
PHYSICAL REVIEW E 98, 043306 (2018)

Rational hybrid Monte Carlo with block solvers and multiple pseudofermions

Philippe de Forcrand* and Liam Keegan†

Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland

(Received 14 August 2018; published 18 October 2018)

The dominant cost of most lattice QCD simulations is the inversion of the Dirac operator required to calculate
the force term in the rational hybrid Monte Carlo (RHMC) update. One way to improve this situation is to use
multiple pseudofermions, which reduces the size and variance of this force and hence allows a larger integration
step size to be used. This means fewer force term calculations are required, but at the cost of having to invert the
Dirac operator for each pseudofermion field. This bottleneck can be addressed: recently there has been renewed
interest in the use of block Krylov solvers, which can solve multiple right-hand-side vectors with significantly
fewer iterations than are required if each vector is solved using a separate Krylov solver. We combine these two
ideas, achieving a significant speed-up of RHMC lattice QCD simulations.

DOI: 10.1103/PhysRevE.98.043306

I. INTRODUCTION

The main difficulty in lattice simulations of QCD is cal-
culating the determinant of the Dirac operator, a very large
and badly conditioned matrix. In the rational hybrid Monte
Carlo [1–3] (RHMC) approach, this determinant is stochas-
tically estimated by inverting the Dirac operator acting on a
bosonic field of “pseudofermions” using an iterative Krylov
solver. The RHMC evolution requires the numerical integra-
tion of the pseudofermion force term, and when this term
is large or has a large variance a small integrator step size
must be used, resulting in many costly pseudofermion force
calculations.

Many different approaches have been proposed to reduce
the computing cost of RHMC. They range from precondi-
tioning the solver (e.g., even-odd [4,5], domain decomposi-
tion [6,7], deflation [8], multigrid [9,10]) to preconditioning
the action (ILU [11], UV-filtering [12]) to tuning the integrator
([13–15]).

In particular, a popular strategy which reduces the RHMC
fermionic force term is the “Hasenbusch trick” or “mass
splitting,” and its generalizations [16,17]. One replaces the
Dirac matrix M by (MH−1)H , where H is associated with a
heavy fermion, and represents each of the two determinants
by a pseudofermion integral. The value of the heavy mass
can be tuned to minimize the computer cost per accepted
hybrid Monte Carlo (HMC) trajectory. This tuning becomes
more challenging in the case of multiple mass splittings;
an empirical rule consists of adjusting the magnitude of the
pseudofermion forces to be the same for each factor. A
simple way to obtain a similar effect is to replace M with
[M1/npf]npf [18] and represent each of the npf determinants
by a pseudofermion integral. The resulting force magnitude is
automatically the same for all factors, and only one parameter,
the number npf of pseudofermions, needs to be adjusted.

*forcrand@phys.ethz.ch
†keeganl@phys.ethz.ch

The cost is that the Dirac operator must be inverted on npf

pseudofermion vectors for each force term calculation.
Recently there has been renewed interest [19–25] in the use

of block Krylov solvers [26], which invert the same matrix on
multiple vectors simultaneously, and, thanks to the enlarged
Krylov basis from which solutions are constructed, can con-
verge with significantly fewer iterations than are required to
solve each vector separately.

Here we combine these two ideas to speed up the RHMC
algorithm.

II. MULTIPLE PSEUDOFERMIONS

The partition function we want to sample, for Nf

degenerate-mass quarks, is given by

Z =
∫

dU e−Sg det[M†M]Nf/2 =
∫

dU e−Sg−Seff
f , (1)

where Sg is the gauge action and M the Dirac operator, and
both are functions of the gauge field U . To sample this using
HMC requires the calculation of the fermionic force term,

Fa
xμ = − ∂Seff

f

∂Ua
xμ

= Tr

⎡
⎣(M†M)−

Nf
2

∂ (M†M)
Nf
2

∂Ua
xμ

⎤
⎦, (2)

where a is the color index, x the site index, and μ the direction
index. This would require the entire Dirac operator to be
diagonalized. To avoid doing this, the determinant can be
written as an integral over bosonic pseudofermion fields φ,
which gives (up to an overall constant) the equivalent partition
function

Z =
∫

dU dφ dφ†e−Sg−φ†[M†M]−Nf /2φ, (3)

where pseudofermions with the desired distribution can be
generated by first sampling η from a normal distribution,
then constructing φ = [M†M]

