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We explore a new simulation scheme for partial differential equations (PDE’s) called information field
dynamics (IFD). Information field dynamics is a probabilistic numerics method that seeks to preserve the
maximum amount of information about the field being simulated. It rests on Bayesian field inference and
therefore allows the incorporation of prior knowledge on the field. This makes IFD attractive to address the
closure problem of simulations—how to incorporate knowledge about subgrid dynamics into a scheme on a grid
with limited resolution. Here we analytically prove that a restricted subset of simulation schemes in IFD are
consistent and thus deliver valid predictions in the limit of high resolutions. This has not previously been done
for any IFD schemes. This restricted subset is roughly analogous to traditional fixed-grid numerical PDE solvers,
given the additional restriction of translational symmetry. Furthermore, given an arbitrary IFD scheme modeling
a PDE, it is a priori not obvious to what order the scheme is accurate in space and time. For this subset of models,
we also derive an easy rule of thumb for determining the order of accuracy of the simulation. As with all analytic
consistency analysis, an analysis for nontrivial systems is intractable; thus these results are intended as a general

indicator of the validity of the approach, and it is hoped that the results will generalize.
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I. INTRODUCTION
A. Probabilistic numerics

Information field dynamics (IFD) is an alternative frame-
work for constructing numerical simulation schemes for par-
tial differential equations (PDE’s) that can be cast into the
form

0 ¢ = Flo] (D

with ¢ being some field and F some linear or nonlinear endo-
morphic operator in the Hilbert space of field configurations.
IFD was first proposed in Ref. [1] and further developed in
Refs. [2] and [3]. IFD addresses the problem of constructing
numerical simulation schemes probabilistically. It therefore
belongs to the emerging field of probabilistic numerics [4].!

In classical numerics, a point estimate of the quantity
of interest is provided. In contrast to this, in probabilistic
numerics, a probability distribution over possible values of
the quantity of interest is constructed and investigated. This
permits the quantification of uncertainties on the results as
well as the incorporation of domain knowledge into their
estimation.

Classical numerical simulation schemes therefore follow a
representation of the evolving field in time. This is done by
updating some data in computer memory, which, for example,
specifies the field values within the voxels of a discretized
field domain. The field configuration and its discretized rep-
resentation are the central elements of classical simulation
schemes. In probabilistic numerics, the central object is not
the field itself but the probability of the field having a specific
configuration. The basic idea of IFD is therefore to follow

!'See also http://probabilistic-numerics.org.
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the evolution of the probability distribution of possible field
states. The data in computer memory of a probabilistic sim-
ulation scheme therefore parametrize this probability distri-
bution. This distribution can be used to ask questions, such
as What is the most probable field configuration, What is the
mean field, or What is its uncertainty covariance?

Some of the earliest works in the field of probabilistic
numerics are by the authors of Refs. [5-7], who treated the
problem of function interpolation as a statistical inference
problem. For the study of differential equations, Ref. [8]
was the first to propose treating ordinary differential equa-
tions (ODE’s) as a Bayesian inference problem. Referencess
[9,10] were early examples of using randomized Monte Carlo
methods for the solution of ODE’s. More recently, Ref. [11]
used Bayesian uncertainty to quantify and reduce errors in
numerical integration, and Ref. [12] develops a Gaussian
process solver which generates a probability distribution over
a set of solutions to an ODE, which are centered around a
Runge-Kutta solution. Reference [13] is particularly relevant
for our work, as it analyzes the convergence properties and
errors of probabalistic solvers for PDE’s.

Our proposed scheme is somewhat different to previous
works, as our algorithms are deterministic, although they
nonetheless incorporate a notion of prior belief, measurement,
and uncertainty. One paper which proposes a scheme similar
to IFD is Ref. [14], which solves stochastic differential equa-
tions by incorporating prior beliefs, and a notion of observa-
tions, and, like our work, derives its equations of motion using
the criteria of minimal Kullbach-Leibler divergence.

B. Minimal information loss

The dynamical equation that governs the evolution of the
field ¢ determines how the probability distribution of field
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http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.043307&domain=pdf&date_stamp=2018-10-22
https://doi.org/10.1103/PhysRevE.98.043307
http://probabilistic-numerics.org

MARTIN DUPONT AND TORSTEN ENBLIN

PHYSICAL REVIEW E 98, 043307 (2018)

configurations should evolve. IFD attempts to follow the
evolution of this probability distribution as a whole. Since
the representation of this distribution is parametrized and
therefore cannot perfectly represent any resulting distribution,
an approximation scheme is required to map the evolved
distribution back into the space of distributions that can be
represented by the computer data. We take it as a principle
that this approximation should conserve as much of the infor-
mation of the full distribution as possible.

An appropriate measure of the amount of information lost
in this approximation is the Kullbach-Leibler (KL) divergence
of the approximated distribution Q(¢) with respect to the
more accurate distribution (or measure) P(¢) [15],

P@)

D = [ D In| —|. 2
kL(PI1Q) / ¢ P(9) [Q(dﬂ] 2)
Here P(¢) stands for the time-evolved probability of field
configurations, and Q(¢) for the parametrization chosen to
represent this approximatively. The more mathematically in-
clined reader should read the path integral [ D¢ P(¢) as

f dP(¢), an average over ¢ with the measure P(¢).

The KL is now minimized with respect to the parameters
of P. This then provides an update rule for these parameters
in computer memory, which then represents the desired simu-
lation scheme.

This scheme evolves a probability distribution via its cho-
sen representation in computer memory. The action principle
for this is given by the requirement of minimal information
loss, ensuring that the simulation is as accurate as possible.
The precise details of the derivation will be spelled out in the
following sections.

