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Two-dimensional nuclear magnetic resonance measurements are ubiquitous in the literature, with correlations
of longitudinal T1 and transverse T2 relaxation times used extensively to characterize porous media. Decomposi-
tion of the signal acquired in the time domain to a pseudocontinuous distribution of relaxation times is achieved
using numerical inversion. A popular technique to generate a stable solution to this ill-posed problem in the
presence of noise is Tikhonov regularization with a non-negativity constraint imposed on the output. However,
coupling of the longitudinal and transverse eigenfunctions can generate eigenvalue pairs with apparent T2 > T1

and negative amplitude. Such apparent signal components are encountered in the classic example of Brownstein-
Tarr “slow” diffusion in an isolated pore, and in weakly coupled pores governed by different relaxation rates.
We show that when negative-amplitude components comprise �1% of the total signal, the solution achieved by
non-negative Tikhonov regularization is sufficiently distorted to prevent robust interpretation. We demonstrate
two alternative inversion methods that recover the negative-amplitude components: (1) half-bound Tikhonov
regularization assigns a negative amplitude to any peak with apparent T2 > T1, and (2) the optimization problem
is expressed as a �2 regression with �1 penalization and a solution estimated using a primal-dual algorithm
without constraint on the output sign. These methods are applicable to T1-T2 experiments on porous materials
characterized by a hierarchy of length scales, such as biological cells, cement, and limestone.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) relaxation-time distri-
butions offer a powerful tool for materials characterization.
Longitudinal T1 and transverse T2 relaxation rates are used in
lieu of chemical sensitivity at low magnetic field strengths [1].
The two-dimensional (2D) T1-T2 correlation was introduced
for the study of petroleum reservoir rocks [2] to provide
improved fluid-phase contrast and an estimator of wettability
[3], and detailed interpretation of unconventional resources
containing solidlike hydrocarbons [4,5]. The experiment has
been applied to a diverse range of materials including ce-
ments [6], dairy products [7], and heterogeneous catalysts [8].
In bulk liquids, it is generally true that T1 = T2. However,
these relaxation times are modified for liquids imbibed in
porous media due to surface adsorption (reduced mobility)
and interactions with surface relaxation sinks [9,10]. Under
these conditions, T1 � T2 with the ratio T1/T2 considered
proportional to the strength of surface adsorption [3,11].

Two-dimensional relaxation-time correlations have been
used to study chemical or diffusive exchange [12,13]. Some
of these experiments, such as T2-T2 [14] or T1-T1 [15],
employ an explicit storage interval to encode the exchange
rate. Off-diagonal relaxation-time components are observed
in the correlation plots whenever T1 �= T2. The amplitude of
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these “exchange peaks” as a function of storage time is fitted
to estimate the coupling rate constant for spins in different
environments [16,17]. The T2-T2 correlation is preferred be-
cause the amplitude of the distribution is entirely positive
under practical conditions [17]. Similar off-diagonal compo-
nents are present in T1-T2 correlations, despite the absence of
a defined storage interval, and components of the distribution
with apparent T2 > T1 have negative amplitude [18]. The off-
diagonal components evolve as a mathematical consequence
of projecting the eigenfunction basis for longitudinal relax-
ation on to the eigenfunction basis for transverse relaxation,
or vice versa [18,19].

The relaxation rates for diffusing spins are governed by the
Bloch-Torrey equation [20]. This partial differential equation
can be expressed in terms of a scaled magnetization m in
separate equations for longitudinal and transverse relaxation.
The version for longitudinal relaxation is

∂

∂t
[m1(r, t ) − meq] = D∇2[m1(r, t ) − meq]

− m1(r, t ) − meq

T b
1

, (1)

where m1(r, t ) is scaled in proportion to the longitudinal
component of the magnetization Mz, meq is similarly scaled
in proportion to the equilibrium magnetization Meq, and 1/T b

1
is the bulk longitudinal relaxation rate. The required Robin
boundary condition for the magnetization of a liquid, imbibed
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in a porous material, is

n̂ · D∇[m1(r, t ) − meq] + ρ1[m1(r, t ) − meq] = 0, (2)

where n̂ is the unit outward normal vector for the boundary
and ρ1 is the longitudinal surface relaxivity. For transverse
relaxation, the Bloch-Torrey equation is written in the familiar
form

∂

∂t
m2(r, t ) = D∇2m2(r, t ) − m2(r, t )

T b
2

, (3)

where m2(r, t ) is scaled in proportion to the magnitude of the
transverse magnetization (or either component on resonance
in the rotating frame, e.g., Mx) and 1/T b

2 is the bulk transverse
relaxation rate. The Robin boundary condition in this case is

n̂ · D∇m2(r, t ) + ρ2m2(r, t ) = 0, (4)

where ρ2 is the transverse surface relaxivity.
The T1-T2 correlation experiment comprises of a period of

longitudinal magnetization preparation by inversion recovery
[21] with delay t1 followed by a period of magnetization
detection during a Carr-Purcell-Meiboom-Gill (CPMG) se-
quence [22,23] in which n is the number of spin echoes
separated by echo time te. The equilibrium magnetization meq

is scaled such that
∫

meq dV (r) = 1. The integral is over the
volume of the entire geometry; meq will of course be the recip-
rocal of the volume that can be detected by NMR, given this
normalization to unit volume integral. Perfect inversion of the
equilibrium magnetization is assumed for the inversion recov-
ery part of the pulse sequence, so the initial longitudinal value
m1(r, 0) = −meq is scaled such that

∫
m1(r, 0) dV (r) = −1.

The required solution to Eqs. (1) and (2) for the longi-
tudinal magnetization is obtained by eigenfunction expan-
sion. Each longitudinal relaxation-diffusion eigenfunction
ψj (r) satisfies (−D∇2 + 1/T b

1 )ψj (r) = ψj (r)/T
app

1,j and n̂ ·
D∇ψj (r) + ρ1ψj (r) = 0 such that the eigenvalue (apparent
longitudinal relaxation rate) is 1/T

app
1,j . These eigenfunctions

are defined to be orthonormal, viz.,
∫

ψ∗
i (r) ψj (r) dV (r) =

δij (where the Krönecker delta has the value of 1 for i = j and
0 for i �= j ). The eigenvalue-eigenfunction pairs are indexed
in order of increasing magnitude of eigenvalue. The scaled
magnetization due to longitudinal relaxation during time t1
following perfect inversion of the equilibrium magnetiza-
tion is

m1(r, t1) =
∞∑

j=0

ψj (r)

[
1 − 2 exp

{
− t1

T
app

1,j

}]
aj , (5)

where aj = ∫
ψ∗

j (r) meq dV (r) are the equilibrium ampli-
tudes for the eigenfunctions ψj (r). The expression for
m1(r, t1) in Eq. (5) is regarded as a generalized Fourier
series with the eigenfunctions ψj (r) taking the place of the
usual sinusoidal Fourier basis and the eigenvalues general-
ize the angular frequency. The discrete eigenvalues describe
the spectrum of the longitudinal relaxation-diffusion opera-
tor (−D∇2 + 1/T b

1 ) with the given boundary condition. In
ascending order of eigenvalue magnitude, the eigenfunctions
exhibit more zero crossings where they transition between
positive and negative amplitude, similar to the Fourier basis.

The longitudinal magnetization is then rotated to the
transverse plane for a time t2 = nte. The required solution

to Eqs. (3) and (4) for the transverse magnetization is ob-
tained by another eigenfunction expansion. Each transverse
relaxation-diffusion eigenfunction φi (r) satisfies (−D∇2 +
1/T2,b)φi (r) = φi (r)/T

app
2,i and n̂ · D∇φi (r) + ρ2φi (r) = 0

such that the eigenvalue (apparent transverse relaxation rate)
is 1/T

app
2,i . These eigenfunctions are also defined to be or-

thonormal, viz.,
∫

φ∗
i (r) φj (r) dV (r) = δij . The eigenvalue-

eigenfunction pairs are indexed in order of increasing magni-
tude of eigenvalue. The scaled magnetization due to transverse
relaxation during the time t2 is thus

m2(r, t1, t2) =
∞∑
i=0

φi (r) exp

{
− t2

T
app

2,i

}
bi, (6)

where bi = ∫
φ∗

i (r) m1(r, t1) dV (r). The observed signal
h(t1, t2) ∝ ∫

m2(r, t1, t2) dV (r).
The eigenvalues and eigenfunctions are determined by

the pore geometry and surface relaxivity for each case of
longitudinal and transverse relaxation. The eigenfunctions are
the same as the diffusion “eigenmodes” (Laplacian eigenfunc-
tions) that feature in [18], but the corresponding eigenvalues
are increased from the diffusion case by the bulk relaxation
rate (e.g., 1/T b

1 ). The required eigenfunctions and eigenvalues
can be determined analytically for simple geometries [24].
A method for calculating the expected signal contributions
in the T1-T2 correlation, from the possible combinations of
the “longitudinal” and “transverse” eigenvalues, is given for
such simple geometries in [18]. The result can be expressed
in terms of the amplitudes of the peaks positioned at apparent
relaxation times {T app

1,j , T
app

2,i } by

f (T1, T2) =
∑
i,j

di δ

(
log10

T2

T
app

2,i

)
Qij δ

(
log10

T1

T
app

1,j

)
aj , (7)

where di = ∫
φi (r) dV (r), Qij = ∫

φ∗
i (r) ψj (r) dV (r),

and aj is as above in Eq. (5). The density distribution
f (T1, T2) is normalized such that

∫ ∞
T2=0

∫ ∞
T1=0 f (T1,

T2) d (log10 T1) d (log10 T2) = 1. The presence of the Dirac
delta factors in Eq. (7) mean that f (T1, T2) is sparse. The
peak integral over log10 T1 and log10 T2 for each {T app

1,j , T
app

2,i }
contribution is Aij = diQijaj . Each peak thus corresponds
to a different combination of eigenvalues in location and
the amplitude of the peak depends on the corresponding
eigenfunctions.

In multidimensional relaxation-time experiments such as
the T1-T2 correlation analyzed above, the eigenfunctions rel-
evant for one measurement interval (ψj , j = 0, 1, 2, . . .,
having corresponding amplitudes aj and eigenvalues 1/T

app
1,j )

are projected on to the eigenfunction basis φi relevant for the
next measurement interval. That is, the generalized Fourier
series based on ψj (r) in Eq. (5) is reexpressed as an-
other generalized Fourier series based on φi (r) such that
m2(r, 0) = m1(r, t1). As the two eigenfunction bases have
different spatial dependence over the same volume, this pro-
jection is nontrivial and all combinations of {ψj , φi} are
nonorthogonal (unless ρ1 = ρ2) yielding nonzero Qij for i �=
j . Consequently, we expect to find a nonzero signal contri-
bution from each eigenvalue combination {1/T

app
1,j , 1/T

app
2,i },

although most “high-index” combinations (e.g., i, j > 2) have
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negligible amplitude relative to the “low-index” combina-
tions. The combinations of eigenvalues with i = j give the
“diagonal” peaks in a plot of f (T1, T2) (i.e., near the T1 = T2

diagonal) and the combinations of eigenvalues with i �= j give
the “off-diagonal” peaks. Note that the plot is always asym-
metric in peak locations about T1 = T2 except in the limiting
case of T

app
1,j = T

app
2,i . Some eigenvalue combinations, typically

with T
app

1,j < T
app

2,i if T b
1 ≈ T b

2 , give peaks that exhibit negative
amplitude [18]. The presence of negative amplitudes mean
that f (T1, T2) cannot be regarded as a probability density
function in this situation.