Nf /4
η. The fractional powers of

M†M acting on a vector can in all cases be approximated to

2470-0045/2018/98(4)/043306(11) 043306-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.043306&domain=pdf&date_stamp=2018-10-18
https://doi.org/10.1103/PhysRevE.98.043306

PHILIPPE DE FORCRAND AND LIAM KEEGAN PHYSICAL REVIEW E 98, 043306 (2018)

any desired accuracy by use of a suitable rational approxima-
tion of the form

[M†M]rx � α0 x +
Nshifts∑
j=1

αj (M†M + βj)−1x, (4)

where the coefficients αj , βj > 0 and the number of shifts
Nshifts depend on the exponent r , the spectral range of the
Dirac operator, and the desired accuracy of the approximation.

This approach can be extended to multiple pseud-
ofermions; using the trivial identity

det[M†M] = det[(M†M)
1

npf]npf , (5)

the partition function can instead be written as

Z =
∫

dU

npf∏
i=1

(dφidφ
†
i)

× exp

(
−Sg −

npf∑
i=1

φ
†
i [M†M]

− Nf
2npf φi

)
, (6)

where ηi are again sampled from a normal distribution, and
φi = [M†M]

Nf /4npf
ηi .

The resulting pseudofermion force term for npf pseud-
ofermions is given by

Fa
xμ(φi, U, npf) =

npf∑
i=1

φ
†
i

∂[M†M]
− Nf

2npf

∂Ua
xμ

φi. (7)

For a given gauge field U , writing the φi fields in terms of
the Gaussian ηi fields, then integrating over them in Eq. (7),
we recover the correct expectation value of the force term,
Eq. (2), which is independent of npf ,

Fa
xμ(U, npf) ≡

∫ npf∏
i=1

[p(ηi)dηi]F
a
xμ

(
[M†M]

Nf
4npf ηi, U, npf

)

= Tr

⎡
⎣(M†M)−

Nf
2

∂ (M†M)
Nf
2

∂Ua
xμ

⎤
⎦, (8)

with a variance that is suppressed by npf ,

[
Fa

xμ(U, npf)2
] − [

Fa
xμ(U, npf)

]2 = c1

npf
+ O

(
n−2

pf

)
, (9)

where c1 does not depend on npf . In simulations we can easily
measure the norm F 2 of this pseudofermion force,

F 2(npf) =
〈∑

axμ

1

2

[
Fa

xμ(φi, U, npf)
]2

〉
, (10)

where 〈· · · 〉 represents an average over the gauge fields. More-
over, for the particular choice of the second-order Omelyan
(OMF2) [13,27] integrator with λ = 1/6, the variance of this
norm is related to the variance of the energy violation �H

[28] over a trajectory of length τ with integrator step size

δτ = τ/nsteps,1

var[�H] = 8

(
δτ

12

)4

var[F 2(npf)] + O(δτ 6). (11)

This relation is valid up to higher order corrections in the step
size, and assumes that the trajectory length is long enough that
the correlation between initial and final force terms can be ne-
glected. Here we also assume that a multiscale integrator [29]
is used such that the gauge force term’s contribution to the
integrator error is negligible. This variance in the trajectory
energy violation can in turn be related to the acceptance Pacc

using the Creutz acceptance formula [30,31]

Pacc(�H) = erfc(
√

var[�H]/8), (12)

which is valid for high acceptances. Combining the two and
expanding in δτ gives a simple prediction for the acceptance,

Pacc = 1 − 1

72
√

π
δτ 2

√
var[F 2(npf)] + O(δτ 4), (13)

and, assuming that the total trajectory cost is dominated by the
force term inversions, the relative cost C(npf) of simulations
at different npf can be estimated as the cost of a force term
inversion (∝ npf) multiplied by the number of inversions
(∝ 1/δτ),

C(npf) ∝ npf/δτ ∝ npf{var[F 2(npf)]}1/4, (14)

which we can use to cheaply estimate the relative performance
of simulations using different values of npf simply by measur-
ing the variance of the force term for each npf on the same set
of thermalized configurations. Another estimate for the cost is
given in Ref. [18],

C(npf) ∝ n2
pfκ

1
npf , (15)

where κ is the condition number of the Dirac operator. We
will compare these simple estimates with the actual cost of
simulations for different npf in Sec. IV. For large values of npf

Eq. (9) gives the npf dependence of the force norm as

F 2(npf) = c0 + c1n
−1
pf + O

(
n−2

pf

)
, (16)

and similarly for the variance of this norm one finds

var[F 2(npf)] = c2n
−1
pf + c3n

−2
pf + O

(
n−3

pf

)
, (17)

where the constants ci are expectation values of traces in-
volving the Dirac operator that do not depend on npf , and
in particular c0 = F 2 is the norm of the exact force term of
Eq. (2).