C. Information field theory

In principle, any suitable parametrization of the field prob-
ability distribution could be chosen and the field dynamic
mapped to it via the principle of minimal information loss. In
IFT [16-18], a canonical representation of field probabilities
as a function of some data already exists.

IFT was designed to address the problem of field inference
from measurement data. It turns the data d into a posterior
probability P(¢|d) on the field ¢, which was measured. Thus,
IFT provides us with a convenient parametrization of field
probabilities, which depend on data. Now, IFD uses this
parametrization and therefore just regards the data in com-
puter memory as the result of a virtual measurement process
(more on this later). The process can be chosen arbitrarily;
however, it should ideally provide an analytically tractable
posterior distribution P(¢|d).

For this reason, a simple linear measurement equation of
the form

d=R¢+n 3)

will be chosen for this paper. Here R represents the mea-
surement response, an operator that maps the continuous
field into a finite-dimensional data vector, and »n is some
field-independent Gaussian random noise vector with known
covariance N = (nn'),).

As the data are finite, but the field has infinitely many
degrees of freedom, field inference is usually an ill-posed

problem that requires regularization, i.e., the removal or sup-
pression of implausible solutions that are otherwise allowed
by the data. This is provided by the field prior, which for con-
venience assumes the field to be drawn from a zero-centered
Gaussian process with covariance ® = (¢ ¢')4),

1 1 _
P(¢) =G($, D) = T exp (——as*cb ‘¢), )
|27 ®|2 2
where ¢fy = f dx ¢(x) ¥ (x) denotes the canonical scalar
product of the Hilbert space.” Bayes’s theorem then provides
the field posterior,
Pd|p)P(¢)
Ppld) = —————, 5

(¢ld) P) 5
where P(d|¢) = G(d — R, N) is the likelihood; the proba-
bility of the obtained data d given a field configuration ¢. This
field posterior turns out to be a Gaussian

P¢ld) = G(¢ —m, D) (6)

under the simplifying assumptions made here [17]. The pos-
terior mean

m=Wd=DRN'd (7

is a linear function of the data, as m = m(d). In contrast to
this, the posterior uncertainty dispersion

D=(@® '+ RN'R)! 8)

is independent of the data for this linear and Gaussian field
estimation problem. The operator W turning the data into the
posterior mean field is called Wiener filter in signal processing
and D is also called the Wiener covariance. In this paper,
we will often express this operator in its so-called data space
version,’

W=a®RI(R®RT +N)!, 9)

as this form allows us to take the no-noise limit N — 0, in
which W — ® RT(R® RT)il. IFT also extends this linear
signal inference to nonlinear and non-Gaussian problems.
However, for IFD as developed so far, this is not needed and
the Wiener filter theory presented here is sufficient.

D. Information field dynamics

IFD regards the data as being in some sense a measurement
of the field being simulated. This idea can be taken literally
or not. For example, using the formalism one could take
the initial data to be the result of a literal measurement,
and IFD would prescribe a way of simulating how future
measurements of the time-evolved field would appear.

However, one can also regard the response R as simply be-
ing a mathematical object which creates a finite-dimensional
representation of the continuous field being simulated, and
the noise just represents some degree of uncertainty in this

2In this paper we will refer to this Hilbert space as field space and
the vector space in which the data resides will be called data space.

3This is so named, since here the operator inversion happens in data
space.
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FIG. 1. Schematic representation of the IFD concept. Data in
computer memory (gray bars) imply via Bayesian signal inference
a posterior probability distribution in field space (orange density
contours on the left). For each field configuration (each point of this
space) the time evolution assigns it a new location. The time-evolved
probability distribution (orange contours on the right) needs to be
reexpressed in terms of new data. This is done via entropically
matching this (or minimizing the KL) to a new posterior distribution
(blue contours) expressed by new, time-evolved data (blue bars). The
set of implied operations on the data represents the IFD simulation
scheme. It incorporates the field dynamics, prior knowledge on
the field (e.g., on subgrid scales), and tries to conserve as much
information on the field as possible.

description. If, for example, one defines a response that takes
samples of the field at particular points and sets the noise to
zero, then the data become identical to the gridpoints of a
typical finite-difference scheme. Thus, the idea of represent-
ing data as a virtual measurement of a field being simulated
should not be too unusual. The point is that in order to run a
simulation, one needs to express a field using a finite amount
of information, and the formalism of IFT provides us with a
convenient way of doing so.

In an IFD simulation, there are many parameters that may
be updated in time to best capture the time evolution of the
posterior distribution. These include the data d but potentially
also the properties of the measurement equations, the response
R, and the noise covariance N, as well as the field prior
covariance .

Changing the data d while keeping all other parame-
ters constant corresponds most closely to a typical finite-
difference simulation scheme; the data points represent sam-
ples of a field, and these change in time as the simulation
progresses. A response R which changes in time would be
analogous to changing the coordinate system during a simu-
lation in order to best capture the behavior of the field under
consideration. In this paper, we will only consider schemes
where only the data are updated.

We now present an abridged derivation of the IFD sim-
ulation scheme, which is shown diagramatically in Fig. 1.

We restrict ourselves to linear dynamics:

¢ =1L¢, (10)

with L some linear, time-independent, endomorphic operator.
This equation has a formal solution given by ¢(t) = U (¢ )(¢)
for U(t) = exp(tL).

The scheme is then as follows: It is assumed that there
are some data d; taken at some point in time, t;, which
is interpreted as being some coarse-grained representation
of the true field ¢(#;, x), which is obtained by some linear
measurement as in Eq. (3). To run the simulation, i.e., obtain
the data at ;| from that at #;, IFT is used to reconstruct the
posterior probability distribution of the field, P(¢(t;, x)|d;),
given the initial data, d;.