The observed signal h(t1, t2) ∝ ∫
m2(r, t1, t2) dV (r), and

the density distribution of the time constants f (T1, T2), are
related by a Fredholm integral equation of the first kind:

h(t1, t2)

h(0, 0)
=

∫ ∞

T2=0

∫ ∞

T1=0
k1(T1, t1) k2(T2, t2) f (T1, T2)

× d(log10 T1) d(log10 T2), (8)

where the subscripts {1, 2} serve to denote the experiment
dimensions, with the integration kernels k1(T1, t1) =
1 − 2 exp {−t1/T1} and k2(T2, t2) = exp {−t2/T2}. The
overall integration kernel is separable in this case,
viz., k0(T1, t1, T2, t2) = k1(T1, t1) k2(T2, t2). Estimates of
f (T1, T2) are obtained by solving this inverse problem.
The expression h(t1, t2)/h(0, 0) is the normalized signal,
which has a maximum value of unity [given k0 and
the normalization of f (T1, T2) imposed here]. To test
reconstruction of f (T1, T2) via simulation in geometries with
known eigenvalues and eigenfunctions, an expression for
the expected normalized signal could be obtained from the
right-hand side of Eq. (7) simply by replacing the pair of Dirac
delta factors with k0(T app

1,j , t1, T
app

2,i , t2), for example. However,
measured data g(t1, t2) are comprised of signal h(t1, t2) and
noise e(t1, t2) such that g(t1, t2) = h(t1, t2) + e(t1, t2). The
overall integration kernel k0 is based on exponential functions,
which typically means that the reconstructed estimate
f̂ (T1, T2) is extremely sensitive to the noise e(t1, t2), and may
contain a nonsensical distribution. The inverse problem is thus
ill posed and regularization is required to achieve a solution
f̂ (T1, T2) that is stable to small changes in the measured
data. A popular method for solving Eq. (8) is to formulate the
optimization problem as a �2-penalized regression. Tikhonov
regularization [25] provides an optimum smooth solution
when constrained to be non-negative. A computationally
efficient method for solving this optimization problem in 2D
when the kernel is separable was introduced in [26], based
on [27], and generalized to nonseparable kernels in [28].
To achieve a stable and sensible solution, it is necessary to
enforce the non-negativity constraint on f̂ (T1, T2) as part of
the regularization. This condition precludes the detection of
negative-amplitude components in the resulting distribution
[18,29]. Negative-amplitude components have been observed
in time-domain data [30,31], but cannot be recovered in 2D
distributions using the method of [26].

Recently, there has been interest in applying an alterna-
tive numerical inversion method to NMR data. The least
absolute shrinkage and selection operator (LASSO) [32,33]
combines �2 regression with �1 penalization to balance fidelity
to the signal measurements against sensitivity of the density

distribution estimate to noise in the measurements. Several
algorithms are available for solving the LASSO. Iterative soft
thresholding is a popular method for addressing this class of
linear inverse problem (see [34] and references therein). For
example, Stern et al. obtained chemical spectra from truncated
free induction decays (FIDs) without artifacts [35]. This algo-
rithm tends towards a sparse solution (rather than a smooth,
continuous solution) by setting low-amplitude components to
zero. Consequently, it is well suited to recovering chemical
spectra expected to contain signal components at discrete
frequencies. The fast iterative shrinkage-thresholding algo-
rithm (FISTA) of Beck and Teboulle [36] improves the com-
putational efficiency of the numerical inversion. This primal
algorithm, which alternates steepest descent for �2 regression
with soft thresholding for �1 penalization, has been applied
to 2D NMR relaxation-time correlations [37]. An alternative
approach is the primal-dual algorithm of Chambolle and Pock
[38], adapted by Reci et al. [39,40] to balance sparsity and
smoothness in the solution. The �1 penalty parts of the primal
objective function are expressed as convex conjugates of their
dual versions, introducing extra variables to estimate in the fit.
The resulting saddle-point problem is solved by a proximal
splitting method [38]. Alternating between �2 smoothing on
the primal variables and �∞ pruning on the dual variables
implicitly implements net �1-norm penalties on the primal
variables; i.e., the primal objective function is indirectly min-
imized with respect to its primal variables. Recent implemen-
tations retained a non-negativity constraint for the solution
[39,40], although there is no necessity to do so.

In Sec, II we summarize the Tikhonov regularization
and primal-dual algorithms for solving the inverse problem.
Generation of simulated time-domain NMR data containing
relaxation contributions of negative amplitude is described
in Sec. III. The inversion techniques are applied to these
simulated data in Sec. IV and a practical application to exper-
imental data is presented in Sec. V. We discuss the advantages
and limitations of each method and offer general guidance
for selecting an appropriate numerical inversion technique for
application to experimental data.

II. NUMERICAL INVERSIONS

To describe the inversion methods, we adapt our previous
notation [28] where necessary. Variables, continuous func-
tions, and scalars are denoted by italics. Vector arrays are
denoted by lower case bold. Matrix arrays are denoted by
upper case bold. The �1 norm of a vector array is indicated
by ‖ . . . ‖1, which is the sum of absolute element values.
The �2 norm of a vector array is indicated by ‖ . . . ‖2 and
the related Frobenius norm of a matrix array is indicated by
‖ . . . ‖F ; both are the root sum of squared element values. The
�∞ norm of a vector array is indicated by ‖ . . . ‖∞, which
is the maximum of absolute element values. The Krönecker
product (nested multiplication) for matrices is denoted by ⊗
and the Hadamard product (element-wise multiplication) for
vectors or matrices is denoted by 
. All calculations were
implemented in the MATLAB(Mathworks, Inc.) programming
environment on a desktop PC.

To provide simple demonstrations of the inversion meth-
ods, we consider a one-dimensional (1D) Fredholm integral
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equation

h(t )

h(0)
=

∫ ∞

T =0
k0(T , t )f (T )d(log10 T ), (9)

and assume an exponential kernel function k0(T , t ) =
exp(−t/T ). This case essentially describes the 1D T2 experi-
ment, i.e., k0(T , t ) ≡ k2(T , t ). Note that T may be encoded as
a recovery or decay curve in experimental design [15,21,41]
without consequence for the analysis. Also, there is no re-
quirement for the kernel function to be exponential; examples
of nonexponential kernels are found in [42,43]. Practically,
1D distributions of T2 derived from experimental CPMG data
will be positive always (assuming equilibrium magnetization
at t = 0). However, for the example studied in this section,
f (T ) is allowed to take negative values.

We wish to determine an optimum solution f̂ that recovers
the signal h from noisy measurements g. The number of
measurements made is q, each corresponding to a different
relaxation delay in the NMR experiment. As reviewed in
[28], integrals involving a given kernel function k0(T , t ) and
distribution f are simply approximated by a discrete sum
for numerical calculations. The distribution is represented
by a p × 1 column vector x, each element an amplitude
corresponding to a different prospective time constant T .
Typically, p < q is chosen for inversions for NMR relaxation
experiments, albeit the requirement is not essential with suf-
ficient regularization in the inversion method. Normalization
of the distribution is ignored during calculations since the
discrete approximation of f can always be obtained from x
by rescaling the latter to yield unit integral over log10 T . The
kernel function is discretely sampled forming the elements
of a q × p matrix K0 where each row corresponds to a
different measurement delay and each column corresponds to
an element of x. The approximated integral is thus given by
the vector-matrix product K0x. The measured NMR data are
represented in a q × 1 column vector g such that

g = K0x + e, (10)

where e is a q × 1 column vector in which each element is
the noise contribution to the corresponding element in g. An
example signal g is illustrated in Fig. 1(a) (black solid line). It
consists of q = 128 points spaced evenly across the logarith-
mic scale shown. The noise e(t ) is simulated with a normal
distribution of mean zero and variance set to give a signal-to-
noise ratio SNR ≈ 1000. The simulated signal is entirely pos-
itive, but described by three discrete rates 1/T = 45, 10, and
2 s−1 with amplitudes −2, 1, and 2, respectively. The net sig-
nal is thus g(t ) = −2 exp {−45 s−1 t} + exp {−10 s−1 t} +
2 exp {−2 s−1 t} + e(t ) and the true density distribution
is f (T ) = −2 δ(log10 {45 s−1 T }) + δ(log10 {10 s−1 T }) +
2 δ(log10 {2 s−1 T }). The three Dirac delta terms are not ap-
propriate for plotting due to their infinite extent. A broadened
version of f (T ) is instead shown in Fig. 1(b). The distribu-
tion plotted corresponds to the discrete elements of vector x
with the p = 64 points spaced evenly across the logarithmic
scale shown. This vector would be the ideal result of any
reconstruction method using the same discrete sampling for
the columns of matrix K0 in Eq. (10). The true distribution

10-3 10-2 10-1 100 101
0

1

2

-50

0

50

10-2 10-1 100
-2

-1
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2

(a)

(b)

(c)

FIG. 1. Simulated data used to demonstrate the inversion meth-
ods presented here. The signal g is shown in (a), black solid line.
The true relaxation-time distribution f (T ) contains three discrete
relaxation rates with positive or negative amplitude: an approximate
version is shown in (b). The true distribution is given in (c) as
a cumulative integral F (T ) = ∫ T

T ′=0 f (T ′)d (log10 T ′). The black ×
symbols indicate points reproduced in subsequent figures for com-
parison. The fitted data ĝ = K0x̂ obtained by non-negative Tikhonov
regularization (Sec. II A) are given in (a), blue dashed line. The fitted
data obtained by unconstrained Tikhonov regularization, half-bound
Tikhonov regularization (Sec. II B), and the primal-dual algorithm
(Sec. II C) are not shown due to being indistinguishable from the
original signal g at the scale plotted. See online version for color.

is most accurately depicted as a cumulative integral F (T ) =∫ T

T ′=0 f (T ′)d(log10 T ′) in Fig. 1(c).
The singular value decomposition (SVD) of a matrix is

a tool used commonly in numerical calculations for inverse
problems [44, Chap. 3]. The relevant version for the inversions
here is K0 = U0S0VT

0 . The q × p matrix U0 has orthonormal
columns so UT

0 U0 yields a p × p identity matrix. The p × p

matrix S0 is diagonal and contains the singular values of K0,
s0,i = S0,ii , with largest value s0,max and smallest nonzero
value s0,min. The p × p matrix V0 is orthogonal so VT

0 V0

yields a p × p identity matrix.
The measurement equation (10) is also applicable to 2D

data [26], viz., Eq. (8) for the T1-T2 correlation experiment.
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The distribution f (T1, T2) is represented in non-normalized
form by a p2 × p1 matrix X, each row of which corresponds
to a prospective value of T2 and each column corresponds to
a prospective value of T1. The column vector x is formed by
stacking the columns of X below each other, viz., x = vec(X),
so p = p1p2. The measured 2D NMR data are represented
by a q2 × q1 matrix G, each row of which corresponds to
a CPMG delay t2 (the direct dimension) and each column
corresponds to a longitudinal relaxation delay t1 (the indirect
dimension). The column vector g is formed by stacking the
columns of G, viz., g = vec(G), so q = q1q2. The kernel
function for transverse relaxation k2(T2, t2) is sampled to
form a q2 × p2 matrix K2, similar to the matrix K0 for the
above 1D example. A separate q1 × p1 matrix K1 is formed
for the longitudinal relaxation kernel function k1(T1, t1). The
q × p matrix K0 for this separable 2D case is generated by
the Krönecker product K0 = K1 ⊗ K2. This matrix corre-
sponds to the discrete sampling of the overall kernel function
k0(T1, t1, T2, t2) = k1(T1, t1) k2(T2, t2). The individual SVDs
K1 = U1S1VT

1 and K2 = U2S2VT
2 can be used to generate

U0 = U1 ⊗ U2, S0 = S1 ⊗ S2, and V0 = V1 ⊗ V2 [26]. For
clarity, the factored matrix sizes here are q1 × p1 for U1,
p1 × p1 for S1, p1 × p1 for V1, q2 × p2 for U2, p2 × p2

for S2, and p2 × p2 for V2. Furthermore, the singular val-
ues s1,j = S1,jj , s2,i = S2,ii have respective maximum values
s1,max, s2,max and respective minimum values s1,min, s2,min,
so s0,max = s1,maxs2,max and s0,min = s1,mins2,min for the T1-T2

correlation.

