of the LSSR method, which will
be described in detail in the following sections. In step 6, the
high-resolution estimation of any low-resolution cube outside
the overlap area can be reconstructed based on the low- and
high-resolution dictionaries obtained before. This process is

043310-2



THREE-DIMENSIONAL POROUS STRUCTURE … PHYSICAL REVIEW E 98, 043310 (2018)

FIG. 1. Schematic work flow of the proposed LSSR technique.
Note that the whole 2.54 cm diameter sample is scanned at relatively
low resolution, while the subset can be scanned at higher resolution.
LR and HR stand for low- and high-resolution image, respectively;
OMP stands for orthogonal matching pursuit algorithm.

carried out repeatedly until the whole low-resolution image is
reconstructed at high resolution.

The remainder of this work is organized as follows. In the
next section, two 1003 voxel pore-scale structure samples, ex-
tracted from Fontainebleau sandstone and Indiana limestone,
will be used as examples to illustrate the features of local sim-
ilarity. We then describe the work flow of the local-similarity-
based statistical reconstruction (LSSR) in detail including a
pseudocode of LSSR. This is followed by two cases of LSSR
high-resolution porous structure reconstruction based on the
Fontainebleau sandstone and Indiana limestone samples. The
performance of LSSR is compared with the MPS approach
using local porosity and theory and percolation probabilities
[43,44] as well as Minkowski functionals [45–48].

II. STRUCTURAL LOCAL SIMILARITY

The proposed reconstruction technique is based on two as-
sumptions, universally existing local similarity of the porous
structure and a fixed image-degradation mechanism. We take
local similarity of a rock sample to mean that for any chosen
small test volume from the sample there is a very high prob-
ability that similar volumes (also called “neighbors” [49,50])
in terms of structure and component types (varies kinds of
phases) also exist in the sample at other locations and thus
can be searched. Considering a small volume, the number of
its neighbors depends on the size of the test volume, number of
phases and complexity of structure. Fixed image-degradation
mechanism guarantees that if a sample is scanned two times

FIG. 2. Slices through the tomographic images of (a) Font-
ainebleau sandstone (6003, ε = 2.9 μm) and (b) Indiana limestone
(4003, ε = 4 μm). (c) and (d) Segmented images corresponding to
panels (a) and (b).

with different resolution, two small volumes extracted from
the high-resolution image are similar when their correspond-
ing low-resolution partners are similar.

The extracted cubes (template size in MPS literature) are
relatively small (e.g., 5 × 5 × 5 voxel) and typically contain a
local structural feature, for example, a piece of a pore bound-
ary. That, and the fact that we are working with segmented
images containing a small number of phases, ensures that we
can always find similar cubes within a porous structure. We
choose the Hamming distance dst as similarity measurement
[51,52]

dst = [#(xijk �= yijk )/n], (1)

where xijk and yijk are elements located at voxel ijk of data
sets X and Y , respectively, and i, j, k denote (Cartesian) grid
indices. #(xijk �= yijk ) is the number of nonidentical elements
between X and Y , and n is the number of elements in X

or Y . The Hamming distance thus measures the fraction of
nonidentical elements between two data sets; a Hamming
distance of 0 shows the two data sets to be identical, and for a
Hamming distance of 0.1 10% of the elements of the two data
sets are different.

A. Samples

The Fontainebleau sandstone and Indiana limestone sam-
ples used in this study are shown in Fig. 2. The tomogram
of Fontainebleau sandstone has an isotropic resolution of
ε = 2.9 μm with a size of 6003 voxel, where a voxel is a
cubic element of size ε3 [Fig. 2(a)]. The tomogram of the
Indiana limestone sample has a resolution of ε = 4.05 μm
with a size of 4003 voxel [Fig. 2(b)]. These two tomograms
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FIG. 3. Local-similarity analysis for Fontainebleau sandstone
(FS) and Indiana limestone (IL). (a) Number of similar cubes change
over porosity, volume size is 3 × 3 × 3 voxels. (b) Number of similar
cubes change over volume size.

are segmented by a converging active contour (watershed)
algorithm using the MANGO software [53]. Compared to
Fontainebleau sandstone, which is segmented into void and
solid, Indiana limestone has an extra intermediate phase
[Figs. 2(b) and 2(d)], which represents subresolution porosity
typical for oolitic limestone and is determined by iterative
application of the watershed algorithm.

B. Local similarity

Figure 3 depicts the probability to capture similar cubes
for Fontainebleau sandstone and Indiana limestone. The dif-
ference between Fontainebleau sandstone and Indiana lime-
stone is twofold: structural complexity and number of phases.
We use Fontainebleau sandstone as example to illustrate the
procedure of local-similarity analysis; Indiana limestone is
processed in the same way. A 1003 subset, Sf , is cropped
from the Fontainebleau sandstone sample to analyze local
similarity. Because the number of similar cubes also depends
on the complexity of structure, porosity is considered when
we count the number of similar cubes. The porosity varies
from 0 to 1. This range is divided equally into 10 intervals
(Pi , i = 1, 2, . . ., 10, where P1 denotes the porosity interval
0 to 0.1). For each porosity interval Pi , 20 edges containing

cubes (Ci , i = 1, 2, . . ., 20) with size of L × L × L voxel
are selected randomly from Sf . Edge-containing cubes are
cubes containing more than one phase. For every cube Ci its
similar cubes are then searched by scanning Sf . The average
number of similar cubes of these 20 cubes is calculated as
the similar cube numbers for Pi . As a structure parameter,
porosity roughly reflects the complexity of the structure: the
two ends of the porosity range represent simpler structure, and
it is clear that the number of similar cubes at the two ends of
the porosity range are much larger than for the intermediate
porosity intervals [see Fig. 3(a)]. In addition, it is also clear
that the number of similar cubes decreases rapidly along with
the increase of template size [Fig. 3(b)]. Both Figs. 3(a) and
3(b) show that increasing the number of phases results in
rapidly decreasing the count of similar cubes.