This posterior distribution is then evolved from ¢; to ;4
using the equations of motion for the field. This would for-
mally be done using U (At). However, to achieve a practical
simulation scheme, the time evolution U must be truncated to
some finite order,* which we denote by U = Y ¢_ (ArL)*/k!
for some order o, which corresponds to a choice of the desired
time-order accuracy of the simulation.

To obtain the data at the next timestep, a second mea-
surement, R;,i, is postulated, which is used to construct a
second posterior distribution. The new data are then chosen
as to minimize the information loss between the evolved and
unevolved posterior distributions, using the Kullback-Leibler
divergence (KL divergence). With linear dynamics, measure-
ments and a Gaussian prior,” the resulting finite-difference
equation becomes particularly transparent [3]:

dit1 = (Riz1Wis)) ' R UWid; | (11)

The subscripts denote time indices, as the response and prior
covariance are allowed to vary between timesteps. The above
equation is in the form of a matrix equation, and the matrix
will be referred to as the difference operator and will be
denoted by T; = (Ri41Wiy1) ' Ri 1 UW,.

A new development, which we present in this paper, is
that this difference equation may be simplified further in the
linear case, because repeated applications of the difference
operator during the simulation will result in certain useful
cancellations, the result of which is that we may always
assume that we are operating in the no-noise limit.

Lemma 1. The finite-difference equations for linear IFD
are independent of the noise up to a simple equivalence.

Proof. For a simulation scheme with timesteps ¢ for i €
{1, ..., n}, responses {R;}, priors {®;}, noises {N;}, Wiener
filters {W; = CI>,-R,<T(R,-<I>,-RZ.T + N;)™!}, and linear time evo-
lution operators U; =1+ AtL; + ..., the finite-difference
equation is given by

diz1 = (Ris1Wip1) 'Ry U; Wid
= [Ris1®it1 R}, (Ris @iy R, + Niw) ™!
XR,‘_;,.]Uiq)iR;r(Riq)iR[T+Ni)71d,'. (12)

*If we could write down a closed-form expression for U, then we
would not need to run the simulation.
SWe refer to this as the linear case of IFD.
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The second line is obtained by inserting the data-space def-
inition of the Wiener filter. We rename the terms: (R; ®; RiT +
N,') = C,’, (qu),RlT) = B,‘, and R[+1U,’Cb,‘R;[ = A,’, yleldmg

dis1 = (BinC ) AICT d = Ci BLLACT dy. (13)
The difference equations are then iterated n times. With every
matrix multiplication, there is a C; which cancels with a Ci_l,
yielding

n
d, = C, (]‘[ B Ai> Cyld. (14)
i=0

The only noise-dependent terms were the C terms and
therefore, up to a change of basis at the beginning and end
of the simulation, the difference equations are independent of
the noise. In the infinite-noise limit, C — N, and in the zero
noise limit C — B. ]

Given the equivalence, from here onward we will always
work in the no-noise limit, and the symbol N will be used to
denote number quantities. In this limit, the difference operator
becomes

T; = Rip1U; ®; Ri(R;®;R))™". (15)

Although these incarnations of IFD schemes, Eqgs. (11)
and (15), might intuitively make sense, it still is not guar-
anteed that they lead to consistent and convergent numerical
simulations.

E. Numerical consistency and error

The major goal of this paper is to show that in a restricted
setting, the IFD equations are consistent. This is a valuable
goal, for the Lax equivalence theorem [19] states that if a
scheme is consistent, then it converges to the true solution if
and only if it is stable. We state the (paraphrased) definition
of consistency:

Definition 2 (Consistency). For an operator T (At, Ax)
which approximates U (¢), with U (¢) being the analytic time
evolution operator corresponding to L(#), the approximation
is said to be consistent if for some set of genuine® solutions £
to the differential equation, then for any ¢ € €,

lim |(T(At, Ax) — U(A))p(t, x)|| =0 (16)
At,Ax—0

uniformly in 7.

Note that the above definition involves comparing opera-
tors which are defined on different spaces: T (At, Ax) acts
on a discrete space, yet U(At) acts on a continuous space.
Reference [19] assumes that there is some sufficient level
of smoothness such that Taylor series expansions or smooth
interpolation, etc., may be used to approximate the norm. We
discuss a way of comparing these two operators in IFD later,
once a more concrete expression for 7 has been found.

The other goal of this paper is to analyze the numerical
error of IFD schemes and how such error scales as the spatial
and temporal resolutions Ax and At become arbitrarily fine.
IFD is a nominally information-theoretic framework, so it

%See the original publication for a definition of a genuine solution.

is conceivable that one could try and use some information-
theoretic notion of error. However, this would limit our ability
to compare the performance of IFD schemes to standard
finite-difference schemes. Thus, in this paper, we follow a
standard approach and analyze the local truncation error or
the one-step error [20, p. 593]. We do this by analyzing
the distance in the operator norm of the difference operator
and the true analytic time evolution operator. This distance
provides a bound on the error which can accumulate during a
single timestep of the simulation.

II. ARGUMENTATION
A. Groundwork

We now begin the work of proving consistency by defining
the type of models we will be working on. We restrict our fo-
cus to PDE’s for which L is translation invariant. This case can
already be solved analytically by Fourier analysis. However,
this practice is entirely normal in numerical methods, as many
advanced simulation schemes are too complicated to permit
an analytic analysis [21, ch. 7]. Such is the case in IFD, as the
codes are typically nonlocal, meaning the algebraic equations
tend to be dependent on the global geometry of the simulation
domain. Thus, the best that one can do is prove convergence
for the analytically solvable case and then hope that these
conclusions hold in the nonanalytically solvable case. For
pedagogical clarity, the results presented in this section are for
one spatial dimension only, although it is argued later that they
generalize trivially. Furthermore, as the equations we present
are somewhat opaque, we provide an Appendix which shows a
worked example of a simple real system for interested readers.