A. Non-negative Tikhonov regularization

A traditional method for solving linear inverse problems,
the Tikhonov regularization [25], reaches an optimum smooth
solution to the unconstrained �2-penalized regression (follow-
ing [44, Chap. 8])

x̂ = arg min
x

{‖g − K0x‖2
2 + λ2‖L0x‖2

2

}
, (11)

where λ2 is a tuning parameter, and L0 is either the identity
matrix or a second finite-difference matrix (finite-difference
Laplacian matrix) with p columns that dictates the nature
of smoothing. A simple second finite-difference matrix can
be generated, for example, as a p × p Toeplitz matrix with
−2 on the main diagonal and 1 on each of the adjacent
subdiagonals and superdiagonals (the matrix bandwidth is 3).
If L0 is instead taken as the p × p identity matrix, the problem
can be solved conveniently by SVD [44, Chap. 4]:

x̂ = arg min
x

{‖g − K0x‖2
2 + λ2‖x‖2

2

}
= V0

(
w0 
 (

UT
0 g

))
, (12)

where the elements of p × 1 vector w0 are w0,i = s0,i/(s2
0,i +

λ2). This method yields a solution for x̂ (p × 1) that is biased
to be shrunk towards zero and is stable to small changes in
the measured data g (q × 1) for sufficiently high values of the
tuning parameter λ2. When the value of λ2 is too high, the
solution is shrunk so far towards zero that it cannot represent
the measured data faithfully. Methods for optimizing the value
of λ2 are discussed in [44, Chap. 5]. Even with a suitable
choice of λ2, however, this traditional form of Tikhonov

regularization typically does not yield realistic results for
NMR relaxometry problems. The smooth solutions are often
too broad and undulate from positive to negative amplitude
across the range of T , even in common situations where
non-negative amplitudes are expected. A more sophisticated
version of the technique is necessary, especially for NMR
relaxometry experiments in more than one dimension [26].

Non-negative Tikhonov regularization aims to find more
realistic solutions via the lower-bound-constrained �2-
penalized regression

x̂ = arg min
x�0

{‖g − K0x‖2
2 + λ2‖L0x‖2

2

}
. (13)

Note this method is often referred to incorrectly as an inverse
Laplace transform (ILT) in the literature [45]. Regularization
is imposed from three contributions of prior knowledge on f

(and hence x):
(1) the range (bandwidth) of log10 T is restricted,
(2) the distribution is biased to be smooth,
(3) the distribution is non-negative, f (T ) � 0.

The size of the optimization problem can be reduced by
projecting the data on a truncated singular value basis with-
out significant change to the result [26]. Only signal com-
ponents corresponding to singular values above a threshold
determined by the SNR of the data are retained, leaving p̃

significant singular values. Quantities projected on to this
truncated basis are indicated by a ˜ (tilde). The columns of
U0 and V0 that are retained in Ũ0 (q × p̃) and Ṽ0 (p × p̃),
respectively, are those that correspond to the p̃ singular values
retained in the diagonal of the reduced matrix S̃0 (p̃ × p̃).
Setting g̃ = ŨT

0 g (p̃ × 1) and K̃0 = S̃0ṼT
0 (p̃ × p), as well

as taking L0 as the p × p identity matrix, the minimization
in Eq. (13) is approximately reformulated as the following
equivalent optimization problems:

min
x�0

{∥∥g̃ − K̃0x
∥∥2

2 + λ2‖x‖2
2

}
= λ2 min

x�0
max

c

{−2xTK̃T
0 c − (

λ2‖c‖2
2 − 2g̃Tc

) + ‖x‖2
2

}
= λ2 max

c

{−‖x̂(c)‖2
2 − λ2‖c‖2

2 + 2g̃Tc
}
, (14)

where

x̂(c) = max
(
K̃T

0 c, 0
)
. (15)

The max is conducted elementwise in Eq. (15), so the oper-
ation zeros any negative elements in the p × 1 input vector
K̃T

0 c. The minimization in the first line of Eq. (14) is referred
to as the primal optimization problem in the primal variables
x. The second line of Eq. (14) is an equivalent optimization
problem in both primal variables x (p × 1) and dual variables
c (p̃ × 1), the solution of which finds the saddle point (x =
x̂, c = ĉ) of its objective function. The inner maximization is
achieved for given x at c = ĉ(x), which recovers the primal
problem from the saddle-point problem. The optimum p̃ × 1
dual vector is ĉ(x) = (g̃ − K̃0x)/λ2 given the primal vector
x. This type of optimization transfer is a case of convex
conjugation [46, Chap. 3], i.e., Fenchel-Legendre duality as
noted in [47]. The saddle-point property permits interchange
in the order of minimization and maximization [46, Chap. 5]
in the second line of Eq. (14). The inner minimization is
then over x for given c: the minimizer is given by Eq. (15)

043308-5



THUSARA C. CHANDRASEKERA AND JONATHAN MITCHELL PHYSICAL REVIEW E 98, 043308 (2018)

[27,47]. The maximization over the dual variables c in the
third line of Eq. (14) is obtained from the saddle-point
problem at this inner minimum. This maximization is an
unconstrained dual optimization problem to the lower-bound-
constrained primal optimization problem. The transformation
of the primal problem into the dual problem in Eq. (14) is in
essence the method of [27]. The optimal value of c (p̃ × 1) is
determined by an unconstrained minimization [26] of the dual
objective function in the third line of Eq. (14) multiplied by
−1. The solution vector x̂ is obtained from this optimum ĉ via
Eq. (15). The optimum λ2 parameter can be determined by the
method given in [26,27], or by the methods discussed in [44,
Chap. 5]. We use generalized cross validation (GCV) [48,49]
following the method in [28]. Application to 2D NMR data
is straightforward (the matrix of measured 2D data is stacked
as a vector, and the solution vector reshaped to a matrix) as
indicated earlier in this section and detailed in [26].

An example of Tikhonov regularization applied to sim-
ulated 1D data containing contributions with positive and
negative amplitude (see Fig. 1) is shown in Fig. 2. The non-
negative and unconstrained versions of Tikhonov regulariza-
tion are used here with λ2 optimized by GCV in each case.
The distribution in Fig. 2(b) (blue dashed line) was obtained
by applying the method in [26,27], including a non-negativity
constraint, to the simulated signal plus noise. The fitted distri-
bution contained a single relaxation-time component (peak) of
integral area 1.68 at a modal rate of 1/T = 1.3 s−1. The cor-
responding cumulative distribution plot is shown in Fig. 2(c)
(blue dashed line). It is interesting to observe that the inclusion
of the non-negativity constraint does not simply suppress
the component of negative amplitude, but distorts the entire
estimated distribution. The reason for this discrepancy is clear
when the simulated and fitted data are compared in Fig. 1(a)
with the fit residuals given in Fig. 2(a) (blue dashed line). The
estimated data are a poor fit to the original signal with the re-
sult oversmoothed (large λ2) to compensate for the subtractive
component. This example is extreme, with the negative ampli-
tude component having a significant magnitude compared to
the total signal. Nevertheless, it highlights the limitation of
this non-negative implementation of Tikhonov regularization.
The distribution in Fig. 2(b) (red solid line) was calculated by
Eq. (12). In this case, unconstrained Tikhonov regularization
achieves a good fit to the original signal and the residuals
in Fig. 2(a) (red solid line) are small, but the distribution is
neither sparse nor sensible as it suffers from severe artificial
ringing. The corresponding cumulative distribution shown in
Fig. 2(c) (red solid line) also exhibits ringing, the full extent
of which is clipped due to the axis scale. This standard method
thus cannot re-mediate such reconstruction problems in
general.

B. Half-bound Tikhonov regularization

If there is prior knowledge of the sign of f as it varies
with T , then the above non-negative method can be adapted
accordingly to yield “half-bound” Tikhonov regularization,
which has distinct non-negative and nonpositive regions. Each
column of K̃0 is multiplied by the assumed sign of f (T )
corresponding to the relevant value of T for that column, i.e., a
mask with values +1 or −1 given by sgn(f (T )), where sgn is
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FIG. 2. Demonstration of Tikhonov regularization applied to the
simulated 1D signal g shown in Fig. 1(a). Noise was added equivalent
to a signal-to-noise ratio of SNR ≈ 1000. Estimated relaxation-time
distributions x̂ are shown in (b) for non-negative Tikhonov regular-
ization (blue dashed line) and unconstrained Tikhonov regularization
(red solid line) with selected points from the ideal distribution (black
× symbols) indicated for comparison. Vertical stems are included
to guide the eye. The cumulative integral is shown for each of
these distributions in (c) and the corresponding fit residuals g − ĝ
are shown in (a). The data ĝ obtained by non-negative Tikhonov
regularization were included in Fig. 1(a). See online version for
color.

the signum function. In this modified method, each element of
x is thus proportional to the magnitude of f (T ) corresponding
to the relevant value of T for that element. The non-negative
Tikhonov reconstruction is run with the modified K̃0. The
required result f̂ (T ) is recovered by multiplying each ele-
ment of the estimated x̂ by sgn(f (T )) corresponding to the
relevant value of T for that element. The ill-posed nature of
identifying f (T ) from Eq. (9) means that approximately equal
magnitudes either side of a sign transition in f̂ (T ) correspond
to canceling contributions with little net effect on the fitted
signal. The corresponding kernel functions would be similar
in magnitude and opposite in sign. Since the location of the
sign transition is chosen, any resulting artifacts can be deleted
manually near this known position. This change could of
course result in the distortion or removal of nearby (genuine)
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FIG. 3. Demonstration of half-bound Tikhonov regularization
and primal-dual methods applied to the simulated 1D signal g shown
in Fig. 1(a). Noise was added equivalent to a signal-to-noise ratio of
SNR ≈ 1000. Estimated relaxation-time distributions x̂ are shown in
(b) for half-bound Tikhonov regularization (blue dashed line) and
the primal-dual algorithm (red solid line) with selected points from
the ideal distribution (black × symbols) indicated for comparison.
Vertical stems are included to guide the eye. The cumulative integral
is shown for each of these distributions in (c) and the corresponding
fit residuals g − ĝ are shown in (a). See online version for color.

peaks. If required, f̂ (T ) can be rescaled to yield unit integral
over log10 T after removal of the artifacts.