We see that increasing npf reduces this variance, which
according to Eq. (13) will allow a larger step size to be used in
the integrator, resulting in fewer force term calculations. The
lowest shift β1 in the rational approximation of Eq. (4) also
increases with npf , which makes the inversion of the Dirac
operator converge faster. These gains are offset by the cost
of inverting the Dirac operator npf times; however, empirical
studies have shown that using intermediate values of npf > 1
results in a smaller total simulation cost than npf = 1 [18].

1Note that τ may need to be rescaled if the choice of normalization
of the kinetic term in the HMC differs from that of Ref. [28].

043306-2

RATIONAL HYBRID MONTE CARLO WITH BLOCK … PHYSICAL REVIEW E 98, 043306 (2018)

In the next section we further improve on this idea, taking
advantage of the presence of multiple pseudofermions to
reduce the cost of these npf Dirac operator inversions, by
combining the pseudofermion vectors at each site on the
lattice to form a block matrix (or “pencil”). This has two
benefits: applying the Dirac operator to the block matrix is
more computationally efficient than applying it to each vector
in turn, and the block structure allows the use of a block
multishift conjugate gradient (CG) inverter, which requires
fewer Dirac operator calls to converge.

III. BLOCK KRYLOV SOLVERS

A Krylov solver iteratively solves the system Ax = b

for the vector x given some vector b, where we take A to
be a Hermitian positive definite matrix. Starting from some
initial guess x (0) with residual r = b − Ax (0), it constructs a
solution x (k) after k iterations from the Krylov basis Kk =
{r, Ar,A2r, . . . , Ak−1r}. The conjugate gradient (CG) solver
is an example of such a Krylov solver; at each step it finds
the solution that minimizes the error norm |ek|A ≡ (x (k) −
x∗)†A(x (k) − x∗), where x∗ is the exact solution.

Since we want to solve for npf vectors bj , where j =
1, 2, . . . , npf , with the same Dirac matrix for each vector,
we can form a block matrix B whose j th column is bj ,
and solve the system AX = B. The solution is now con-
structed from the much larger block-Krylov basis Kk =
{R,AR,A2R, . . . , Ak−1R}, where R = B − AX(0), which
can potentially converge with significantly fewer iterations.
Additionally there can be a performance gain from only
having to read the matrix A once per npf vectors. Extending
the CG solver in this way gives the block CG (BCG) algo-
rithm [26], which minimizes Tr [(X(i) − X∗)†A(X(i) − X∗)]
at each step, and is equivalent to CG for npf = 1.

There is an upper bound on the relative error of the BCG
solution after k steps [26],

|ek|A
|e0|A

� c1(npf)

(
1 − √

λnpf /λmax

1 + √
λnpf /λmax

)2k

, (18)

where the eigenvalues of A in ascending order are given
by {λ1, λ2, . . . , λnpf , . . . , λmax}, and c1(npf), where c1(1) =
4, is a function that we will approximate as constant here.
Expanding in powers of

√
λnpf /λmax, this can be written as

|ek|A
|e0|A

� c1(npf)e−4k
√

λnpf /λmax + O(k(λnpf /λmax)3/2), (19)

so we see that the rate of convergence for the block solver goes
like ∼√

λnpf or, equivalently, the effective “condition number”
that governs the convergence of the solver is reduced as npf

is increased. Thus, if we keep the desired error constant, we
expect the required number of iterations k to decrease as we
increase npf , as seen in Fig. 1.