We first restrict ourselves to the case where the response R
and prior @ do not change in time, i.e., the coordinate system
is static and our prior belief about the system will not change
during the simulation. Because these quantities are now static,
there is no need to subscript them to denote the timestep in
question. This allows us to free up the subscripts for other
purposes.

We now select the field and data spaces. The simulated
space inside the computer must always be of finite extent.
For this reason, we choose the field space to be L£2([0, 1]).
We apply periodic boundary conditions to render the analytic
equations tractable.

Now the prior must be selected. If the PDE under consid-
eration is translation invariant, then one should choose a prior
belief which is also translation invariant. Thus the prior co-
variance will have a diagonal representation in Fourier space.
The positivity and self-adjointness conditions on the prior co-
variance ensure that the eigenvalues in momentum space will
be everywhere positive and greater than zero and symmetric
about the origin. Priors of this form are generally referred to
as smoothness priors. Using k to denote momentum, a prior
@ whose values fall to zero as k — oo essentially states that
rapid oscillations in the signal are deemed unlikely; the field
is smooth. For notational convenience, we will often denote
the diagonal entries of the prior, @ as P (k).

Simple examples of a prior include power laws in momen-
tum, i.e., |k|~# for some integer B, often supplemented by a
regularizing mass term: ®(k) = 1/(|k|? + m?).
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We pick the responses by assuming that we have N spatial
points which will be labeled with the index j. The responses
are chosen to be constant in time, and the subscripts R; now
denote spatial indices. The most natural and naive response is
to choose the index j to label a regular grid of positions. We
define Ax = [/N. We let the response be any response which
measures the field by integrating over some function B(x) on
L2([0, 1]) localized at the point Xj:

l
(R$); = /0 dxB(x — x)$(x), (17)

where x; is the x position of the jth gridpoint, i.e., x; =
Ax - j. A simple example of such a function could be the box
function:

_J1I/Ax 0<x < Ax
B(x) = {0 otherwise

The response is then an average of the field around that point.
If the x;’s are evenly spaced, then we refer to any response
of this form as a translation-invariant response. The B(x)
functions will be referred to as the response bins or just bins.

We now begin to calculate the difference operator, starting
with the computation of (R®RM~!. Since both the responses
and prior covariance are invariant under translations of multi-
ples of Ax, we can make a very general statement:

Lemma 3. Given a field space of the form £2([0, 1]) with
periodic boundary conditions, a translation invariant response
R; whose bin function B(x) has a Fourier series represen-
tation, as well as a prior covariance ® which is diagonal in
momentum space, (R®RT) j1 will be of the form:

(18)

Z (k)| B(k)|2eFi—0), (19)
k

where B (k) is the Fourier coefficient of B(x).
__ Proof. By the shift property of the Fourier transform,
Rjx = e ™Ry = e~ '*i B(k). Therefore (RPR'), is

(RCDRT)jl — Zzeikxj E(k)quE*(q)e—iqxz
k q

=Y (k)| B (k)2 *i—0) (20)
k

as desired. ]

It must be stressed that we are not demanding that the simu-
lation is carried out in Fourier space, we are rather stating that
the operator will always have such a representation. From now
onward, any simulation scheme which satisfies the criteria of
the previous lemma, and in addition has a translation-invariant
time evolution operator U, will be referred to as a translation-
invariant scheme.

The R®R' matrix must now be inverted; however, the
inverse is not equal to the inverse of the Fourier coefficients.
Observe that the spatial gridpoints are both finite and discrete,
which means that terms such as )~ ; ¢"/*~9 do not form
Kroenecker deltas 8;,. The sum equals N, not only when
k = g but also when ﬁ(p — g) is an integer.

The reason for this is that data space is a discrete periodic
interval which has a discrete Fourier transform (DFT). For a
DFT, the momentum values k are the same as those for the

continuous interval, albeit with a highest uniquely resolvable
frequency known as the Nyquist frequency, which is equal
to half of the sampling frequency. In this case, the Nyquist
frequency is - and is denoted by fy. Given that the matrix
is indeed translation invariant in data space, it must have some
diagonal representation in the discrete Fourier transform, i.e.,
some scalar function of k, for k now less than fy. This
representation can be found by resumming over multiples of
the Nyquist frequency:

Lemma 4. Given a regular, discrete grid of points {x;} for

je{l,..., N} on a periodic interval, and a matrix of the
form:
o0
Ay =Y flye*tD @n
k=—00

for f(k) some function of k, it has a diagonal representation
in the DFT Fourier space, given by

v v
Alj — Z Z f(k +b) ekCa=xj) _ Zg(k)etk(xhxj).
Ik \be2fyz Ik
=g(k)
(22)

Proof. We partition the infinite sum over k£ in Eq. (21)
into smaller sums shifted by multiples of the Nyquist fre-
quency.” For any x; and x ; separated by a multiple of Ax
and b = 2mwn/Ax, we have (k + b)(x; — x;) = k(x; — x;) +
2mn. This factor of 27 then disappears in the complex expo-
nential, yielding the desired result:

<Jn
Ay = Y0 D flkb)®Im 23

‘k‘ bEZfNZ

L
Nygllst Z Z f(k —I—b) eik(x,—x/-). (24)

k| \be2fyZ

This resummed function is a diagonal function of the DFT
frequencies k < fy and so must be the desired operator. W

Due to the physical analogy with Brillouin zones, we refer
to the procedure of summing over multiples of the Nyquist
frequency as the sum over Brillouin zones.