C. Fixed image degradation

Figure 4 illustrates the fixed image-degradation mechanism
for Fontainebleau sandstone and Indiana limestone. Fixed
image-degradation mechanism analyzes how similar two
high-resolution image cubes are when their low-resolution
partners are similar to each other. The similarity distribu-
tion depends on four aspects: structural complexity which
is roughly represented by porosity (P ), magnification factor
(S), similarity in low-resolution image cubes (Sim), and cube
size (Cs). Thus, the similarity distribution can be treated as a
function of four parameters: P , S, Sim, and Cs . Here we use
Indiana limestone as an example to introduce our procedure
of analyzing fixed image-degradation mechanism. A 400 ×
400 × 400 voxel Indiana limestone sample image, HR8 is
extracted as test sample. This HR8 image is down-sampled
to three low-resolution images with sizes of 2003, 1003, and
503 voxel, denoted by HR4, HR2, and LR, respectively. Then
any three parameters of (P , S, Sim, and Cs) are kept constant,
and the fourth one is adjusted to analyze the change of the
similarity distribution.

For example, in Fig. 4(a) the parameters S = 4, Sim =
100% and Cs = 3 are kept constant, and P is adjusted to
analyze the relationship between porosity and similarity dis-
tribution. First, a 33 voxel cube (Cs = 3) with porosity of P

[P ∈ (0, 0.1)], Cl , is randomly chosen from LR, and then a
set of m similar cubes, denoted by Cl1, Cl2, Cl3, . . ., Clm,
searched on the low-resolution image, LR under similarity
100% (Sim = 100%). Their m high-resolution partners, de-
noted by Ch1, Ch2, Ch3, . . ., Chm, can be located in HR4.
The low-resolution test cube, Cl , also has its high-resolution
partner, Ch. We quantify the similarity between Ch and Ch1,
Ch2, Ch3, . . ., Chm via computing their Hamming distance.
The result is recorded in a 1 × m vector, D. Second, consid-
ering the generality, 20 rather than one low-resolution cubes
with S = 4 (identical to the former example), P ∈ (0, 0.1),
Cs = 3 and Sim = 100% are selected randomly and the first
step repeated to obtain their Hamming distance vectors. The
distribution of these Hamming distance vectors illustrates the
similarity under the situation of S = 4, P ∈ (0, 0.1), Cs = 3
and Sim = 100%. Third, the first and second steps are repeated
for different porosity values to obtain the respective similarity
distribution features. The relationship between porosity and
similarity distribution of Indiana limestone is presented in
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FIG. 4. Fixed image-degradation mechanism for Fontainebleau sandstone and Indiana limestone. (a)–(d) The distribution of the Hamming
distance vector of Fontainebleau sandstone over porosity, magnification factor, and similarity in low-resolution image cubes and cubic size,
respectively; (e)–(h) the distribution of the distance vector of Indiana limestone over porosity, magnification factor, and similarity in low-
resolution image cubes and cubic size, respectively.

043310-5



WANG, ARNS, RAHMAN, AND ARNS PHYSICAL REVIEW E 98, 043310 (2018)

Fig. 4(e). Taking the red curve in Fig. 4(a) as an example,
we see that if two 3 × 3 × 3 voxel low-resolution cubes with
porosity range from 0 to 0.1 are identical (Sim = 100%)
with each other, their 4× high-resolution partners have about
40% probability to also be similar with each other with a
similarity larger than 95%, and about 53% probability with
a 90% to 95% similarity (Hamming distance 0.1 implies
90% similarity). Figures 4(a)–4(d) present the distribution
of distance vectors of Fontainebleau sandstone over porosity
(P ), magnification factor (S), similarity in low-resolution
image cubes (Sim), and cubic size (Cs), respectively.
Figures 4(e)–4(h) presents the distribution of distance vector
of Indiana limestone over porosity (P ), magnification factor
(S), similarity in low-resolution image cubes (Sim), and cubic
size (Cs), respectively. From Fig. 4 it is clear that the reliabil-
ity of fixed image-degradation mechanism is decreased along
with the increase of structure complexity, but increased along
with the decrease of similarity. The magnification factor has
only a slightly effect on the similarity distribution. Although
increasing cube size will result in a small number of similar
cubes, the similarity distribution also will increase.

III. LOCAL-SIMILARITY-BASED STATISTIC
RECONSTRUCTION

In general, all trainable image-processing algorithms con-
sist of two steps, extracting statistical properties from training
image(s) and using that information to process target images
[54]. For example, the Gaussian random field reconstruction
method (GRF) extracts a two-point correlation function from
the training image as statistical property, and then calculates
a linear filter based on the extracted two-point correlation
function. Finally, the reconstructed image is obtained via
convolving the linear filter with an initial image generated
randomly to comply with a standard Gaussian distribution.
Different from GRF, the statistical properties extracted from
a training image in LSSR are a set of high and low-resolution
image cube pairs and these image cube pairs are used to train
a pair of high- and low-resolution dictionaries rather than a
lineal filter. In GRF, the final reconstructed image is calculated
by convolution. In LSSR the reconstructed image is obtained
by a “Decomposition-Reconstruction” strategy discussed in
the following sections.

A. Extract training image cube pairs

In this step, a set of high- and low-resolution cube pairs are
extracted from the high- and low-resolution micro-CT image.
High- and low-resolution images are noted by Ihigh and Ilow,
respectively. This allows us to derive a low-resolution image
from a given one and then use this relationship to constraint
the reconstruction of a higher-resolution image. We extract a
large number (e.g., 30 000) of low-resolution cubes with a size
of cl × cl × cl voxel from the low-resolution micro-CT image
and their corresponding higher resolution patches with a size
of ch × ch × ch voxel (ch = scl) from the high-resolution
segmented micro-CT image (see Fig. 5). These high- and
low-image cubes are vectorized to column vectors with a
dimension of c3

h and c3
l , respectively. Cl and Ch are sets of

FIG. 5. Low- and high-resolution training image cubes pairs
extracted from 16 × 16 × 16 μm/voxel3 resolution and 4 × 4 ×
4 μm/voxel3 resolution Indiana limestone. (a)–(d) Low-resolution
cubes with a size of 5 × 5 × 5 voxel3 and (e)–(h) corresponding
high-resolution cubes with a size of 20 × 20 × 20 voxel3. The green,
yellow, and red represent macropore and micropore clusters and a
solid, respectively. These cube pairs record the structure relationship
between low- and high-resolution images.

these low- and high-resolution cube pairs whose elements are
noted by lr and hr , respectively.