This solver was proposed nearly 40 years ago [26], and
perhaps one reason that it has not become more widely used is
its numerical stability. In particular, if the matrix of residuals
R becomes badly conditioned the BCG algorithm can fail
to converge, while a separate CG solve for each vector for
the same system would converge. Several solutions to this

100 101

npf

0.0

0.2

0.4

0.6

0.8

1.0

D
ir

ac
O

p
ca

ll
s

m=0.002

m=0.020

m=0.100

m=0.500

100 101

npf

0.0

0.2

0.4

0.6

0.8

1.0

√
λ

1
/λ

n
p
f

m=0.002

m=0.020

m=0.100

m=0.500

FIG. 1. Top: Number of Dirac operator calls for the block SBC-
GrQ solver to converge compared to the SCG solver, for a range
of fermion masses. As the mass is made lighter, the block solver
improvement increases. Bottom: The square root of the ratio of the
lowest eigenvalue to the npf th eigenvalue of the Dirac operator.
The bound on the convergence rate of Eq. (19) is determined by
this quantity, and qualitatively it also seems to describe the actual
convergence of the block solver quite well.

issue are proposed in Ref. [32]; we implemented and tested
these numerically, reaching the same conclusion that the
optimal choice in terms of stability and computational cost
is to include a reorthogonalization via QR decomposition of
the residual matrix at each iteration, known as the BCGrQ
algorithm, as used in Ref. [25].

For the RHMC we need a multishift variant of this solver.
For CG the shift invariance of the Krylov basis allows the
residuals of the shifted systems to be related to the residuals
of the unshifted one, leading to the multishift CG (SCG)
algorithm [33,34]. The same can be done for the BCGrQ
algorithm, which leads to the SBCGrQ [35] multishift block
solver. The main difference to the multishift CG solver is that
in the block case the relations between shifted and unshifted
systems involve npf × npf matrices instead of scalars.

It is instructive to consider how the bound on the error,
Eq. (19), changes for the shifted matrix A + σ , in particular
for the case where σ
 λnpf ,

|ek|A+σ

|e0|A+σ

� c1(npf)e−4k
√

(σ+λnpf)/(σ+λmax)

� c1(npf)e−4k
√

σ/(σ+λmax)[1+O(λnpf /σ)]
. (20)

043306-3

PHILIPPE DE FORCRAND AND LIAM KEEGAN PHYSICAL REVIEW E 98, 043306 (2018)

10−8 10−5 10−2 101 104

σ

10−15

10−13

10−11

10−9

10−7

10−5

10−3

| r|
/|r

0
|

npf = 1

npf = 2

npf = 3

npf = 4

npf = 5

npf = 6

npf = 12

10−8 10−5 10−2 101 104

σ

10−15

10−13

10−11

10−9

10−7

10−5

10−3

| r|
/|r

0
|

npf = 1

npf = 2

npf = 3

npf = 4

npf = 5

npf = 6

npf = 12

FIG. 2. Top: Residual of shifted solution versus shift σ , for fixed
k = 400 solver iterations. We see a dramatic decrease in the residual
for small shifts as npf is increased. Bottom: Same quantity but
keeping fixed the unshifted residual |r|/|r0| = 10−7. We see that the
reduction in iterations leads to a relative increase in the residuals of
the larger shifts with npf .

Here we see that to leading order the convergence rate does
not depend on λnpf , but only on the size of the shift σ and
the number of steps k. From Eq. (19) we expect that the
number of steps k required for a given error on the unshifted
solution decreases with npf . Equation (20) suggests that, as a
side effect, the error on shifted solutions with large shifts will
increase with npf , as shown in Fig. 2.

The formulation of SBCGrQ used here is described in
Algorithm 1. It is numerically equivalent to Ref. [35], but
we use a pair of two-term coupled recursion relations instead
of a single three-term recursion relation to calculate the shift
matrices, which we find improves the numerical accuracy of
the shifted solutions for very badly conditioned systems [36].
The updating of a shifted solution can be stopped once

the relative norm of its residual,
√∑

j δ
(s)
k (i, j)/

∑
j δ0(i, j),

is less than machine precision, where δ
(s)
k = ρkα

−1
k α

(s)
k ; see

Algorithm 1 [37]. Compared to BCGrQ, each shifted solu-
tion requires two additional block vectors to be stored, and
two additional multiply-add operations (lines 12 and 13 of
Algorithm 1) involving these block vectors at each iteration.

There are also some extra npf × npf matrix operations (lines
10 and 11 of Algorithm 1) that have negligible storage and
computational impact. The expression {Q,R} = qr(B) in Al-
gorithm 1 refers to a thin QR decomposition of the matrix B

into an orthogonal matrix Q and an upper-triangular matrix R

such that QR = B, as described for example in Ref. [25].

Algorithm 1 SBCGrQ: Solve (A + σs)X(s) = B for

s = 0, 1, . . . , Nshifts − 1.