The half-bound Tikhonov method is applied to the afore-
mentioned 1D simulated signal in Fig. 1, assuming nonposi-
tive amplitudes for T < 0.08 s (non-negative elsewhere). The
reconstructed distribution in Fig. 3(b) (blue dashed line) en-
compasses each of the required peaks, including the negative-
amplitude component. The middle (positive) peak was slightly
stretched towards the left (negative-amplitude) peak, but no
spurious peaks appeared in this particular reconstruction. The
peak integral areas (left to right) are −1.98, 1.03, 2.03, so the
distortion does not impede quantification. The corresponding
cumulative distribution shown in Fig. 3(c) (blue dashed line)
reaches similar levels to the simulated distribution integral
(indicated by the × symbols). Half-bound Tikhonov regular-
ization thus reconstructs the simulated distribution including
the negative-amplitude component. The fitted data closely

follow the original signal as demonstrated by the residuals
in Fig. 3(a) (blue dashed line) which are significantly better
than those achieved by non-negative Tikhonov regularization
[cf. Fig. 2(a)].

For the 2D case of a T1-T2 correlation in a diffusive-
exchange system, components of the distribution are known
to have negative amplitude [18] for apparent T2 > T1 if
the two bulk relaxation times are similar. Such negative
amplitudes in this setting are thus always associated with
particular combinations of eigenvalues, specifically for the
positions {T app

1,j , T
app

2,i } where j > i. This knowledge suggests
that sgn(f (T1, T2)) = −1 where T2 > T1 and +1 otherwise.
However, the smoothing inherent in the Tikhonov regulariza-
tion may result in positive-amplitude peaks near the T1 = T2

diagonal extending over this threshold. To avoid affecting the
correct recovery of such peaks, the sgn(f (T1, T2)) mask can
instead be set to −1 over a smaller region of the distribu-
tion, say, where T2/T1 > 0.5, leaving the mask value as +1
elsewhere. The position of the sign transition can be adjusted
for any given data set to minimize distortions in the estimated
solution.

At the potential cost of some artifacts, the half-bound
inversion retains the advantages of Tikhonov regularization:
robust selection of the optimum smoothing parameter via
GCV, minimal smoothing on the output, and sensitivity to
low-amplitude contributions to the signal. Next, we apply a
LASSO-type method to the same simulated signal for com-
parison.

C. Primal-dual algorithm

A generalization of the LASSO [50] encompasses the
formulation

x̂ = arg min
x

{‖g − K0x‖2
2 + λI‖x‖1 + λL‖L0x‖1

}
, (16)

where λI and λL are both tuning parameters. Note the absence
of the non-negativity constraint on x (p × 1). The bandwidth
of log10 T is restricted in order to achieve a stable solution, as
above with Tikhonov regularization. This problem becomes
the standard LASSO of [32,33] for λL = 0. Alternatively, it
becomes anisotropic total-variation regularization if λI = 0
and L0 is a first finite-difference matrix. A more sophisticated
choice of L0, originally designed for imaging [51,52], was
adopted in [40] to reconstruct distributions with both sparse
and smooth contributions. For the purposes of avoiding spu-
rious components, a second finite-difference matrix (with p

columns) was used here, as is common in Tikhonov regular-
ization to ensure smoothness [44, Chap. 8].

Primal-dual methods are applicable to a variety of opti-
mization problems, including that for non-negative Tikhonov
regularization in Eq. (14). For brevity, we hereafter use the
term “primal-dual algorithm” specifically in the context of
solving problems expressible in the form of Eq. (16), despite
the generality of the term. The primal-dual algorithm of [38]
was adapted in [39,40] to solve a problem of similar form to
Eq. (16). The primal-dual algorithm in such a case is based on
a saddle-point problem reformulated from the minimization in
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Eq. (16) via convex conjugation, viz.,

min
x

{‖g − K0x‖2
2 + λI‖x‖1 + λL‖L0x‖1

}
= min

x
max
yI,yL

{‖g − K0x‖2
2 + λI

[
yT

I x − �1(yI )
]

+ λL
[
yT

LL0x − �1(yL)
]}

, (17)

where yI (p × 1) and yL (p × 1 assuming L0 is square)
are vectors of dual variables. The indicator penalty function
�α (y) yields ∞ if any element of y exceeds α in magnitude
and yields zero otherwise (as a scalar result). The inner
maximization in the second line of Eq. (17) is thus equivalent
to maximizing λIyT

I x subject to ‖yI‖∞ � 1 and separately
maximizing λLyT

LL0x subject to ‖yL‖∞ � 1, adding the re-
sults to the regression �2-norm term. The overall maximum
is achieved at yI = ŷI(x) and yL = ŷL(x) for a given primal
vector x. The primal optimization in the first line of Eq. (17)
is recovered from the saddle-point problem in the second
line by noting ŷI(x) = sgn(x) and ŷL(x) = sgn(L0x) from
the separate maximizations, given x (here ŷI is p × 1 and ŷL

is p × 1 for square L0). The signum function is conducted
elementwise on its input vector.

Optimization to find the saddle point in Eq. (17) is achieved
by alternating updates of the primal variables (x) and the dual
variables (yI and yL) [38]. The update of each dual vector is
done using the proximity operation

prox1(y, α) = arg min
u

{
1
2‖u − y‖2

2 + �α (u)
}

= sgn(y) 
 min(sgn(y) 
 y, α), (18)

where α is the threshold parameter. This operation is a pro-
jection of the vector y on to the convex set of vectors with
�∞ norm, ‖y‖∞ � α, and is a form of hard threshold on
the element magnitudes. Both sgn and min are conducted
elementwise in Eq. (18), so the prox1(y) operation separately
prunes each element of y to absolute value α at most, viz.,
sgn(yi ) min(|yi |, α). The update of the primal vector uses the
proximity operation

prox2(x, β ) = arg min
z

{
1
2‖z − x‖2

2 + β‖g − K0z‖2
2

}
= x + V0

(
w0 
 (

UT
0 (g − K0x)

))
, (19)

where the elements of p × 1 vector w0 are w0,i = s0,i/[s2
0,i +

1/(2β )] and β is a parameter that determines the amount of
regularization. This operation is a version of unconstrained
Tikhonov regularization with tuning parameter λ2 = 1/(2β ),
so it is straightforward to solve using the SVD of K0.

The iterative minimization is initialized with p × 1 zero
vectors for x(0), and y(0)

I and y(0)
L . The lth estimates of the dual

vectors y(l)
I and y(l)

L are calculated by

y(l)
I = prox1

(
y(l−1)

I + σλIz(l−1), 1
)
, (20)

y(l)
L = prox1

(
y(l−1)

L + σλLL0z(l−1), 1
)
, (21)

where σ = 1/(�2τ ) with � = max(λI, λL|maxeig(L0)|),
τ = 105/(2 maxeig(KT

0 K0)), and maxeig is the maximum

magnitude eigenvalue of its matrix argument. The distribution
estimate is updated as

x(l) = prox2

(
x(l−1) − τ

[
λIy

(l)
I + λLLT

0 y(l)
L

]
, τ

)
, (22)

z(l) = x(l) + θ (x(l) − x(l−1)). (23)

While x(l) (p × 1) contains the desired estimate of the dis-
tribution f within scaling, the iteration is accelerated by
calculating an auxiliary version of distribution z(l) (p × 1) via
over-relaxation in Eq. (23). The next iteration proceeds with
this vector of auxiliary variables as input. A possible choice
for the over-relaxation parameter is θ = 1/

√
1 + 2γ τ [38]

where the dual Lipschitz constant is γ = 2 mineig(KT
0 K0)/�,

and mineig is the minimum magnitude eigenvalue of its matrix
argument. For inversions in NMR relaxation experiments, the
matrix KT

0 K0 is often sufficiently ill conditioned (maxeig �
mineig) that the calculation yields θ ≈ 1. The SVD of K0

is again useful for these calculations since maxeig(KT
0 K0) =

s2
0,max and mineig(KT

0 K0) = s2
0,min.

The above algorithm typically needs to be rerun over
various values of λI because a suitable value is not typi-
cally known in advance. A limited number of iterations, say
lmax = 103, are performed at each λI value, and the resulting
x(lmax ) and y(lmax )

I and y(lmax )
L are used instead of zero vectors

to initialize the minimization for the next λI. A reasonable
starting estimate λA for the penalty parameter is the estimated
root-mean-square (rms) noise in measurements g [53]. The
optimum solution is found by incrementing λI from λA to
λB = 2λAs0,max over logarithmic intervals. The optimum pa-
rameter λI,opt is chosen where a sudden increase occurs in
a plot of log ‖x(λI )‖1 versus log ‖g − K0x(λI )‖2. This grid
search is a form of L-curve method [44, Chap. 5] for tuning
λI. Instead of conducting a separate grid search, the value of
λL can, for example, be chosen in fixed proportion to λI [40].

An example inversion of 1D data using the primal-dual al-
gorithm is given in Fig. 3. For this 1D case, λL was set to zero
so the corresponding step in Eq. (21) was ignored. The primal-
dual algorithm recovers the approximate peak positions [see
the distribution in Fig. 3(b) (red solid line)]. The distribution
peaks are correctly centered on the original rate values. The
peak integral areas (left to right) are −1.97, 0.97, 2.00 and the
corresponding cumulative distribution in Fig. 3(c) (red solid
line) reaches similar levels to the broadened version of the
original simulated distribution (indicated by the × symbols).
The primal-dual algorithm thus recovers the approximate
component amplitudes. The accuracy of these amplitudes is
similar to the half-bound Tikhonov result. The fitted data
are a good approximation to the original signal with small
fit residuals [see Fig. 3(a) (red solid line)]. The primal-dual
algorithm reconstructs the simulated distribution including the
negative-amplitude component.