Now that we have obtained a representation of the operator
which is diagonal in the DFT space, inverting follows easily
by taking the inverse of the DFT Fourier coefficients:

In eiki—x;)

(RORI) =+ _ |
LN Ik > peasyz P+ D)B(k +b)?

(25)

"Note that depending on whether the number of data points is even
or odd, the domain of |k| < fy changes. For odd N we use the
convention that k € [-(N — 1)/2, (N — 1)/2] and if it is even we
usek € [-N/2,N/2 —1].
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The factor of N comes from the different normalizations of
the DFT and the regular Fourier transform. Fourier modes in
the DFT are normalized as \LFNe‘”"‘/, as opposed to %e‘”‘x
for the continuous Fourier series.

It is now time to compute the second part of the dif-
ference operator, RU®R'. Given that L is assumed to be
translationally invariant, U will have a diagonal representa-
tion in Fourier space. Thus, the previous lemma (3) applies,
and the operator will also be diagonal in the DFT space,
with a sum over Brillouin zones. With this information, we
may now write down the general form of the difference
operator T = RUPRI(R®R')~! for translation-invariant
systems:

NS persz Uk + DY+ bY Bk + b)[?

T = k+ BB
: %: Yieas,z Pk + D) Bk + b)|?

el’k(){[*){j).

(26)

The factor of 1/N is canceled by a factor of N coming
from the sum over spatial indices.

B. Consistency

The main objectives of this paper are concerned with
the behavior of the difference operator in the limit of high
spatial and temporal resolutions. We wish to show that in
this limit, the finite-difference operator approaches the ana-
lytic time-evolution operator. As the proof is lengthy, a brief
outline is in order. First, because IFD does not necessarily
rely on a notion of gridpoints, we define how to take a
limit of high spatial resolutions in a sensible way. Once
this is achieved, we place some necessary restrictions on the
responses, priors, and equations of motion, which are required
to guarantee convergence. Finally, we take the Fourier-space
representation of the finite-difference operator and take the
limit of high resolution, which requires some straightforward
yet tedious mathematics. The crux of the proof lies in that
in the limit, the higher terms in the sum over Brillouin
zones can be ignored, which we will prove using uniform
convergence.

In the translation-invariant schemes we have defined, the
spatial points are not just localized samples of the field,
but rather the outputs of a response operator R, so it is not
immediately clear how to take a limit of spatial resolution.
The number of points x; could be increased, although as
the number of points approaches infinity, the data would
not begin to look like the true field, as the shape of the bin
functions has not changed. Thus, we propose that the correct
way to increase the spatial resolution is to increase the number
of bins and decreasing the width of the bin functions such
that they approach something resembling § functions in the
limit. Rigorously formulated, the process is as follows: Given
some initial resolution Ax, for which the points x; are evenly
spaced in [0, ], pick an integer A ranging from 1 to infinity
and then set Ax = Axp/A. Then, given the initial bin function
B(x), replace it with a function B, (x) = AB(Ax). The limit
of Ax — 0 is then taken by letting A — oco. This process
guarantees that the data remain finite and well behaved in the
limit.

To prove consistency, we ask if 7 — U in the limit of
high resolution. However, as stated earlier, the two operators
act on different spaces. Fortunately, in the Fourier representa-
tion, comparing the action of 7 and U is simple. Observing
Eq. (26), one sees that the Fourier space representation of the
difference operator, T (k), is defined for all k < fy, whereas
U (k) is defined for all k. As the spatial resolution increases,
eventually the Nyquist frequency ( fy = 7/Ax) will become
greater than any fixed k. Thus in the limit, the domain of
definition of T (k) approaches that of U(k), and the two
operators may be compared. We will show that T'(k) — U (k)
as Ax — 0, and since U(k) — U(k) as At — 0, this will
prove that 7'(k) — U (k) in the joint limit.

We can prove consistency in the translation-invariant case
by adding some light restrictions: the response bins B(x) are
compactly supported on some strict subset S of [0, /], with
bounded Fourier transform, and B(O) # 0. We also require
that U (k)®(k) — 0 as k — =oo0.

The restrictions placed on the response bins are not too se-
vere. The bounded Fourier transform requirement will almost
always be true for any reasonable response bins. In particular,
the Paley-Wiener theorem [22] states that this requirement
will hold for all smooth, compactly supported functions. The
example box-response introduced in Eq. (18) satisfies the
restrictions, as will any smooth bump function.

We now seek a formula for 7(k) as a function of A,
which we call T, (k). The compact support property of the
bins allows us to exploit the fact that up to a normalization
constant, the coefficients B(k) of the discrete values of k in
the Fourier series of the bins are the same as the values at k in
the continuous Fourier transform of B(x):

!
/ dxB(x)e " Z/dXB(X)Efikx =/ dxB(x)e ',
0 K R

(27)

This in turn allows us to exploit the scaling property of the
Fourier transform to obtain a convenient form for B, (k):

Bk = 1B0X) =2 Bk/ = B/, 09)

Now observe the sum over the Brillouin zones in Eq. (26).
The formula contains a sum over b € 2 fyZ where fy =
7/Ax and thus f} = wA/Axo and b* = 2nA/Axo for n €
7Z.. We now insert the definitions of /B\,\(k) and b* into Eq. (26)
to yield a formula for 7 (k):

S Olk+ )0+ Z2BCL+ 22
JTm Jm 2
Sz @k + 254) [B(1[k + 52 ])|
The A term inside B can be absorbed to give:
~(1 2emAN\|* |k 27n\|
G Re ) -pGT) - o