B. Dimensionality reduction

In the previous step all low- and high-resolution training
image cube pairs have been organized into matrices Cl and
Ch. The dimensionality of lr and hr is always extremely high.
For example, if a template of 10 × 10 × 10 voxel is used
to scan the low-resolution cube and the magnification factor
is 4, the dimensionality of lr and hr will be 1 × 1000 and
1 × 64 000, respectively. If n = 30 000 training image cube
pairs are extracted, the dimensionality of Ch will be as high
as 64 000 × 30 000, which results in heavy computation for
following operations. We use principal component analysis
(PCA) to reduce the dimension of the high-resolution training
image cube vectors, but preserve most partial (e.g., 95%)
average energy. Dimensionality reduction can improve the
efficiency of algorithms greatly without obvious impact on
reconstruction quality [55]. Assume that the size of Ch is
m × n with m = c3

h for brevity. Every column of Ch represents
a high-resolution cube, n is the number of high-resolution
training cubes. The PCA operation for Ch is given by

C̃h = KCh, (2)

where Ch is the high-resolution training image cube matrix,
C̃h is the dimensionality reduced high-resolution training
image cube matrix of dimension m′ × n, m′ � m. K is the
PCA transform matrix given by

KCxK
∗ = � with

� = diag
(
σ 2

1 , σ 2
2 , σ 2

3 , . . . , σ 2
m

)
, (3)

σ 2
1 � σ 2

2 � σ 2
3 � · · · � · · · σ 2

m.

Here Cx is the covariance matrix of Ch, which is a symmetric
positive semidefinite matrix. K∗ is the conjugate transpose of
K , which is a unitary matrix. � is a diagonal matrix con-
sisting of the eigenvalues of Cx , and K is the corresponding
eigenfaces matrix. Then the parameter m′ can be determined
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according to ∑m′
i=1 σ 2

i∑m
i=1 σ 2

i

= T . (4)

T is a threshold which determines the ratio of energy we want
to keep, and the first m′ components are the best to keep in
terms of minimizing the mean squared error from the original
coefficient vector.

C. Dictionary learning

The low-resolution dictionary learning process is described
by [50]

(Dl, {αk}) = minDl,{αk}
∑

k

(∥∥Dlαk − lkr

∥∥2)
,

s.t. ‖ αk ‖0 � L. (5)

Here Dl is the low-resolution dictionary, {αk} is the set of
sparse coefficients, and αk denotes the sparse coefficient of
the kth low-resolution cube; lkr denotes the kth low-resolution
cube (the kth column of Cl). L is a small positive integer
that determines the number of nonzero elements in αk . The
dictionary learning process consists of two steps, sparse cod-
ing and dictionary updating. We apply orthogonal matching
pursuit (OMP) and K-SVD algorithms to solve these two
steps, respectively. A pseudocode is given in the Appendix.
For more details of the K-SVD algorithm and OMP we refer
the reader to Aharon et al. [56] and Pati et al. [57]. The
high-resolution dictionary, Dh, is then given by

Dh = C̃hA
† = C̃hA

T (AAT )
−1

, (6)

where C̃h is the dimensionality-reduced set of high-resolution
training cubes obtained from Eq. (2). A contains αk as its
columns and A† is the pseudo-inverse of A.

D. Decomposition and reconstruction

Following the completion of the dictionary training step,
we apply a 3D window with size cl × cl × cl voxel to raster
scan the target low-resolution image, and a set of low-
resolution cubes are extracted to generate a low-resolution
cube matrix, denoted by Lm. lkm now denotes the kth column
of Lm, which represents a low-resolution cube of an image to
reconstruct. Then the OMP method is used to obtain the sparse
coefficients for the low-resolution cubes according to

{α′
k} = min{α′

k}
∑

k

(∥∥Dlα
′
k − lkr

∥∥2)
,

s.t. ‖ α′
k ‖0 � L. (7)

Here α′
k is the sparse coefficient of the low-resolution cubes of

the image to reconstruct at high resolution, and Dl is the low-
resolution dictionary from the previous training step [Eq. (5)].
L is a small positive integer that determines the number of
nonzero elements in α′

k . Then the high-resolution cubes are
reconstructed by

H̃m = DhA
′, (8)

where Dh is the high-resolution dictionary, A′ contains {α′
k}

as its columns, and H̃m are the reconstructed high-resolution
cubes. Notice that PCA is used to reduce the dimensionality
of high-resolution training cubes, so the final high-resolution
cubes are obtained by

Hm = K−1H̃m , (9)

where Hm are the final high-resolution cubes and K−1 is the
inverse of the PCA transform matrix K obtained from Eq. (2).
In order to keep continuity of the reconstructed image, a
boundary overlap strategy is applied. Every two adjacent low-
resolution cubes contain a one-voxel-wide overlap area. In
the final reconstructed high-resolution image, every two high-
resolution cubes have an s-voxel-wide overlap area (recall that
s is the resolution magnification factor). In the overlapping
part, voxel values are calculated by averaging the overlapped
part from two cubes. Because the reconstruction work is based
on floating numbers, a conventional segmentation operation is
applied to recover discrete phases.