The primal-dual algorithm could be implemented on 2D
NMR data by stacking the q2 × q1 data matrix G columnwise
as a q × 1 vector (q = q1q2). The resulting p × 1 solution
vector can be reshaped into a p2 × p1 distribution matrix X
(p = p1p2). When the kernel function is separable, as in the
T1-T2 correlation, it is computationally efficient to solve the
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generalized LASSO in the equivalent matrix form

min
X

{∥∥G − K2XKT
1

∥∥2

F + λI‖vec(X)‖1

+ λL
[∥∥vec

(
XLT

1

)∥∥
1 + ‖vec(L2X)‖1

]}
, (24)

where K1 is the q1 × p1 kernel matrix for the indirect dimen-
sion (T1) and K2 is the q2 × p2 kernel matrix for the direct
dimension (T2). Both L1 (p1 × p1) and L2 (p2 × p2) are
second finite-difference matrices, which contribute to the 2D
finite-difference Laplacian operator L0 = I1 ⊗ L2 + L1 ⊗ I2

(p × p). The identity matrices I1 and I2 have respective sizes
p1 × p1 and p2 × p2 here, but there is no need to form L0

directly for these calculations. Similar to Eq. (18), prox1 is
conducted elementwise for matrix inputs. The matrix-input
version of prox2 is

prox2(X, β ) = arg min
Z

{
1
2‖Z − X‖2

F + β
∥∥G − K2ZKT

1

∥∥2

F

}
= X + V2

(
W0 
 (

UT
2

(
G − K2XKT

1

)
U1

))
VT

1 ,

(25)

where the elements of p × p matrix W0 are W0,ij =
s2,i s1,j /[s2

2,i s
2
1,j + 1/(2β )]. The primal-dual algorithm is im-

plemented with p2 × p1 matrices X(l), Z(l), Y(l)
I and Y(l)

L (all
zero for l = 0 initially) as

Y(l)
I = prox1

(
Y(l−1)

I + σλIZ(l−1), 1
)
, (26)

Y(l)
L = prox1

(
Y(l−1)

L + σλL
(
L2Z(l−1) + Z(l−1)LT

1

)
, 1

)
, (27)

X(l) = prox2

(
X(l−1) − τ

[
λIY

(l)
I λL

(
LT

2 Y(l)
L + Y(l)

L L1
)]

, τ
)
,

(28)

Z(l) = X(l) + θ (X(l) − X(l−1)), (29)

where θ is set equal to unity. We use this efficient matrix-based
approach to estimate optimum solutions for T1-T2 correlation
data, setting λL = λI/10 in the grid search for λI.

III. EXCHANGE MODELS: SIMULATIONS
AND ANALYTIC SOLUTIONS

In simple geometries, the eigenfunctions and eigenval-
ues can be calculated explicitly. However, for more compli-
cated scenarios, generation of time-dependent magnetization
is achieved more readily through simulation. We turn to
the finite-element multiphysics modeling package COMSOL

as a convenient method for simulating spin relaxation in
nontrivial situations, in particular coupled pores in the slow
diffusion regime. A built-in partial differential equation (PDE)
solver was used to calculate the time-dependent evolution
of the magnetization according the Bloch-Torrey equation.
The longitudinal magnetization was modeled as m(r, t ) ∝ Mz

in Eq. (1) and surface relaxation imposed by Eq. (2) with
a surface relaxivity ρ1. Similarly, the transverse magnetiza-
tion (always real valued in these simulations) was modeled
as m(r, t ) ∝ Mx (on resonance in the rotating frame), with
surface relaxivity ρ2, to satisfy Eqs. (3) and (4). The scaling
of the maximum coherent magnetization was defined exactly
with

∫
m(r, 0)dV (r) = 1 in all simulations.

The T1-T2 experiment was simulated using two separate
COMSOLsolvers, one for each stage of relaxation. The lon-
gitudinal magnetization was first calculated as a function of
recovery time t1, incremented logarithmically from 10−4 s
to 10 s in 128 steps. The value of Mz at each t1 time was
then used as the input Mz → Mx for the calculation of the
transverse magnetization decays with data stored at times t2
incremented logarithmically from 10−4 s to 10 s in 128 steps.
To simplify the generation of 2D data, the COMSOL server was
driven from a MATLABscript. The basic geometries used in the
simulations are illustrated in Fig. 4. The same bulk relaxation
rate was assigned to longitudinal and transverse processes for
the fluid in the pore volume in all cases: T b

1 = T b
2 = 2 s.

A. Isolated spherical pore

Analytic solutions to the Bloch-Torrey equation are avail-
able for a spherical geometry [24,54,55]. The eigenfunctions
of the Laplacian operator (∇2) for a given boundary condition
in a spherical geometry are products of spherical Bessel
functions of the first kind and spherical harmonics; the cor-
responding eigenvalues are nonpositive. These eigenfunctions
are complex valued in general and are orthogonal with respect
to integration over the volume of the ball Vsph = 4πr3

sph/3.
The rotational symmetry here means the only eigenfunctions
that contribute are those proportional to the zeroth-order
spherical Bessel function of the first kind, j0(x) = sin(x)/x,
which is identical to the sinc function. The contribution to
the Fickian diffusive flux, from each of these eigenfunctions,
is proportional to the first-order spherical Bessel function
of the first kind j1(x) = −j′0(x) = sin(x)/x2 − cos(x)/x. The
spatial dependence is only with the radial coordinate for
these eigenfunctions, viz., j0(ξr/rsph )/4π . The contributing
eigenfunctions in this rotationally symmetric situation are
thus real valued. The allowable values of ξ are those that
satisfy the Robin boundary condition at r = rsph, which is
−Dξ j′0(ξ )/rsph − ρj0(ξ ) = 0 over the entire spherical surface
with area Ssph = 4πr2

sph. These discrete values of ξ are thus
the positive roots of

ρrsph

D = ξ j1(ξ )

j0(ξ )
= 1 − ξ cot(ξ ). (30)

The corresponding eigenvalues of the diffusion operator
(−D∇2) with the above boundary condition are determined
by these roots as Dξ 2/r2

sph. If ρrsph/D � 1, the lowest eigen-
value is approximately ρSsph/Vsph = 3ρ/rsph and becomes
zero in the limit ρ → 0 (viz. the Neumann boundary condi-
tion). To provide the appropriate normalization of the eigen-
functions over the volume of the sphere, it is convenient to
define

η(ξ, δ) = 2

3

ξ 2

ξ 2 + δ(δ − 1)
. (31)

The two sets of eigenfunctions for longitudinal and transverse
relaxation have similar functional form, but differ due to
the different sets of ξ values involved, depending on the
surface relaxivity. In each case, the roots are indexed in
increasing order with j = 0 for the smallest root for longi-
tudinal relaxation and i = 0 for the smallest root for trans-
verse relaxation. The two sets of eigenvalues are interleaved:
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FIG. 4. COMSOL simulation geometries for (a) 3D spherical pore
and (b) 2D weakly coupled pores. The relaxing boundaries are
highlighted red in each geometry. See online version for color.

ξ1,j < ξ2,j < ξ1,j+1 < ξ2,j+1, given ρ1 < ρ2. For diffusion
with longitudinal relaxation, each root (ξ1,j ) of Eq. (30) with
ρ = ρ1 yields an eigenfunction

ψj (r ) =
√

η
(
ξ1,j ,

ρ1rsph

D
)

Vsph

j0
(
ξ1,j

r
rsph

)
j0(ξ1,j )

, (32)

with
∫ rsph

r=0 |ψj (r )|24πr2dr = 1 and corresponding eigenvalue

1

T
app

1,j

= Dξ 2
1,j

r2
sph

+ 1

T b
1

. (33)

For diffusion with transverse relaxation, each root (ξ2,i) of
Eq. (30) with ρ = ρ2 yields an eigenfunction

φi (r ) =
√

η
(
ξ2,i ,

ρ2rsph

D
)

Vsph

j0
(
ξ2,i

r
rsph

)
j0(ξ2,i )

, (34)

with
∫ rsph

r=0 |φi (r )|24πr2dr = 1 and corresponding eigenvalue

1

T
app

2,i

= Dξ 2
2,i

r2
sph

+ 1

T b
2

. (35)

The analytic amplitude for each peak in the T1-T2 correla-
tion with position {T app

1,j , T
app

2,i } is Aij = diQijaj , where for
ρ1, ρ2 > 0 the required integrals are

aj =
∫ rsph

r=0
ψ∗

j (r )
1

Vsph
4πr2dr =

√
η
(
ξ1,j ,

ρ1rsph

D
)

Vsph

3 j1(ξ1,j )

ξ1,j j0(ξ1,j )

=
√

η
(
ξ1,j ,

ρ1rsph

D
)

Vsph

3

ξ 2
1,j

ρ1rsph

D , (36)

di =
∫ rsph

r=0
φi (r )4πr2dr =

√
Vsphη

(
ξ2,i ,

ρ2rsph

D
) 3 j1(ξ2,i )

ξ2,i j0(ξ2,i )

=
√

Vsphη
(
ξ2,i ,

ρ2rsph

D
) 3

ξ 2
2,i

ρ2rsph

D , (37)

and assuming ρ1 �= ρ2,

Qij =
∫ rsph

r=0
φ∗

j (r )ψj (r )4πr2dr

=
√

η
(
ξ2,i ,

ρ2rsph

D
)
η
(
ξ1,j ,

ρ1rsph

D
)

×
(

ξ 2
2,i

ξ 2
2,i − ξ 2

1,j

3 j1(ξ2,i )

ξ2,i j0(ξ2,i )
− ξ 2

1,j

ξ 2
2,i − ξ 2

1,j

3 j1(ξ1,j )

ξ1,j j0(ξ1,j )

)

=
√

η
(
ξ2,i ,

ρ2rsph

D
)
η
(
ξ1,j ,

ρ1rsph

D
)3 ρ2rsph

D − 3 ρ1rsph

D
ξ 2

2,i − ξ 2
1,j

.

(38)

Note that when ξ1,j > ξ2,i , Qij < 0 (given ρ1 < ρ2) and if,
in addition, T b

1 = T b
2 , then T

app
1,j < T

app
2,i . The analytic peak

amplitudes for the T1-T2 correlation were calculated using
the nine lowest modes (i, j = 0, 1, 2, . . . , 8) of the eigenfunc-
tions. The diffusion regimes are dictated by the ratio ρrsph/D;
here, rsph and D are constant. For example, we represent
fast diffusion by ρ2rsph/D = 0.25, intermediate diffusion by
ρ2rsph/D = 2.5, and slow diffusion by ρ2rsph/D = 25.

To simulate time-domain data corresponding to the
Brownstein-Tarr diffusion regimes, a 3D spherical pore of
fixed radius rsph = 100 μm was used [see Fig. 4(a)]. The
sphere was taken to be filled with liquid with D = 2 ×
10−9 m2 s−1 and the Bloch-Torrey equations were solved
within the geometry. The surface of the sphere was as-
signed relaxivities of ρ1 = 1 μm s−1 (fast diffusion), ρ1 =
10 μm s−1 (intermediate diffusion), or ρ1 = 100 μm s−1

(slow diffusion); ρ2 = 5ρ1 always. The time-domain signal
data were used as input for inversion to estimate the T1-T2

correlation distribution. No noise was added to these simu-
lated data in order to identify any inherent inaccuracies or
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discrepancies between the simulation and analytic predic-
tions. Inversion of these simulated data was performed sep-
arately by non-negative Tikhonov regularization, half-bound
Tikhonov regularization, and the primal-dual method.