We expect that in the limit of A — oo, the higher terms in
the sums vanish, leaving only terms in the first Brillouin zone.
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That is, we can express the numerator of Eq. (29) as:

U(k)cb(knB( >| +Z (

2w ni

® k+27rnk |§ k+2rm |2 31)
AX() A AX() ’

=5(k,\)—0

where we rename the sum 8(k, 1) to denote that the term (hopefully) vanishes as A — oo. The denominator is expanded similarly
and its vanishing term is denoted by 8’(k, A). We wish to prove that the §(k, A) and &' (k, 1) terms actually do vanish, as this would

give us the desired result:

limy oo Yyez U (k + Z22) @ (k + Z2) | B(% + 222))?

lim T (k) =
r—o00

lim)\_ﬂx) ZWIEZ (k +

lim o T()D(K)|B(£ )|? + 86k, 1)

2o | (& 4 2 |?

_U0e®IBOIP _ -

lim;, 00 (k)| B(% )} +8'(k, )

This works provided B (0) # 0, so that the above denomi-
nator remains nonzero, and the equation remains well defined.
For 8§ and §’, each individual term in the sum [which we denote
by 8, (k, )] approaches zero in the limit of A — oo, because
U(k)®(k) and ®(k) go to zero at large |k| by assumption.
Therefore we want to swap the limit and the infinite sum.

Elementary functional analysis states that this is possible if
and only if the sequence of §, terms converges uniformly to
zero in n. We remind the reader that a sequence of functions
8, converges uniformly to zero if, for any positive €, there is
an N such that Vn > N, |8,(A)| < € for all values of A.

We prove uniform convergence for 8, and §" follows triv-
ially. We consider the positive-n half of the sum first, and the
negative-n half will also follow trivially. In this case,

2w ni 2nnA\|~(k 2mn
Ok + B| -+ —
AXO AX() A AXO

_ 2wnk 2mnk
< ‘U(k—i— o )®<k+ ™ )‘C (33)
AX() AXO

Znn)|2

2

da(X) = <k +

where we bounded the function |§ (f < C for some
constant C, which we may do by assumpt10n

We now use the condition ®(k)U (k) — 0 as k — oo to
show convergence. This condition means that for |k| large
enough U(k)®(k) can be bounded by some monotonically
decreasing function of |k|, call it g(|k|). We start by finding
a bound for A = 1 and then show that this bound holds for
all A. For A = 1, and the desired € bound, we can pick some n
large enough such that we are in this decreasing regime, hence

_ 2mni 2mrnk
8, < |U(k+ ok + C
AX() AXO

2ni
<g<k+ Z” ><e. (34)

X0

8To understand why this bound is necessary, notice that the bin
terms do not vanish in the limit of large A. Intuitively, this is because
as the bins become narrower, their Fourier transforms widen out, at
the exact same rate as the Nyquist frequency is increasing.

sBor LW 2

(

For higher A and large n, [k + 3% 2zn | < |k + 2””'\ | and since we
have taken n to be large enough ‘that we are in the decreasing
regime, the g(k) bound also holds. Thus the bound holds
for all A. The sequence of functions is therefore uniformly
convergent, and Eq. (32) holds. We can now state:

Theorem 5. For a one-dimensional translationally invari-
ant IFD scheme, whose response bins B(x) are compactly
supported on a strict subset S C [0, /] with bounded Fourier
transform and B(O) # 0, and some time-order approxima-
tion U(k) to U(k), then the scheme is consistent provided
limy_, oo U (k)®(k) =0

Important to note is that we only require Uk)® (k) —
0, not U(k)®(k) — 0. For derivative operators s.t. U =
exp(Atd,) = exp(i Atk) or similar, this would require that the
prior covariance, ®(x), is infinitely differentiable (smooth).
Using the approximated time expansion, the prior covariance
only needs to be as many times differentiable as the order of
the expansion dictates.

C. Error scaling

We seek an estimate of the one-step error E by calculating
the difference in the operator norm:

E x ||T(At, Ax) = U(A1)| (35)

and analyzing the rate of convergence in terms of O(Ax) and
O(At). We calculate the error for a fixed value of k, thus
E = E(k), although it will be seen shortly that the scaling
of the error (which is the quantity of interest) is independent
of k.

Our approach is as follows: We must consider how the error
scales in the limit of high resolutions, and we accomplish this
by repeating the construction with A from the previous proof.
Then, to be able to put any fixed bound on the error, we need to
know some properties of the prior and the L operator, namely
how they scale in proportion to k. These properties are then
used to put a bound on the error in the limit A — oo.
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To begin, we insert the difference operator in Eq. (29) into the definition of the error, yielding:

Ek) =

Axn Axo

We use the expansion U =

B <Y AT

‘znezuwﬁ:) (k + Zm) B + )P
mEZ (k+ 22:?)|B(X 2A”_)c’:)|2
‘;zo(AtL)" /p! to find the error in terms of powers of L,

P| Sz Lk + By (k + 20 |B(E + 5[

_ U(k)‘. (36)

p=0 p!

For each of the At? terms, we will analyze the scaling of
the fraction inside the absolute value and then later find an
estimate of the total error scaling.

In the limit of high resolutions, we can expand the nu-
merator of said fract10n in the same way that we did in
Eq. (31): L"(k)CID(k)|B( EY2 4+ e(k, 1) for some function e,
which goes to zero as A — o0o. We expand the denominator
as <I>(k)|B( )2 + 8(k, 1), with § being some other small
vanishing functlon

The strategy is then to find an expression for the fraction
in terms of € and § and bound each term and analyze how fast
they approach zero. We use the Taylor expansion for 1/(1 —
X)~1l4+x+x24+---to expand the denominator in Eq. (37)
into

1
(k)| B(X)[* + 8k, 1)
. 1 3 8k, 1)
*wIBE)  @®|B()[)
We then multiply the numerator by the denominator, which
gives

(38)

~k_,
[Lp(k)d>(k)|B(X)| + €e(k, ?»)]