E. Postprocess

The input data of the LSSR method are discrete (segmented
image), and the output data continuous (“tomographic” im-
age) due to the chosen mathematical operations. In this step,
we introduce the segmentation strategy used in this paper
to transform the reconstructed “tomographic” image to a
segmented image. In the case of Fontainebleau sandstone,
which contains two phases, void and solid, a threshold is
applied to divide the tomographic image into void and solid.
This threshold is determined according to the porosity of the
high-resolution training image to ensure that the segmented
image has identical total porosity compared to the training
image. Indiana limestone has three phases, macro-pore, solid,
and porous matrix, which makes its segmentation more com-
plex than that of Fontainebleau sandstone. The segmentation
of the reconstructed Indiana limestone image is carried out
as follows: First, the reconstructed image is segmented into
two phases, solid and permeable phase (including macropore
and porous matrix) according to the fraction of solid of the
training image [see Fig. 6(a)]. Second, initial segmentation is
undertaken within the permeable phase obtained from the first
step to distinguish the macropore and porous matrix using
a threshold which makes the fraction of macropores of the
segmented image 30% less than that of the training image.
For example, the fraction of macropores in the training image
of Indiana limestone is f , then the threshold of intensity T

satisfies that the fraction of macropores of the segmented
image is 0.7 × f [see Fig. 6(c)]. This is because the recon-
structed image is not sharp enough to describe the boundary
between solid and macropore just according to intensity [see
Fig. 6(d)]. Third, intensity gradients are used as constraints
to distinguish porous matrix and solid. In segmentation, high
gradients imply direct contact between macroporous voxels
(low intensity) and solid (high intensity) [see Fig. 6(e)]. So
the high-gradient voxels are segmented as a macropore phase,
which partially complements the absent part of macropore in
step 2 [see Fig. 6(f)]. The fraction of macropore and porous
matrix may be slightly different from the training image,
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FIG. 6. Segmentation of the reconstructed “tomographic” im-
age of Indiana limestone. (a) Reconstructed “tomographic” image;
(b) segmented image with two phases, white:solid and black:pore
space containing macropores and porous matrix; (c) this permeable
phase in (b) is further segmented to macropore and porous matrix
where the fraction of macropore is 15% less than that of the training
image and black is macropore, white is solid, and gray is porous
matrix; (d) porous matrix extracted from (c); (e) high-gradient voxels
calculated based on image (a); (f) final segmented image obtained
from (c), where the high-gradient porous matrix voxels are replaced
in the macropore phase.

but the sum of their fractions is identical with the training
image.

IV. MORPHOLOGICAL AND TRANSPORT PROPERTIES

To evaluate the relative performance of our reconstruction
algorithm against popular methods we compare morphologi-
cal measurements and transport properties on the actual high-
resolution images with reconstructions derived by MPS and
our proposed LSSR method. In the following we recapture
a few pertinent morphological measures which are known
to be sensitive discriminators of morphology as well as the
chosen method to solve the Laplace equation for electrical
conductivity.

A. Local porosity theory

Local porosity theory (LPT) is frequently used to char-
acterize the porosity and connectivity fluctuation at different
length scales in 3D digitized models [43,57]. Here we briefly
introduce the basic definitions of the quantities of LPT.

1. Local porosity distribution

A measurement cell, K(r, L) denotes a cube centered at the
lattice location r with side length of L. Within the cubic mea-
surement cell K(r, L), the local porosity, φ(r, L) is defined as

φ(r, L) = V (P ∩ K(r, L))
V (K(r, L))

, (10)

where V (K(r, L)) denotes the volume of cell K ∈ R3, and
V (P ∩ K(r, L)) is the pore space of K(r, L). The local poros-
ity distribution μ(φ,L) is given by

μ(φ,L) = 1

N

∑
r

δ(φ − φ(r, L)), (11)

where N denotes the number of cells and δ(φ − φ(r, L)) is
the Dirac delta function.

2. Local percolation probabilities

Local percolation probabilities characterize the connec-
tivity of the pore space which controls the transport and
propagation in porous media. The connectivity function is
defined as

�c(r, L) =
⎧⎨
⎩

1 if there is a path through
K(r, L) in the c direction,

0 otherwise.
(12)

Here c denotes the direction of measurement, e.g., the x, y,
and z directions, and c = 3 denotes all directions, whereas c =
α denotes the x, y, or z direction. So �3 = 1 indicates perco-
lation in all directions, while �α = 1 indicates percolation in
the x, y, or z direction. Then local percolation probabilities
λc(φ,L) are given by

λc(φ,L) =
∑

r �c(r, L)δφφ (r, L)∑
r δφ,φ(r,L)

, (13)

δφ,φ(r,L) =
{

1 if φ = φ(r, L),

0 otherwise,
(14)

where δφφ(r,L) is the Kronecker delta. Parameter λc(φ,L)
describes the fraction of analyzed cells with L side length and
porosity φ that are percolating in the c direction.

3. Total fraction of percolating cells

The total fraction of percolating cells Pc(L) describes the
percolation probability of measurement cells with side length
of L in c direction. It is given by

Pc(L) =
∫ 1

0
μ(φ,L)λc(φ,L) dφ, (15)

where μ(φ,L) and λc(φ,L) are obtained from Eqs. (11) and
(13), respectively.
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B. Minkowski functionals