B. Two coupled pores

In this simple model, two pores are connected by a thin
throat of length Lt . Pore A has volume VA and pore B has
volume VB. The boundary of pore A has total surface area
SA and the boundary of pore B has total surface area SB.
Exchange from pore A to B is described by the rate KAB, and
exchange from B to A by KBA, such that KABVA = KBAVB

for detailed balance. These rates are controlled by the
mass transfer coefficient km = D/Lt and the pore throat cross-
sectional area Scross

AB which throttles the exchange: KAB =
kmScross

AB /VA and KBA = kmScross
AB /VB. Surface relaxation in

pore A takes place on an active surface area Srelax
A . Surface

relaxation in pore B takes place on an active surface area
Srelax

B . Each pore is assumed to be in the fast diffusion regime,
which requires ρ1S

relax
A VA/(DS2

A), ρ1S
relax
B VB/(DS2

B)�1,
ρ2S

relax
A VA/(DS2

A), ρ2S
relax
B VB/(DS2

B) � 1, and kmScross
AB VA/

(DS2
A), kmScross

AB VB/(DS2
B) � 1. Diffusion within each pore

is thus sufficiently fast that the magnetizations are uniform
within each pore, albeit the two pores have different
magnetizations in general. The time-dependent scaled mag-
netizations for the two pores are m1,A(t ) and m1,B(t ) for the
longitudinal relaxation part of the T1-T2 experiment, with
m2,A(t ) and m2,B(t ) used for the transverse relaxation
part. The initial scaled magnetizations in each pore are the
same: m1,A(0) = m1,B(0) = −1/(VA + VB) following perfect
inversion of the equilibrium magnetization meq = 1/(VA +
VB). In the absence of interpore exchange (i.e., decoupled
pores, km → 0), the isolated-pore longitudinal relaxation
rates are simply R1,A = ρ1S

relax
A /VA + 1/T b

1 and R1,B =
ρ1S

relax
B /VB + 1/T b

1 , and the isolated-pore transverse
relaxation rates are R2,A = ρ2S

relax
A /VA + 1/T b

2 and
R2,B = ρ2S

relax
B /VB + 1/T b

2 . The apparent relaxation decays,
in the presence of exchange between the weakly coupled
pores, are obtained by solving the systems of ordinary
differential equations (ODEs) for both longitudinal and
transverse cases. For inversion recovery

d

dt

(
m1,A(t ) − meq

m1,B(t ) − meq

)
= C1

(
m1,A(t ) − meq

m1,B(t ) − meq

)
, (39)

where the relaxation-coupling matrix is

C1 =
(−R1,A − KAB KAB

KBA −R1,B − KBA

)
. (40)

A corresponding system of ODEs exists for transverse
relaxation:

d

dt

(
m2,A(t )
m2,B(t )

)
= C2

(
m2,A(t )
m2,B(t )

)
, (41)

where

C2 =
(−R2,A − KAB KAB

KBA −R2,B − KBA

)
. (42)

The relaxation rates in the T1-T2 correlation [6,29] correspond
to the eigenvalues of −C1 and −C2, respectively, 1/T

app
1,j and

1/T
app

2,i , noting that indices i, j only take the values 0 or 1
in this situation. Expressions for the peak amplitudes are also
given in [6,29], which can be evaluated from the eigenvec-
tors of −C1 and −C2. The components of the eigenvector
(ψ0,A, ψ0,B)T of −C1 are given by

ψ0,A =

√√√√√R1,B + KBA − 1
T

app
1,0

VA

T
app

1,1
− VA

T
app

1,0

, (43)

ψ0,B =

√√√√√R1,A + KAB − 1
T

app
1,0

VB

T
app

1,1
− VB

T
app

1,0

, (44)

with VA|ψ0,A|2 + VB|ψ0,B|2 = 1, and the corresponding
eigenvalue is

1

T
app

1,0

= 1

2
(R1,A + KAB + R1,B + KBA)

− 1

2

√
(R1,A + KAB − R1,B − KBA)2 + 4KABKBA.

(45)

The components of the eigenvector (ψ1,A, ψ1,B)T of −C1 are
given by

ψ1,A = −

√√√√√R1,A + KAB − 1
T

app
1,0

VA

T
app

1,1
− VA

T
app

1,0

, (46)

ψ1,B =

√√√√√R1,B + KBA − 1
T

app
1,0

VB

T
app

1,1
− VB

T
app

1,0

, (47)

with VA|ψ1,A|2 + VB|ψ1,B|2 = 1, and the corresponding
eigenvalue is

1

T
app

1,1

= 1

2
(R1,A + KAB + R1,B + KBA)

+ 1

2

√
(R1,A + KAB − R1,B − KBA)2 + 4KABKBA.

(48)

These eigenvectors also satisfy ψ∗
0,AVAψ1,A + ψ∗

0,BVBψ1,B =
0. The system of ODEs in Eq. (39) can thus be solved
analytically to give(

m1,A(t1)
m1,B(t1)

)
=

(
meq

meq

)
+ exp {C1t1}

(
m1,A(0) − meq

m1,B(0) − meq

)

=
1∑

j=0

(
ψj,A

ψj,B

)[
1 − 2 exp

{
− t1

T
app

1,j

}]
aj , (49)

where aj = ψ∗
j,AVAmeq + ψ∗

j,BVBmeq. The components of the
eigenvector (φ0,A, φ0,B)T of −C2 are given by

φ0,A =

√√√√√R2,B + KBA − 1
T

app
2,0

VA

T
app

2,1
− VA

T
app

2,0

, (50)
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φ0,B =

√√√√√R1,A + KAB − 1
T

app
2,0

VB

T
app

2,1
− VB

T
app

2,0

, (51)

with VA|φ0,A|2 + VB|φ0,B|2 = 1, and the corresponding eigen-
value is

1

T
app

2,0

= 1

2
(R2,A + KAB + R2,B + KBA)

− 1

2

√
(R2,A + KAB − R2,B − KBA)2 + 4KABKBA.

(52)

The components of the eigenvector (φ1,A, φ1,B)T of −C2 are
given by

φ1,A = −

√√√√√R2,A + KAB − 1
T

app
2,0

VA

T
app

2,1
− VA

T
app

2,0

, (53)

φ1,B =

√√√√√R2,B + KBA − 1
T

app
2,0

VB

T
app

2,1
− VB

T
app

2,0

, (54)

with VA|φ1,A|2 + VB|φ1,B|2 = 1, and the corresponding eigen-
value is

1

T
app

2,1

= 1

2
(R2,A + KAB + R2,B + KBA)

+ 1

2

√
(R2,A + KAB − R2,B − KBA)2 + 4KABKBA.

(55)

These eigenvectors also satisfy φ∗
0,AVAφ1,A + φ∗

0,BVBφ1,B =
0. The system of ODEs in Eq. (41) can also be solved
analytically to give(

m2,A(t2)
m2,B(t2)

)
= exp {C2t2}

(
m2,A(0)
m2,B(0)

)

=
1∑

i=0

(
φi,A

φi,B

)
exp

{
− t2

T
app

2,i

}
bi, (56)

where bi = φ∗
i,AVAm1,A(t1) + φ∗

i,BVBm1,B(t1) since m2,A(0)=
m1,A(t1) and m2,B(0) = m1,B(t1). The resulting signal is
h(t1, t2) ∝ VAm2,A(t2) + VBm2,B(t2). The analytic ampli-
tude for each peak in the T1-T2 correlation with posi-
tion {T app

1,j , T
app

2,i } can again be calculated as Aij = diQijaj

for i, j = 0 or 1. Here, di = VAφi,A + VBφi,B and Qij =
φ∗

i,AVAψj,A + φ∗
i,BVBψj,B.

For this investigation, relaxation was considered at the sur-
face of pore A, in the fast diffusion limit. No surface relaxation
took place in pore B, so Srelax

B = 0, though bulk relaxation did
occur in both pores as usual. Weakly coupled pores governed
by fast diffusion (D = 1 × 10−9 m2 s−1) were simulated in
2D as two square pores of dimension Lp = 10 μm × 10 μm
connected by a throat of length Lt = 1 μm and width 0.1 μm
[see Fig. 4(b)]. Surface relaxation occurred only on the upper
and lower walls of pore A with ρ1 = 10 μm s−1 and ρ2 =
50 μm s−1. The other walls were simply reflective. A second

coupled pore simulation (not illustrated) was governed by
slow diffusion with the pore dimensions set to 100 μm ×
100 μm and ρ1 = 100 μm s−1, ρ2 = 500 μm s−1. The con-
necting throat dimensions remained the same. No analytic
solution was determined for coupled pores governed by slow
diffusion. The simulations generated time-domain signal data
to be used as input for inversion to estimate the T1-T2 cor-
relation distribution. No noise was added to these simulated
data in order to identify any inherent inaccuracies or dis-
crepancies between the simulation and analytic predictions.
Inversion of these simulated data was performed separately by
non-negative Tikhonov regularization, half-bound Tikhonov
regularization, and the primal-dual method.

IV. RESULTS AND DISCUSSION
FOR SIMULATED SYSTEMS

We aim to assign peaks in T1-T2 correlations for the recon-
struction results that follow in this section. The reconstruc-
tions were performed from the time-domain signals simulated
using the finite-element method. Each peak present in the
plots is assigned with a pair of indices, {ij}, where the i

label increases from right to left and the j label increases
from top to bottom in each plot. The apparent transverse and
longitudinal relaxation times that specify the coordinates of
the peak are interpreted to correspond to inverse eigenvalues
{T app

2,i , T
app

1,j }. A peak label {ij} thus refers to a particular
eigenvalue combination. The eigenvalues {1/T

app
2,i , 1/T

app
1,j }

are those of either relaxation-diffusion operators or relaxation-
coupling matrices. Each peak has an associated amplitude
given by Aij . These amplitudes are compared to the available
analytic predictions, which were calculated using the known
eigenfunctions or eigenvectors. The analytic solutions strictly
return delta functions and the peaks shown in such cases are
artificially broadened for convenient display.

T1-T2 correlations were calculated using Eq. (7) to describe
the diffusion of magnetization in an isolated pore for a range
of surface relaxivities [see Figs. 5(a)–5(c)]. When ρrsph/D <

1 (i.e., fast diffusion), the peak corresponding to the lowest
longitudinal and transverse eigenvalues (i, j = 0) dominates
the distribution [see Fig. 5(a)]. This single peak is present with
amplitude A00 = 1, located at eigenvalues 1/T

app
1,0 = 0.53 s−1

and 1/T
app

2,0 = 0.64 s−1, each being a weighted sum of the
bulk and surface relaxation rates. In this case, all higher-index
peaks (i, j � 1) are absent, having zero amplitude. Moving
to the intermediate and slow diffusion regimes [Figs. 5(b)
and 5(c)] additional peaks become visible. A total of nine
peaks are visible in Fig. 5(c), corresponding to all eigenvalues
with indices i, j � 2. Note that the {01}, {02}, and {12} peaks
are located at apparent relaxation times (inverse eigenvalues)
where T

app
2,i > T

app
1,j (i.e., i < j ) and so have negative am-

plitude, given T b
1 = T b

2 . The higher-index peaks (i, j � 3)
have too small amplitude to be visible with the scale of the
contours. The expected observable peaks are thus those for
eigenvalue combinations with i, j � 2.