Sk, L) N }

(@W|B(4)[*)’

L)k, 1)
o(k)|[B(4)[’

« [ L
(k)| B(%)|
e(k, )

o(k)|B(4)[*

= L"(k) +

(39)

Calculating the power-law scaling of the above terms is
complicated by the fact that each has a |B( )12 in the denom-
inator, which has its own scaling with respect to L. Exploiting
the property B(0) # 0 allows us to write out each of these as
a Taylor series and then reuse the 1/(1 — x) expansion:

1 1
2 B(0)[2
@(k)‘ﬁ(ﬁ) D(k)BO)*+O01/1) +

1
- O/ . (40
@ (k)| B(0)? (/) 0

We then see that however fast e(k, L) goes to zero,
€(k,A)O(1/X) goes to zero faster. Since only the slowest-

27rmk)|B(

AX(]

ZmEZ (k +

_ L”(k)‘ 37)
i

(

converging terms are of interest, we can replace m
A

with W)\iﬂo—)ﬁ without any adverse effects.

The scaling of the € and § terms can only be estimated if the
scaling behavior of the prior and L(k) are known. To this end,
suppose that as |k| becomes large, ®(k) can be bounded by
some decreasing power law in k, |k|=# for B positive. We also
assume that L (k) can be bounded by some |k|” for y positive,
as L will typically be a derivative operator, with 97 = (ik)".
Then L? (k) will be bounded by |k|?”. There will be constants
of proportionality, but they are irrelevant with respect to the
scaling.

Using the uniform bound C from before, we can bound the

€ term by
2 nA 2mni
ZLP<k+ i )d><k+ - )
n£0 Xo

A AXO
2w ni 2w ni
<C? L’k Ok
Z <+Axo><+Axo>'

n#0
ry—B

ek, 1)| =

2
X

2wni

(41)

The term inside the sum is independent of A. Therefore,
this bound scales as O(A’Y~#), which we identify with
O(AxP=P7), since Ax = Axp/A. We repeat the argument
with § and obtain a term of order O(Ax?). Thus Eq. (39)
scales as

LP() + O(Ax") + O(AX"77) = L7 (k) +| 0(AxP77) |

(42)

yielding a total time and space error scaling of
O(At?)O(AxP~P7). The other O term vanishes because only
the term with the worst scaling (lowest power) contributes.
The total error scaling in Eq. (43) is determined by the sum
of the individual p terms:

E x Z O(At? AxPPYy |, (43)
p=0
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although the error will be bounded by the worst scaling of any
of the individual terms. We see from this formula that taking
higher orders in At decreases the spatial order. This is fine
for L = 9,, because the total order remains the same, but for
higher derivatives, the spatial order decreases faster in p than
the time order increases. If Ax and At — 0 at a proportional
rate, then this will decrease the total order, making the overall
error scaling worse.

This can be thought of in the following way: If the prior
covariance only drops off as some power 8, then it is only
B times differentiable, so it is not smooth. Taking higher
orders in the expansion U = Z;=0(AIL)p /p! involves tak-
ing derivatives of ever-higher order, and thus at some point
the LP(x) term in the difference operator can no longer
be calculated. The bin functions do not appear in the above
expression, because in the limit of high resolutions, they tend
to approximate & functions, and their exact form becomes
irrelevant.

The consequences of this formula deserve some thought,
particularly the troubling implication that going to higher
orders in time can in fact decrease the quality of the simu-
lation. First, it should be noted that higher-order schemes are
not necessarily better, depending on the task. For example,
according to the Godunov theorem [21, p. 280], higher-order
schemes have a tendency to develop spurious oscillations
around shocks. It should also be noted that the above formula
applies in the high-resolution (and thus high-k) limit. One
could conceivably introduce a prior covariance which has a
cutoff at high k or perhaps one whose value drops of expo-
nentially with k. An exponentially falling prior covariance
would then raise the prospect of a finite-difference scheme
with intermediate error scaling; however, the implications of
such a scheme are not yet clear.

D. Generalization to higher dimensions

The previous derivation was only presented for the one-
dimensional case for the sake of pedagogical clarity. If we
extend to Ehe M -dimensional case, then x and k£ become
vectors X, k, and the simulation domain becomes ]_[lM[O, li].

Equation (26) becomes a sum over vectors k less than fy
where the Nyquist frequency is now a vector due to the
(possibly) differing resolutions along each grid direction, and
likewise the sum over Brillouin zones is also vector valued.

To prove consistency, the assumptions do not need to be
tightened, except that we must now specify U (k)CD(k) —0
as ||k|| — oo. We also need the resolution to be increased in
all spatial dimensions at the same rate, so Ax becomes AX =
Axo/X. The proof then proceeds as before.

In order to show that the error scaling formula (43) holds in
higher dimensions, one needs to put a new bound on L(k) such
that it is bounded by ||k||V This property is easily fulfilled
by many differential operators, such as L = 92 + 92 + 82 for
example. Likewise, we assume that ®(k) can now be bounded
by some ||k||f’ and the proof proceeds as before.

III. CONCLUSIONS

We have now proved consistency, and found an estimate
of the error scaling for IFD schemes, using a set of strong

simplifying assumptions, which we grouped together under
the name of a translation-invariant scheme. These assump-
tions were as follows:

(i) “Linear case” of IFD: linear differential equation, lin-
ear measurements with additive noise, and Gaussian prior
distribution of the fields.