The Minkowski functionals are used as basic integral ge-
ometric measures to quantify the porous structure and are
known to be sensitive descriptors of morphology [46–48].
After segmentation, the images to be analyzed are segmented
into multiple phases. Integral geometry provides a complete
set of d + 1 additive Minkowski functionals for each phase,
where d is the dimension of embedding space. For ambiguous
configurations on the cubic lattice we use the 8- and 26-
neighborhoods for mean and total curvature, respectively, and
report the Minkowski functionals normalized to the volume of
the considered domain Vt . The first functional M0 is simply
the total fraction of the target phase, which is given by

m0X = M0(X)/Vt = V (X)/Vt, (16)

where X ⊂ � (� is the embedding space) is the space oc-
cupied by the target phase (e.g., the pore space in binary
image). The other Minkowski functionals are defined through
integrals over the surface of the pores denoted as δX, which
unambiguously defines its shape or morphology of the pore
structure at the given resolution. It can be described by

m1X = M1(X)/Vt = 1

6

∫
δX

ds/Vt, (17)

where ds is a surface element. The second integral measures
the mean curvature of the interface

m2X = M2(X)/Vt = 1

3π

∫
δX

(
1

r1
+ 1

r2

)
ds/Vt, (18)

where r1 and r2 are the minimum and maximum radius of
curvature for the surface element ds. This radius is positive for

convex curvatures and negative for concave curvatures. The
third integral measures the total curvature

m3X = M3(X)/Vt =
∫

δX

(
1

r1r2

)
ds/Vt, (19)

which is related to the connectivity of the considered phase.
For well-connected phases and a few isolated components
this measure is typically negative and crosses zero to become
positive close to the percolation threshold of the material [58].

C. Electrical conductivity

We solve the Laplace equation with charge conservation
boundary conditions using a finite element method directly on
the voxelized microstructure [59–61]. A potential gradient is
applied in each coordinate direction and the system relaxed
using a conjugate gradient technique to evaluate the field. We
assign to the matrix of Fontainebleau (quartz) the conductivity
σm = 0. For Indiana limestone we assign to the solid phase
(calcite) a mineral conductivity of σm = 0, and to the interme-
diate a somewhat arbitrary conductivity of σim = 0.0144σf l .
The latter was derived using an average background porosity
suitable for the given image resolution resulting in a match to
total porosity and applying Archie’s law with m = 2 to con-
vert this porosity into a conductivity (we do not claim that this
is representative for the intermediate phase at the given reso-
lution, but it is a good guess sufficient as a test for the quality
of the reconstructions). In both cases we assign the fluid-filled
pore phase a normalized conductivity σf l = 1. The principal
components of the effective conductivity tensor σii with sub-
scripts ii = xx, yy, zz are reported in the next section.

FIG. 7. Microstructure of Fontainebleau sandstone obtained from high- and low- resolution micro-CT image and reconstructed images
through LSSR and MPS methods. Black is pore, and white is solid. (a) High-resolution image (6003 voxel, ε = 2.9 μm). The red box labels
the subset used as the high-resolution training image (600 × 600 × 200), and the green box represents the location of the slice presented in (e);
(b) low-resolution image (753 voxel, ε = 23.2 μm). The red box labels the subset used as the low-resolution training image (75 × 75 × 25), and
the green box indicates the location of the slice presented in (f); (c), (d) reconstructed high-resolution image by LSSR and MPS, respectively
(6003, ε = 2.9 μm). The green box in (c) and (d) represents the location of the slice presented in (g) and (h).
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FIG. 8. (a) Local porosity distribution of the high-resolution image of Fontainebleau sandstone for different cube sizes; (b) local porosity
distribution curve of high- and low-resolution images, LSSR and MPS reconstructed image, cube size 1803 voxel; (c) local percolation
probabilities (λ3 is percolation probabilities in all XYZ directions) of high- and low-resolution images, LSSR and MPS reconstructed image;
(d) total fraction of percolation cells [P3(L) indicates the percolation in both XYZ directions] of high- and low-resolution images, LSSR and
MPS reconstructed image.

V. RESULTS

A. Image reconstruction: Fontainebleau sandstone

As detailed above, the Fontainebleau sandstone sample
was acquired by micro-CT imaging with a resolution of
ε = 2.9 μm (600 voxels length in the XYZ direction). This
high-resolution image is reduced to a low-resolution image
of ε = 23.2 μm (75 voxels length in the XYZ direction).
As Fig. 7 shows, a 75 × 75 × 25 subset is extracted from
the low-resolution image as low-resolution training image. Its
corresponding high-resolution part (600 × 600 × 200 voxel)
is extracted from the high-resolution image as high-resolution
training image. LSSR and MPS methods are applied to re-
construct higher-resolution images based on the entire low-
resolution image.

LPT is used to quantify the performance of LSSR and
MPS reconstruction techniques. The low-resolution image is
interpolated to 6003 voxel via nearest-neighbor interpolation.
Thus, the voxel size of the four candidate images is iden-
tical. The panels in Fig. 8 show local porosity distribution
curve, local percolation probabilities curve, total fraction of
the percolation cells curve computed from high-resolution
image, low-resolution image, LSSR reconstructed image, and
MPS reconstructed image, respectively. Figure 8(a) illustrates
the local porosity distribution of the high-resolution image
with different cube size. From 303 voxels to 1803 voxels
size the distributions from the local porosity stabilize, and
the minimum stable size is about 1503 voxels. Thus, we
use 1803 voxels to compare the local porosity parameters
of high- and low- resolution images and LSSR and MPS

reconstructed images. From Fig. 8(b), it is clear that both
LSSR and MPS reconstructed images improve the pore size
distribution greatly. The local porosity distribution curves of
the LSSR and MPS reconstructed image are close to each
other with little difference. This closeness is also observed
for the local percolation probabilities distribution shown in
Fig. 8(c). From the total fraction of the percolation cells curve
presented in Fig. 8(d), LSSR performs slightly better than the
MPS reconstruction.

Table I illustrates the Minkowski functionals of high-
resolution, low-resolution, LSSR reconstructed, and MPS re-
constructed images of Fontainebleau sandstone. LSSR im-
proves all Minkowski functionals of Fontainebleau sandstone
and exhibits a better performance than MPS in terms of vol-
ume fraction (m0X), surface density (m1X), and total curvature
(m3X). Generally speaking, the performance of LSSR exceeds
that of the MPS method for Fontainebleau. The limitation of

TABLE I. Normalized Minkowski functionals of Fontainebleau
sandstone with respect to the pore space “p.” HR, LSSR, MPS, and
LR represent the high-resolution image, LSSR reconstructed image,
MPS reconstructed image, and low-resolution image, respectively.