Time-domain data corresponding to the three dif-
fusion regimes, generated by finite-element simulation,
were inverted using non-negative Tikhonov regulariza-
tion [Figs. 5(d)–5(f)], half-bound Tikhonov regularization
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FIG. 5. T1-T2 correlation plots for simulated diffusion in an isolated spherical pore illustrated in Fig. 4(a). The Brownstein-Tarr diffusion
regime was varied by adjusting the surface relaxivity to give [(a), (d), (g), (j)] fast diffusion, [(b), (e), (h), (k)] intermediate diffusion, and
[(c), (f), (i), (l)] slow diffusion. Analytic solutions (a)–(c) were calculated using Eq. (7); broadened distributions are shown for clarity. Finite-
element simulations produced time-domain data inverted using (d)–(f) non-negative Tikhonov regularization, (g)–(i) half-bound Tikhonov
regularization, and (j)–(l) the primal-dual method. The contour intervals vary between plots, but each 2D plot has been normalized to unit
signal (total peak integral). Marginal projections are included for clarity. In each plot, the dashed diagonal line indicates T1 = T2. Peaks
located at T2 > T1 (i.e., below this diagonal) have negative amplitude. The eigenvalue indices {ij} are indicated in each plot with i increasing
from right to left and j increasing from top to bottom. For the half-bound Tikhonov regularization (g)–(i), the gray diagonal line indicates the
change of sign in the kernel; artifacts have been manually removed (see Fig. 6 for details).
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[Figs. 5(g)–5(i)], and the primal-dual method [Figs. 5(j)–5(l)].
For the fast diffusion regime, the 2D distribution (single peak)
was entirely positive, so all three inversion methods deliv-
ered consistent solutions. The primal-dual method provided a
broader peak than Tikhonov regularization due to the weight
of the second-derivative penalty (see Sec. II C), chosen for
stability in the solution. Reduction in the value of λL relative
to λI may provide narrower peaks at the risk of introducing
spurious artifacts.

Moving to the intermediate diffusion regime [Fig. 5(b)],
higher-index peaks i, j,� 1 are seen with non-negligible
amplitude, although the {00} peak remains dominant. Peak
integrals were calculated for all i, j = 0, 1, yielding ampli-
tudes A00 = 0.95, A10 = 0.04, A11 = 0.01, A01 = −0.01; the
latter peak is not visible in Fig. 5(b) due to the scale of
the contours. Higher-index peaks i, j � 2 had amplitudes of
|Aij | � 0.001 and so were disregarded. The {00} and {10}
peaks were recovered from the simulated time-domain data by
the half-bound Tikhonov regularization and the primal-dual
methods [Figs. 5(h) and 5(k)], with A00 ≈ 0.97 and A10 ≈
0.03 in both cases. The recovered {10} peaks are slightly
shifted from the analytic prediction, but consistent in both
inverted solutions, so this variation is attributed to details
of the finite-element model. The low-intensity peaks {01}
(negative amplitude) and {11} were not recovered by the
inversion algorithms. It is interesting to note that the solution
achieved by non-negative Tikhonov regularization [Fig. 5(e)]
is subtly distorted (the {10} peak is displaced on the T1 axis),
even though the {01} peak has negligible amplitude here.
This observation highlights the sensitivity of the non-negative
inversion to details of the time-domain data that result from
even small deviations from the non-negativity assumption.

When the magnetization evolution is governed by the
slow diffusion regime, numerous higher-index peaks (i, j �
2) have significant amplitude [see Fig. 5(c)]. The majority
of the signal amplitude is still associated with the {00}
peak, such that A00 ∼ 0.7. However, the {01}, {02}, and
{12} peaks (negative amplitudes) give

∑
i<j�2 Aij ≈ −0.08,

i.e., are equivalent to 8% of the total signal, and are all
visible in Fig. 5(c). Higher-index combinations i, j � 3 with
amplitudes |Aij | � 0.001 were calculated but omitted from
the plot. The amplitudes of the peaks with i, j � 2 are given
in Table I.

The solution obtained by non-negative Tikhonov regular-
ization of the simulated time-domain data is a poor recon-
struction of the analytic solution [see Fig. 5(f)]. Three peaks
are present in this T1-T2 correlation plot, albeit elongated
approximately parallel to the T1 = T2 diagonal. These peaks
could be associated with the positions of largest expected
amplitude: {00}, {10}, and {11} (see Table I). Assuming this
assignment is valid, both the amplitude and position of the
{10} and {11} peaks are substantially wrong. The {00} peak
has the correct amplitude and is centered approximately on
the expected apparent relaxation times (inverse eigenvalues).
Alternatively, the three recovered peaks could be assigned
to the diagonal index combinations: {00}, {11}, and {22}, in
which case the amplitudes are closer to the expected values,
but the apparent relaxation times remain incongruent with the
analytic solution. It is clear that the presence of peaks with
significant negative amplitude distort the solution obtained

TABLE I. Signal (peak) amplitudes extracted from T1-T2 cor-
relation plots for relaxation in an isolated spherical pore governed
by slow diffusion. The apparent relaxation times correspond to the
eigenvalues (rates) from the analytic solution, with the matching
indices given in curled braces (i across columns, j over rows). Peaks
with indices i, j = 0 . . . 8 were used in the analytic calculation,
although only the low-index (i, j,� 2) amplitudes are included here.
These data correspond to the plots in Figs. 5(c), 5(f), 5(i), and 5(l)
for the analytic, non-negative Tikhonov regularization, half-bound
Tikhonov regularization, and primal-dual methods, respectively.

T
app

2,i / ms

431 128 59
Aij {0} {1} {2}

Analytic solution
549 {0} 0.743 0.059 0.022
160 {1} − 0.052 0.125 0.017
70 {2} − 0.009 − 0.016 0.037

Non-negative Tikhonov
T

app
1,j / ms 549 {0} 0.753 0.172 0

160 {1} 0 0.060 0
70 {2} 0 0 0

Half-bound Tikhonov
549 {0} 0.785 0.067 0.016
160 {1} − 0.049 0.142 0.027
70 {2} − 0.004 − 0.017 0.038

Primal-dual algorithm
549 {0} 0.754 0.091 0.025
160 {1} − 0.032 0.118 0.020
70 {2} − 0.010 0 0.018

by non-negative Tikhonov regularization, preventing robust
interpretation in terms of apparent relaxation times and signal
amplitudes.

Half-bound Tikhonov regularization [Fig. 5(i)] recovers all
nine of the expected peaks. The apparent relaxation times (in-
verse eigenvalues) correspond approximately to the analytic
solution for i > j , with some distortion along the T2 axis
(similar to the inverted data for the intermediate diffusion
regime). The apparent relaxation times for i < j are not
rigorously consistent with the analytic solution, but the peaks
are sufficiently well separated that robust assignment of i, j

is achieved everywhere. The peak amplitudes (see Table I)
are reasonable estimates of those in the analytic solution. We
note that the half-bound Tikhonov regularization provides the
only solution containing all the expected observable peaks.
To achieve this solution, a change in sign was enforced at
T2/T1 = 0.4 and artifacts generated along the diagonal were
manually removed. This manual editing stage is illustrated in
Fig. 6. The artifacts are more significant when genuine peaks
are present near the discontinuity in sign. The half-bound
Tikhonov regularization was repeated with the change in sign
located at different ratios of T2/T1 in the range 0.8 to 0.3. The
result with the ratio being 0.4, shown in Fig. 6(a), contained
the minimum artifactual signal amplitude, even though it
appears the peaks at {12} and {11} have been truncated by
the discontinuity. Notwithstanding this apparent limitation, it
is worth noting that the artifacts in Fig. 6(a) do not observably
contribute to the marginal projections and the 1D T1 and
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FIG. 6. T1-T2 correlation plots for simulated diffusion in an iso-
lated spherical pore (slow diffusion regime) reconstructed using half-
bound Tikhonov regularization. The original solution (a) contains
artifactual peaks along the T2/T1 = 0.4 diagonal, associated with the
discontinuity in sign imposed on the kernel. Peaks located below this
diagonal have negative amplitude. The artifacts have been manually
removed in (b), where T2/T1 = 0.4 is indicated by the gray diagonal
line; this plot is identical to Fig. 5(i). The dashed diagonal line
indicates T1 = T2, and the eigenvalue indices {ij} are indicated in
each plot with i increasing from right to left and j increasing from
top to bottom.

T2 distributions are visually unaltered by the manual editing
process [cf. Fig. 6(b)].

Finally, we move to Fig. 5(l) to consider the solution
achieved by the primal-dual inversion method. The primal-
dual algorithm recovers the expected observable negative-
amplitude peaks, with the exception of {12}, and largely
succeeds in returning the correct amplitudes (Table I) and
apparent relaxation times for all the other combinations. Peaks
not visible in Fig. 5(l), due to the scale of the contours, are
present in the solution matrix (X). Some distortion of the
solution is apparent, e.g., the {11}, {02}, and {20} peaks are
shifted to shorter T2 times compared to the analytic predic-
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FIG. 7. T1-T2 correlation plots for simulated diffusion in two
weakly coupled pores illustrated in Fig. 4(b). The choice of ρ, L,
and D corresponded to fast diffusion in each pore. An analytic
solution (a) was calculated using Eqs. (39)–(42). Finite-element
simulations produced time-domain data which were inverted using
(b) non-negative Tikhonov regularization, (c) half-bound Tikhonov
regularization, and (d) the primal-dual method. The contour intervals
vary between plots, but each 2D plot has been normalized to unit
volume (total peak integral). Marginal projections are included for
clarity. The eigenvalue indices {ij} are indicated in each plot with
i increasing from right to left and j increasing from top to bottom.
The dashed diagonal line indicates T1 = T2, and the gray diagonal
line at T2/T1 = 0.8 in (c) indicates the change in sign imposed
on the kernel. Peaks located at T2 > T1 (i.e., i < j ) have negative
amplitude.

tion, but are largely consistent with the half-bound Tikhonov
regularization solution. We conjecture that the {12} peak has
been omitted due the thresholding implicit in the primal-
dual method, and suggest this is a limitation of the method.
Nevertheless, the solution is considered a good approximation
to the analytic distribution.

The analytic T1-T2 correlation for two weakly coupled
pores in fast diffusion is shown in Fig. 7(a). Only four eigen-
function combinations exist (i, j = 0, 1), and the majority of
the signal amplitude resides in the diagonal {00} and {11}
peaks (see Table II). The {01} peak has negative amplitude,
and accounts for approximately 9% of the total signal. Note
that the marginal projections are positive always [this was
also true for the isolated pore results in Figs. 5(a)–5(c), but
less obvious due to the larger (i, j = 0 . . . ∞) range of valid
eigenfunction combinations]. Again, time-domain data were
generated by finite-element simulation and inverted using the
three reconstruction methods. The solution recovered by non-
negative Tikhonov regularization [Fig. 7(b)] is a very poor
reconstruction of the analytic distribution. The amplitude and
apparent relaxation times of the {00} peak are reasonable,
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TABLE II. Signal (peak) amplitudes extracted from T1-T2 corre-
lation plots for two weakly coupled pores governed by fast diffusion.
The relaxation times correspond to the eigenvalues (rates) from
the analytic solution, with the matching indices given in curled
braces (i across columns, j over rows). These data correspond to
the plots in Figs. 7(a)–7(d) for the analytic, non-negative Tikhonov
regularization, half-bound Tikhonov regularization, and primal-dual
methods, respectively.