1: X(s), P (s), Q, ∈ CL×npf ; α, ρ, δ, α(s), β (s) ∈ Cnpf ×npf

2: X
(s)
0 = 0, {Q0, δ0} = qr(B), P

(s)
0 = Q0;

ρ0 = δ0, α0 = α
(s)
0 = β

(s)
0 = 1

3: for k = 1, 2, . . . until
√∑

j δk (i, j)/
∑

j δ0(i, j) < ε ∀i do

4: αk ← (P (0)†
k−1 (A + σ0)P (0)

k−1)−1

5: {Qk, ρk} ← qr (Qk−1 − (A + σ0)P (0)
k−1αk)

6: X
(0)
k ← X

(0)
k−1 + P

(0)
k−1αkδk−1

7: P
(0)
k ← Qk + P

(0)
k−1ρ

†
k

8: δk ← ρkδk−1

9: for s = 1, . . . , Nshifts − 1 do

10: β
(s)
k ← (1 + (σs − σ0)αk + αkρk−1α

−1
k−1(1 − β

(s)
k−1)ρ†

k−1)
−1

11: α
(s)
k ← β

(s)
k αkρk−1α

−1
k−1α

(s)
k−1

12: X
(s)
k ← X

(s)
k−1 + P

(s)
k−1α

(s)
k

13: P
(s)
k ← Qk + P

(s)
k−1β

(s)
k ρ

†
k

14: end for
15: end for

IV. RESULTS

As an initial numerical study of the method we simu-
late Nf = 4 QCD using unimproved staggered fermions with
even-odd preconditioning and the Wilson gauge action, on
lattices of size 84, with gauge coupling β = 5.12 and fermion
mass am = 0.002. These parameters are chosen to have a
small mass while remaining in the confined phase of this
theory [38], and the choice Nf = 4 allows a direct comparison
to HMC for the case npf = 1 while avoiding any issues related
to rooting. These small-scale simulations allow us to perform
many simulations with different parameters and investigate a
wide range of values of npf and integrator step sizes, as well
as to perform very long simulations to study the integrated
autocorrelation times of measured observables.

For the molecular dynamics force term we use a stopping
criterion |r|/|r0| < 10−7 for the solver, and a rational approx-
imation with relative error <10−7 and Nshifts � 15, while for
the heat-bath and accept/reject steps the stopping criterion
is 10−14, and the rational approximation has relative error
<10−15 and Nshifts � 30. We use a two-level OMF2 integrator,
setting λ = 1/6 in order to compare with the predicted accep-
tance rates of Eq. (13). For each pseudofermion integration
step the gauge force is integrated with at least three steps, such
that its contribution to the integrator error is negligible. For
npf = 1–6 we ran 5000 τ = 1 trajectories for a wide range
of integrator step sizes, whose acceptance rates are shown
in Fig. 3, along with the predicted acceptance rates using
Eq. (13). For high acceptance rates and small integrator step
size δτ , where Eq. (13) is valid, the measured values are in

043306-4

RATIONAL HYBRID MONTE CARLO WITH BLOCK … PHYSICAL REVIEW E 98, 043306 (2018)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
δτ

0.4

0.5

0.6

0.7

0.8

0.9

1.0
〈P

ac
c〉

npf = 1

npf = 2

npf = 3

npf = 4

npf = 5

npf = 6

FIG. 3. Measured expectation values of acceptance rate (solid
lines), compared with the predicted acceptance rate from measured
force variances using Eq. (13) (dotted lines). For high acceptance
and small δτ the agreement is reasonable; it turns out the difference
between the prediction and the measured values is largely due to the
neglected correlation between initial and final force terms not being
negligible in these data, so increasing the trajectory length would
improve the agreement.

reasonable agreement with the prediction; the main source of
the difference between the two in this case is the neglected
contribution from the correlation between initial and final
force terms in a trajectory, which is not negligible in our
simulations. Increasing the trajectory length would suppress
this contribution and improve the agreement between the
predicted and measured acceptance rates. We also performed
some additional shorter runs at larger npf up to npf = 64.

To study the npf dependence of the distribution of �H

and of various observables and their autocorrelation times,
we performed a single long run for each npf � 6 as described
in Table I, using the OMF2 integrator setting λ = 0.20. The
expectation value of the plaquette is consistent within errors
for all npf . Its integrated autocorrelation time also exhibits no
clear dependence on npf , nor did the various other smeared
and unsmeared gauge observables that we measured.