Method HR LSSR MPS LR

m0p 0.1930 0.1899 0.1481 0.1353
m1p (μm−1) 0.0251 0.0162 0.0157 0.0133
m2p (μm−2) 3.47E-04 2.08E-04 2.52E-04 2.15E-04
m3p (μm−3) −7.13E-08 −6.00E-08 −1.80E-07 −3.99E-08
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TABLE II. Principal components of the normalized effective
conductivity of Fontainebleau sandstone calculated on the full 6003

voxels domain. HR, LSSR, MPS, and LR represent the high-
resolution image, LSSR reconstructed image, MPS reconstructed
image, and low-resolution image, respectively.

Method HR LSSR MPS LR

σxx 0.0524 0.0227 0.0128 0.0125
σyy 0.0465 0.0232 0.0117 0.0121
σzz 0.0509 0.0242 0.0120 0.0129

the MPS method presented in this comparison may be due to
the dependency of the statistical correlation functions for MPS
on the training image. In other words, the output of the MPS
method just reproduces the structural features of the training
image rather than the expected entire sample.

Table II shows the results of the effective conductivity
calculations for the three principal directions using the full
6003 voxels domain. In all cases the conductivity calculated
for the LSSR reconstruction is closest to the high-resolution
original sample. This is consistent with the observations of
better representation of percolation properties and total curva-
ture as compared to MPS.

B. Image reconstruction: Indiana limestone

Consider now the 4003 subset of the Indiana limestone
sample described previously, scanned at a resolution of ε =
4.05 μm. Figure 9 depicts this subset, the corresponding low-
resolution image of 1003 voxel (ε = 16.2 μm), and the parts
of the sample selected to extract high-resolution cubes and
build up the training dictionaries. The size of the training

domain is 100 × 100 × 20 voxel in the low-resolution image,
and 400 × 400 × 80 voxel in the high-resolution image as
indicated in Fig. 9, which further shows the reconstructed im-
ages derived using LSSR and MPS. We stress that we do not
claim to select a representative subsample for Indiana lime-
stone in the general sense, as it is difficult to define a represen-
tative elementary volume (REV) for this limestone, but rather
work with a convenient subsample to illustrate the method.

Figure 10 illustrates measures to quantify the performance
of the LSSR and MPS reconstructions: the local porosity dis-
tribution, local percolation probabilities, and total fraction of
the percolation cells. Figure 10(a) presents the local porosity
distribution of a high-resolution image with different cube
size. With increasing domain size the distribution curve of
local porosity is approaching a Gaussian distribution with a
decreasing variance. In the following we use a 3303 voxel
domain to compare the local porosity parameters of high-
and low-resolution images, and LSSR and MPS reconstructed
images as a compromise between a reasonable size and nar-
row distribution of porosity. The local porosity distribution
curves of high-and low-resolution image and LSSR and MPS
reconstructed image are close to each other [see Fig. 10(b)]. In
Fig. 10(c) although both LSSR and MPS improve the perco-
lation ability compared to the low-resolution image, the per-
formance of LSSR is better than the MPS method. Comparing
the total fraction of the percolation cells for LSSR and MPS in
Fig. 10(d), LSSR is close to MPS for small subsets (excluding
extremely small) but is performing better for larger domains.

The reason why the features about local porosity distribu-
tion shown in Fig. 10(b) are similar, but totally different in
terms of local percolation probabilities [see Fig. 10(c)] and to-
tal fraction of the percolation cells [see Fig. 10(d)], is because

FIG. 9. Subsample cubes of Indiana limestone for (a) the high-resolution image (4003 at ε = 4.05 μm), (b) the corresponding low-
resolution cube (1003 at ε = 16.2 μm), (c) the LSSR reconstruction, and (d) the MPS reconstruction. Black is macropore, gray is porous
matrix, and white is solid. The red box indicates the training image subdomain of 400 × 400 × 80 voxel (high resolution) and 100 × 100 × 20
voxel (low resolution). The green frames indicate the location of the slice views given in panels (e)–(h).
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FIG. 10. (a) Local porosity distribution of the Indiana limestone high-resolution image for different cube sizes; (b) local porosity
distribution curve of high- and low-resolution images, LSSR and MPS reconstructed image, and cube size is 330 × 330 × 330 voxel3;
(c) the local percolation probabilities (λ3 is percolation probabilities in all XYZ directions) of high- and low-resolution images, LSSR and
MPS reconstructed image; (d) total fraction of the percolation cells [P3(L) indicates the percolation in all XYZ directions] of high- and
low-resolution images, LSSR and MPS reconstructed image.

of the effect of the porous matrix. High- and low- resolution
micro-CT images are segmented into three phases: macro-
pore, porous matrix, and solid. Because macropores are large
enough and Indiana limestone essentially has a bimodal pore
size distribution, both low- and high-resolution micro-CT
images capture the macroporosity with a reasonable accuracy.
However, the number of intermediate-intensity microporous
voxels is different, the latter of which are considered to have
excellent percolation properties.

Table III illustrates the Minkowski functionals of high-
resolution, low-resolution, and LSSR reconstructed and MPS
reconstructed images of Indiana limestone. Different from
Fontainebleau sandstone, Indiana limestone contains three
phases (at voxel scale), and the Minkowski functionals of
every phase are calculated separately. The proposed LSSR
method still presents robust performance in this case with
LSSR and MPS performing variably for m2 and m3, while
LSSR leads in m0 and m1. Both reconstruction methods im-
prove on the low-resolution direct comparison. Interestingly,
the match in the Euler characteristic is generally better for
MPS, while at the same time the percolation behavior (see
Fig. 10) is matched better by LSSR.

We report in Table IV the effective conductivities calcu-
lated on the full 4003 domains. For all directions the effective
conductivity of the LSSR reconstruction is closest to the HR
original image in terms of relative deviation.