T
app

2,i / ms

714 86
Aij {0} {1}

Analytic solution
921 {0} 0.684 0.170
256 {1} − 0.086 0.232

Non-negative Tikhonov
T

app
1,j / ms 921 {0} 0.628 0.346

256 {1} 0 0.026
Half-bound Tikhonov

921 {0} 0.690 0.163
256 {1} − 0.078 0.224

Primal-dual algorithm
921 {0} 0.686 0.174
256 {1} − 0.083 0.225

but the amplitudes are wrong with A10 > A11. The apparent
longitudinal relaxation times are too low for both {10} and
{11} peaks; the apparent transverse relaxation time is also
wrong for the {1, 1} peak in particular. The {01} peak is absent
as expected due to the non-negativity constraint. Assignment
of the peaks is robust insomuch as there is only one reasonable
choice. However, interpretation of the amplitudes of the peaks
remains ambiguous due to the substantial distortion of the
solution. The half-bound Tikhonov regularization and primal-
dual methods are able to recover excellent representations of
the analytic distribution, Figs. 7(c) and 7(d), respectively. For
the half-bound regularization, the change in sign was imposed
at T2/T1 = 0.8 and produced negligible artifacts in this case.
The peaks recovered by the primal-dual algorithm are substan-
tially broadened, yet the eigenvalues and amplitudes (Table II)
match the analytic result.

To demonstrate the application of the half-bound Tikhonov
and primal-dual algorithms to more realistic systems, the
evolution of magnetization in two weakly coupled pores
governed by slow diffusion was simulated. The T1-T2 corre-
lation obtained by non-negative Tikhonov regularization of
the time-domain data is shown in Fig. 8(a). Four peaks are
identified. The peak at longest relaxation times T1 = T2 =
2 s corresponds to bulk relaxation in pore B (no surface
relaxation). The three peaks at shorter relaxation times are
attributed primarily to slow diffusion in pore A with some
mixing between the two pores. Any peaks with apparent
T2 > T1 are suppressed by the non-negativity constraint. The
solution achieved using half-bound Tikhonov regularization
[Fig. 8(b)] reveals additional peaks attributed to slow diffusion
eigenvalues. As well as the peak at T1 = T2 = 2 s, six other
components with positive amplitude are identified in the plot,
consistent with the slow diffusion isolated pore result in
Fig. 5(c). In Fig. 8(b), two components with negative ampli-
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FIG. 8. T1-T2 correlation plots for simulated diffusion in two
weakly coupled pores. The choice of ρ, L, and D corresponded to
slow diffusion in each pore. Finite-element simulations produced
time-domain data inverted using (a) non-negative Tikhonov regular-
ization, (b) half-bound Tikhonov regularization, and (c) the primal-
dual method. The contour intervals vary between plots, but each
2D plot has been normalized to unit volume (total peak integral).
Marginal projections are included for clarity. In each plot, the dashed
diagonal line indicates T1 = T2. Peaks located at T2 > T1 (i.e., below
the dashed diagonal) have negative amplitude. The gray diagonal line
at T2/T1 = 0.5 in (b) indicates the change in sign imposed on the
kernel.

043308-16



NUMERICAL INVERSION METHODS FOR RECOVERING … PHYSICAL REVIEW E 98, 043308 (2018)

tude are visible, both with T2 = 0.7 s (the low-amplitude com-
ponent at T1 = 0.02 s is obscured by the marginal distribution
plot). A negative-amplitude component was thus expected at
T2 = 0.1 s, T1 = 0.02 s but may have been lost amongst the
artifacts along the T2/T1 = 0.5 diagonal that were removed.
The distribution obtained using the primal-dual method is
shown in Fig. 8(c). Four peaks are identified, essentially con-
sistent with the non-negative Tikhonov regularization solution
in Fig. 8(a). Although the peaks are broadened by our choice
of primal-dual algorithm, they remain distinct in the marginal
projections and the apparent relaxation times approximately
match those obtained by the half-bound Tikhonov regulariza-
tion. The Tikhonov regularization algorithm tends to preserve
low-intensity features, whereas the primal-dual algorithm
tends to preserve high-intensity features, and this difference
in reconstruction bias is evident in these distributions. Despite
the loss of low-amplitude features in Fig. 8(c), the principal
peaks are present and permit robust interpretation in terms of
amplitude and apparent relaxation times. The solutions pro-
vided by half-bound Tikhonov regularization and the primal-
dual method highlight the complexity that can exist in even
relatively simple coupled pore systems.

Under favorable circumstances, the primal-dual algorithm
recovers a T1-T2 correlation containing peaks of negative
amplitude. Applied to simulated data, the results were very en-
couraging, with peak amplitudes and positions recovered cor-
rectly. Low-intensity features were occasionally rejected due
to the shrinkage effect of the �1 penalties, yet the recovered
distributions were good approximations to the analytic results
where available. However, these simulations were essentially
free from random noise or systematic errors (e.g., interference
sources) that are present in actual measurements. In the next
section, we apply the inversion method to experimental data.

Half-bound Tikhonov regularization provides solutions
with narrow peaks, simplifying interpretation of the distribu-
tion. Successful application of this method relies on (1) peaks
with negative amplitude having very different positions rela-
tive to the positive-amplitude contributions, and (2) the range
of apparent relaxation times where the peaks have negative
amplitude being known a priori, e.g., where apparent T2 > T1.
In the simple cases of coupled pores or Brownstein-Tarr slow
diffusion presented here, these requirements are met, but may
not be satisfied in general. There remains an implementation
challenge of defining the region of nonpositive amplitude,
plus manual editing of the solution to remove artifacts asso-
ciated with the imposed discontinuity in sign. We know from
experience that methods based on Tikhonov regularization are
robust in application to noisy experimental measurements.

V. EXPERIMENTAL DEMONSTRATION

So far we have tested the half-bound Tikhonov regular-
ization and primal-dual algorithms against simulated signals
known to contain relaxation-time components of positive and
negative amplitude. Here, we present a single application of
these methods to experimental measurements.

A microporous silica powder of particle size between 200
and 500 μm and nominal pore size 4 nm was saturated with
deionized water. The wet slurry was centrifuged to sediment
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FIG. 9. T1-T2 correlation plots for water saturated microporous
silica. The time-domain data were inverted using (a) non-negative
Tikhonov regularization, (b) half-bound Tikhonov regularization,
and (c) the primal-dual method. The contour intervals vary between
plots, but each 2D plot has been normalized to unit volume (total
peak integral). Marginal projections are included for clarity. In each
plot, the dashed diagonal line indicates T1 = T2. Peaks located at
T2 > T1 (i.e., below the dashed diagonal) have negative amplitude.
The gray diagonal line at T2/T1 = 0.6 in (b) indicates the change in
sign imposed on the kernel.

043308-17



THUSARA C. CHANDRASEKERA AND JONATHAN MITCHELL PHYSICAL REVIEW E 98, 043308 (2018)

the particles and the excess liquid aspirated from the sam-
ple. Diffusive exchange of water was expected between the
interparticle and intraparticle porosity. A 2D data set was
acquired on an Oxford Instruments bench top magnet (B0 =
0.3 T corresponding to f0 = 12.9 MHz for 1H). Inversion
recovery delays were incremented logarithmically from τ1 =
1 ms to 10 s in 32 steps. CPMG echo trains were acquired
with an echo time te = 400 μs and 6250 echoes. Scans for
8 repetitions were co-added to accommodate the phase cycle
for the radio frequency (rf) pulses. The measured data had
SNR ≈ 1000.

The T1-T2 correlations obtained from the experimental data
are shown in Fig. 9. We do not offer any interpretation of the
plots here; these results are presented only to demonstrate the
applicability of the inversion methods to actual NMR mea-
surements. The non-negative Tikhonov regularization gener-
ated a single elongated feature in the T1-T2 correlation plot,
Fig. 9(a). No distinct off-diagonal peaks are resolvable and the
marginal projections are bimodal in both dimensions. A very
different plot was obtained using the half-bound Tikhonov
regularization, Fig. 9(b). At least two relaxation-time com-
ponents are distinguishable parallel to the T1 = T2 diagonal
and a pair of asymmetric off-diagonal peaks are present and
distinct; the peak below the T2/T1 = 0.6 diagonal (gray line)
has negative amplitude. The T1 marginal projection appears
bi-modal whereas three peaks are visible in the T2 marginal
projection. A consistent result was obtained using the primal-
dual method, Fig. 9(c). Low-amplitude features were sup-
pressed by the algorithm, as expected, so that three peaks are
visible parallel to the T1 = T2 diagonal and in both marginal
projections. Again, a pair of asymmetric off-diagonal peaks
are present and distinct with the peak below the T1 = T2

diagonal having negative amplitude. It is clear from these
plots that both the half-bound Tikhonov regularization and
primal-dual method are suitable for use on experimental data
containing noise and systematic errors (in this case, imperfect
inversion of the magnetization). Both methods reveal the
detailed structure of the T1-T2 distribution that is lost when
using non-negative Tikhonov regularization.

VI. CONCLUSIONS

NMR relaxation-time correlations are powerful tools for
studying porous media, with the T1-T2 correlation being
popular. A non-negative Tikhonov regularization algorithm
is often used to invert the first-kind Fredholm integral

equation describing the time-domain data, and in most cases
this approach is satisfactory. However, diffusive transport in
conjunction with differences in longitudinal and transverse
surface relaxation can result in the occurrence of peaks with
positive and negative amplitude in the 2D distribution. Math-
ematical models of such situations yield eigenvalues that
determine the apparent relaxation times and eigenfunctions
(or eigenvectors) that determine the amplitudes of the peaks.
In pore systems governed by the Brownstein-Tarr “fast” dif-
fusion regime, peaks associated with high eigenvalues (low
apparent relaxation times) have negligible amplitude and can
be safely ignored. In other cases, such as pores governed
by the “intermediate” or “slow” diffusion regimes, or for
diffusive coupling between a hierarchy of pore sizes (or spa-
tially localized surface relaxivities), the peaks with negative
amplitude are significant. We have demonstrated that, under
such conditions, the usual non-negative Tikhonov regular-
ization approach to inverting the time-domain data produces
a distorted solution, and robust interpretation (i.e., quantita-
tive estimation of apparent relaxation times and signal am-
plitudes) is not feasible. Two numerical inversion methods
capable of recovering all the expected observable peaks in a
T1-T2 correlation experiment were evaluated: (1) half-bound
Tikhonov regularization with nonpositivity enforced over a
limited range of T1 and T2 with non-negativity elsewhere, and
(2) a primal-dual method for a generalized LASSO that con-
tains no assumptions regarding the sign of the solution. The
half-bound Tikhonov regularization provided qualitatively su-
perior distributions (narrow peaks and accurate apparent re-
laxation times) for the simulated situations at the expense of
artifacts in the solution that required manual elimination. This
inversion method is robust in application to noisy experimen-
tal data, so long as the region of the T1-T2 correlation space
corresponding to peaks of negative amplitude is known, and
can be recommended for T1-T2 correlation experiments. For
general inversions, the primal-dual algorithm is recommended
and may be used to define the apparent relaxation time ranges
for enforcing nonpositivity in the half-bound Tikhonov regu-
larization. The primal-dual method yielded the clearest result
for the experimental case considered.
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