(i1) Translation and time invariance of all the above quan-
tities.

(iii) Box-shaped simulation space with periodic boundary
conditions.

(iv) A response R which integrates the field ¢ against an
evenly spaced grid of bin functions.

(v) A bin functions B(x) which is compactly supported
on a strict subset of the simulation space, has bounded Fourier
transform, and whose Fourier transform B(k) has B(O) # 0.

i) Uk)DKk) — 0as k]| — oo.

To obtain an estimate of the error scaling, we needed to
assume the following:

(vii) The operators L(k) and CI>(k) may be bounded by
power-laws | k|| and || k|| “PforB,y >0 respectively, at large
values of ||k||.

These restrictions mean that the results in this paper are
only directly applicable to a very small subset of the simula-
tion schemes that may be constructed using IFD. Given the
immense amount of freedom inherent in the IFD framework,
it is doubtful that a general analytic proof of consistency will
be achievable. This paper should be instead taken as a general
indication that IFD is at least a sensible methodology.

That being said, it is expected that the above assumptions
could be weakened in order to obtain a stronger result. Most
obviously, the fact that the difference operator can be ex-
pressed using a sum over Brillouin zones immediately suggests
that these results could be extended to a simulation over any
periodic lattice of data points, not just rectangular domains.

The restrictions on the bin functions are relatively weak.
The compact support requirement simply ensures that the
response corresponds to some sort of local measurement of the
field. The requirement that B(O) # 0 deserves some discus-
sion, however. This requirement, rather than being physically
motivated, was inserted solely to avoid the occurrence of 0/0
terms in the limit of high resolutions. It may, however, reflect
a physical requirement. Take, for example, a bin function
B(x) which is everywhere positive and is symmetric and
peaked about zero. It will satisfy B(O) # 0, and in the limit
of high resolutions, this bin will approach a § function and
will represent a sample of the field value at that point. In
contrast, take x B(x); this function is now odd, and in the
limit of high resolutions, this will approach something that
represents a point sample of the derivative of the field about
that point. Attempting to apply IFD to reconstructions of the
derivative of the field may give nonsensical results, which is
what the B (0) # 0 requirement may be implying.

Removing the translation-invariance requirements would
be extremely desirable but much more difficult. The main
reason the Fourier approach was necessary was to allow
the inversion of the (R®R'); ; matrices. With a reasonable
smoothness prior, these matrices tend to be relatively local in
the spatial indices. However, inversion is a nonlocal problem,
which makes the inverses of these matrices dependent on
the global geometry of the simulation domain and makes
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them very difficult to study analytically. The use of periodic
boundary conditions allowed us to sidestep this consideration.
Any proof seeking to show consistency and convergence in
the nontranslationally invariant case would probably have to
use a different approach to what we have done here.

Finally, an extension of these results outside of the lin-
ear regime is self-evidently desirable but may present some
significant challenges. In particular, IFT inference problems
including nonlinear responses and non-Gaussian priors on the
fields typically result in a need to calculate Feynmann dia-
grams. Integrating these into an analytic proof of consistency
will be challenging to say the least.

APPENDIX: ILLUSTRATIVE EXAMPLE

The previous derivations using Fourier representations and
infinite limits may be too abstract for some readers, so we
present an illustrative example which shows how to estimate
the error for an example simulation scheme using the formula
we derived. We will not show how to actually implement such
a scheme in code, as this is already discussed in depth in
Refs. [1] and [3].

The simplest possible equation of motion that we can
implement is the diffusion equation, 9,¢(x, 1) = DIZp(x, 1),
and thus L = Daf, with D being the diffusion constant. We
take a scheme that is first order in time, which means that
we have approximated the analytic time-evolution operator
U by a first-order expansion U = 1 + ArL = 1+ DAt32. A
convenient prior for this situation would be ®(k) =1/ (k* +
m*). This prior suppresses high-frequency modes and has a
(somewhat) arbitrary regularization factor m to ensure that
the prior is well defined at 0. A simple response would be
the box function which we introduced in Eq. (18). We take a
one-dimensional periodic interval of length / as the simulation
domain.

The first step is to calculate the Fourier transform of the
box function:

- 1 ! . 1 Ax .
B(k) = \_ﬁ/ dxB(x)e™ = A ﬁ/ dxe™
0 X 0

1 ikAx __ 1
L Gl (A1)
Axﬂ ik
Hence,
~ 2 1 —cos(kAx)
|B(k)* = , (A2)

Ax2l k2
which goes to 1 in the limit A — oo.

The momentum-space version of the finite-difference oper-
ator can now be obtained by substituting all of the quantities
we defnined into Eq. (26):

2 1 1—cos[(k+b)Ax)
2eas,zll + Dk + b)Yl gy — Grbp

3 1 1—cos[(k+h)Ax)
be2fZ (k+by* (k+b12

T (k)=

1
ZbernZ (k+b)*+m?*

=14+D (A3)

1
bE2fuZ [(k+b)*+m*](k+b)>

We were able to cancel the 1 — cos(kAx) terms by virtue
of the fact that cos((k 4+ b)Ax) = cos(kAx) if b is a mul-
tiple of the Nyquist frequency. Thus, they could be pulled
outside of the sum over Brillouin zones and canceled in the
numerator and denominator.

Now it is time to obtain an estimate of the error scaling
using Eq. (43). L is the second derivative, which is k% in
Fourier space, so y = 2. The prior scales with k=, so B =4,
and U was expanded to first order in time, so p = 1. Inserting
these numbers into the formula tells us that the error scales
proportionally to O(AtAx*~2) = O(AtAx?), so the scheme
is first order in time and second order in space.
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