C. Discussion

Comparing the performance of LSSR and MPS for the
two different samples, we note that for the two-phase
Fontainebleau sandstone LSSR was the superior method in
almost all measures. For Indiana limestone, here utilized

TABLE III. Minkowski functionals of Indiana limestone. HR,
LSSR, MPS, and LR represent the high-resolution image, LSSR
reconstructed image, MPS reconstructed image, and low-resolution
image, respectively. The reference phases are denoted as “p” (pore
space), “i” (intermediate intensity porous matrix), and “s” (solid).

Method HR LSSR MPS LR

m0p 0.0707 0.1021 0.0542 0.0479
m0i 0.0389 0.0299 0.0356 0.0365
m0s 0.8895 0.8680 0.9103 0.9156
m1p (μm−1) 0.0075 0.0062 0.0047 0.0034
m1i (μm−1) 0.0119 0.0099 0.0076 0.0041
m1s (μm−1) 0.0134 0.0079 0.0079 0.0063
m2p (μm−2) 2.84E-05 5.24E-05 5.45E-05 3.04E-05
m2i (μm−2) 4.50E-04 2.66E-04 2.86E-04 1.12E-04
m2s (μm−2) −2.00E-04 −5.99E-05 −1.05E-04 −7.63E-05
m3p (μm−3) 1.36E-06 −1.29E-08 5.61E-08 −1.68E-08
m3i (μm−3) −1.66E-06 −6.45E-07 −1.38E-06 −5.91E-07
m3s (μm−3) 1.16E-07 −1.09E-08 −2.16E-08 −4.00E-08
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TABLE IV. Principal components of the normalized effective
conductivity of Indiana limestone calculated on the full 4003 voxels
domain. HR, LSSR, MPS, and LR represent the high-resolution
image, LSSR reconstructed image, MPS reconstructed image, and
low-resolution image, respectively.

Method HR LSSR MPS LR

103σxx 6.21 10.2 1.28 3.18
103σyy 4.79 8.11 1.79 3.08
103σzz 0.933 0.28 0.077 0.022

as a three-phase structure, all measures from local porosity
theory considered are in favor of LSSR. However, for the
Minkowski functionals the result was not as clear, with the
curvature measures m2 and m3 slightly in favor of MPS with
m0 and m1 in favor of LSSR. For both samples the effective
conductivities are best matched by the LSSR reconstruction
technique. We emphasize that for the introduction of the
approach here we did not consider Indiana limestone as an
n-phase material, e.g., where the intermediate phase consists
of voxels of different porosity. Thus, the intermediate phase
is homogenized here. A realistic calculation of conductivity
would require both a larger sample (REV) and potentially
a more detailed representation of small-scale heterogeneity.
This is out of the scope of this work.

Practically, the application of LSSR is not affected by
the number of phases, which poses important constraints
on the MPS method. One basic limitation of MPS is that
sufficient replicas have to be searched from the training image;
otherwise the template size has to be decreased to reduce
the difficulty of patterns matching. For increasing numbers
of phases the difficulty of searching sufficient replicas in-
creases rapidly. A smaller template has to be chosen, resulting
in a reconstruction of reduced quality. In contrast, LSSR
is based on a “decomposition-reconstruction,” strategy and
once the dictionary is trained, every low-resolution cube will
be sparsely represented. The reconstruction is based on its
sparse coefficients and the high-resolution dictionary. While
the accuracy of LSSR also depends on the quality of the
dictionary trained, a large increase of runtime with increasing
phase number as in MPS can be avoided.

D. Time requirement

Because of the use of a “decomposition-reconstruction”
strategy, the running speed of LSSR is much faster than
MPS. As Table V shows, the time requirement of the MPS
method depends on the training image size, template size,
multigrid levels, phase numbers, and size of target low-
resolution image. Larger training image size and template
size will generate better results but slow down computations.
Increasing grid levels and phase numbers will also increase
the computation time significantly. The most time-consuming
part of the MPS method is searching for matched patterns
from the training image. In the LSSR method, this process
is replaced by decomposition based on a previously trained
dictionary, which is hundreds of times faster than traversing
the training image for matching patterns. The most time-
consuming part of the LSSR technique is training the low-

TABLE V. Computation time of LSSR and MPS with different
parameters. tt : time, td : dictionary training time, tr : reconstruction
time, NPH: number of phases, Mag.: magnification. Other parameters
are sparsity threshold, 15; dictionary update loop number, 40; energy
threshold for PCA, 90%; atom number of dictionary, 3000; number
of training cube pairs, 30 000.

Method Template Domain NPH Mag. tt (h) td (h) tr (h)

MPS 7×7 6003 2 ×8 7
MPS 7×7 6003 3 ×4 5.32
LSSR 4×4 ×4 4003 2 ×4 0.46 0.33 0.06
LSSR 4×4 ×4 4003 3 ×4 0.46 0.33 0.06
LSSR 3×3 ×3 6003 3 ×8 2.5 2.15 0.27
LSSR 10×10 ×10 4003 3 ×4 14 12.6 0.35

resolution dictionary, which accounts for more than 90% of
the image reconstruction (see Table V). However, once the
dictionary is determined, it can be used for reconstruction of
the whole image; here we have not done so due to computing
resources in particular for MPS but will report on applications
in the context of experimental measurements in the future.
This makes the method reasonably scalable. It is not necessary
to train the dictionary every time for different subsets within
one sample.

VI. CONCLUSION

In this paper, we introduced a local-similarity-based statis-
tic reconstruction method to improve the resolution of porous
structure segmented from micro-CT images of rock sam-
ples. High-resolution and corresponding low-resolution sub-
set pairs were extracted to analyze the porous structure re-
lationship under different resolution. Their relationship is
described by local similarity and represented by a com-
pressed dictionary. The latter is then used to reconstruct a
high-resolution image with low-resolution image constraints.
The LSSR method applies a “Decomposition-Reconstruction”
strategy instead of a “Search-Statistic” strategy, which is used
in conventional reconstruction techniques. A sparse repre-
sentation algorithm is used to realize this “Decomposition-
Reconstruction” strategy for the porous structure reconstruc-
tion. We can make the following conclusions:

(1) The local-similarity phenomenon exists universally in
the porous structure, which can be used to supervise the high-
resolution porous structure reconstruction.

(2) The use of a “Decomposition-Reconstruction” strategy
makes the LSSR method a computationally efficient method
compared to conventional MPS.

(3) Because we apply a “Decomposition-Reconstruction”
instead of a “Search-Statistic” strategy, the LSSR method
can provide a more accurate porous structure than the MPS
method, especially for multiple-phases reconstruction. This
is due to two factors, the speed allowing a larger template
size and the dictionary decomposition allowing description of
patterns which have not been trained, since a set of coefficients
can be found from the dictionary which transforms the low-
resolution patch to a high-resolution one. This is different
from MPS, where for each template a sufficient number of
matched patterns must be found.
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(4) A comparison between MPS and LSSR illustrates that
LSSR is very competitive with MPS when comparing additive
morphological measures, regional porosity, percolation statis-
tics, and electrical conductivity.
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APPENDIX

Pseudocode of LSSR reconstruction algorithm

In order to describe the work flow of the LSSR reconstruc-
tion technique more clearly, we provide here a pseudocode
of the LSSR algorithm. We divide the algorithm into an input
data section and the required steps to generate the final output,
the high-resolution reconstructed image of porous structure.

Input data

I Low resolution target image
Ihigh 3D high-resolution training image
Ilow 3D low-resolution training image
s Magnification factor
cl Scanning window size for low-resolution image
ch Scanning window size for high-resolution image

(ch = cls)
L Sparsity threshold
K Dictionary update loop number
T Energy threshold for PCA
Nd Atom number of dictionary
Np Number of training cube pairs

Step 1

Extract Np training image cube pairs from Ihigh and Ilow

with a window size of cl
3 and ch

3, respectively.

Step 2

Organize low-resolution cubes into a cl
3 × Np matrix, LR,

and every column of LR is a low-resolution image cube.

Step 3

Organize high-resolution cubes into a ch
3 × Np matrix

HR, where every column of HR represents a high-resolution
image cube.

Step 4

Training low-resolution dictionary:
(1) Generate a cl

3 × Nd matrix randomly as initial low-
resolution dictionary, denoted by Dl

(2) Trainlow-resolution dictionary and sparse coefficient
using K-SVD and OMP algorithm:
training: for m = 1 to K , do

(a) Initialize the sparse coefficient matrix, C, as Nd ×
Np zero matrix

(b) Using OMP for sparse coding:
OMPsparse: for n = 1 to Np, do

(i) Initialize the basis matrix B0 = {} and lnr0 = lnr ;
(lnr is the nth column vector of LR)

(ii) Compute the inner conduction between lnr0 with
every atom of Dl and choose the closest atom, α0 and
record its column number p0

(iii) Update the B1 = B0 ∪ {α0}
(iv) Compute the coefficient of lnr , Cn under the

basis matrix of B1 by Cn = B1
†lnr (B1

† is the pseudo-
inverse of B1)

(v) Compute the residual vector of lnr0, lnr1 (lnr1 =
lnr0 − B1Cn)

(vi) Compute the inner conduction between lnr1 with
every atom of Dl and choose the closest atom, α1 and
record its column number p1

(vii) Update the B0 = B1 ∪ {α1} and lnr0 = lnr1
(viii) Repeat steps ii to vii until the dimensionality

of Cn is equal to L (sparsity threshold)
(ix) Put every element of Cn in to the nth column of

C according to its corresponding column number p0 to
pL

end OMPsparse
(c) K-SVD for updating dictionary:

dicUpdate: for n = 1 to Nd , do
(i) Find out the location of nonzero elements of nth

row in sparse coefficient matrix C, and this location
records which low-resolution image cube used the nth
atom in dictionary

(ii) Extract the columns which used the nth atom
and organize them as a cl

3 × k matrix, LRt (k is the
number of qualified columns)

(iii) Extract the coefficient columns corresponding
to LRt and organize them as a k × Nd matrix, Ct

(iv) Compute the error matrix, En, by En = LRt −
DlCt

(v) Decompose En by SVD algorithm, En = USV T

(iv) Use the first column of U (corresponding to the
largest singular value) replace the nth atom in dictio-
nary

end dicUpdate
end training

Step 5

Dimensionality reduction by PCA:
(1) Compute the autocovariance matrix of HR (mean-

residual normalized), denoted by Cx (ch3 × ch3 matrix)
(2) Decompose the Cx by SVD operation, Cx = P�P T

[� = diag(σ 2
1 , σ 2

2 , σ 2
3 , . . . , σ 2

ch3 ) and σ 2
1 � σ 2

2 � σ 2
3 � · · · �

· · · σ 2
ch3 ]

(3) Choose the first m [m is determined by Eq. (3)]
columns of P , denoted by Kt and Kt is the transform matrix
for dimensionality reduction
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(4) Dimensionality reduce of high-resolution training
cubes, HRr can be obtained by HRr = KtHR

Step 6

Compute the high-resolution dictionary Dh, Dh =
HRAC† = HRCT CCT −1

(C is full rank in rows)

Step 7

Decomposition and reconstruction:
(1) Raster scan the target low-resolution image, I and

divide it into small cubes with a size of cl × cl × cl voxel3,

make sure every two adjacent cubes have one voxel width
overlap areas

(2) Organize these low-resolution cubes into a cl3 × N (N
is the number of cubes) matrix, LRt , and every column of LRt

is an low-resolution image cube
(3) Sparse coefficient matrix of LRt , Ct can be obtained

by step 4
(4) High-resolution cubes, HRt , can be obtained by

HRt = Dh × Ct

(5) Combine these high-resolution cubes together to get
a high-resolution image, and the overlap part is averaged by
adjacent cubes.
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