A. Multiple pseudofermions

Increasing npf reduces both the size and the variance of
the norm of the pseudofermion force term. Fig. 4 shows
these quantities for both gauge and pseudofermion fields
as a function of npf . The large variance of the fermionic
force comes from the poor accuracy of this pseudofermion

TABLE I. Run parameters for the longer simulations, with nsteps

tuned such that 〈Pacc〉 � 0.96. The integrated autocorrelation time of
the plaquette does not appear to depend on npf .

npf nsteps 〈Pacc〉 〈e−�H 〉 〈plaq〉 τint ntrajectories

1 250 0.961(11) 0.9701(100) 0.52268(14) 5 5 × 103

2 16 0.942(5) 0.9920(28) 0.52283(6) 4 28 × 103

3 11 0.965(1) 0.9998(6) 0.52288(8) 5 33 × 103

4 9 0.966(1) 1.0005(5) 0.52297(6) 4 26 × 103

5 8 0.960(1) 0.9994(7) 0.52272(8) 5 25 × 103

6 7 0.954(2) 1.0006(8) 0.52277(10) 6 21 × 103

100 101

npf

103

104

105

F
2

gauge force

fermion force (I)

fermion force (II)

fit c0 + c1n
−1
pf

100 101

npf

101

102

103

va
r[
F

2
]1/

4

gauge force

fermion force (I)

fermion force (II)

fit c2n
−1
pf + c3n

−2
pf

FIG. 4. Gauge and fermion force norms versus npf , with large-npf

scaling predictions. Top: Force norms with a fit to Eq. (16). Bottom:
Fourth root of variance of force norms, approximately proportional
to the number of integration steps required for the OMF2 integrator,
along with a fit to Eq. (17). Force (I) is measured at every integration
step along the trajectory, while Force (II) is measured on the same
set of 2000 thermalized configurations.

estimate; for small npf it is orders of magnitude larger than
the exact (large-npf limit) value: c0/c1 ∼ 10−3 in Eq. (16).
The blue left-facing triangles with error bars are measured
for every force term calculation during the simulation, while
the yellow right-facing triangles with error bars are measured
on a set of 2000 thermalized configurations. For npf > 1,
the two measurements agree within errors, but for npf = 1
they differ significantly. This is caused by infrequent but very
large spikes in the force for npf = 1, which means that many
more than 2000 measurements would be required to reliably
estimate the variance of the force in this case. Also shown is a
fit to the large-npf form predicted by Eqs. (16) and (17), which
seems to provide a good description of the data for npf � 3.

A histogram of the values of the pseudofermion rms force
is shown in the top panel of Fig. 5, where for npf = 1 the
distribution is clearly non-Gaussian, with a long tail of large
values. As npf is increased, the mean and variance of the
distribution of force norms decrease, as already seen in Fig. 4,
and in addition the form of the distribution becomes closer
to a Gaussian, without a long tail of values much larger than
the mean. Since empirically we find c0 � c1 and c2 � c3 in
Eqs. (16) and (17), we can expect the quantity npfF

2(npf)
to have approximately npf -independent mean and variance
for some intermediate range of values of npf . This quantity

043306-5

PHILIPPE DE FORCRAND AND LIAM KEEGAN PHYSICAL REVIEW E 98, 043306 (2018)

FIG. 5. Top: Histogram of the rms pseudofermion force norm,√
F 2, for different npf . For npf = 1 the distribution is very non-

Gaussian, with a long tail of large values. Bottom: Histogram of√
npfF 2 wich shows an approximate npf invariance for intermediate

values of npf , due to the c1 and c3 terms dominating Eqs. (16) and
(17) for these values of npf .

is shown in the bottom panel of Fig. 5, which shows this
approximate scaling for intermediate npf , along with a dotted
black line showing a Gaussian distribution with the same
mean and variance.

Another way to see the improvement from using multiple
pseudofermions is to look at the distribution of e−�H , where
�H is the energy violation of the trajectory. Figure 6 shows
the distribution of this quantity for npf = 1 to 6, with the
integrator step size tuned such that the acceptance is �90%
for each. The distribution expected for this acceptance rate
assuming a Gaussian distribution for �H is also shown, and
as npf is increased the measured distribution becomes closer
to the Gaussian one. For the case npf = 1, the distribution of
�H is very far from Gaussian, with an excess of tiny values
of e−�H which reflect the large fluctuations in the force term.
Such “exceptional configurations” can trigger an instability
of the integrator, which makes the Monte Carlo error anal-
ysis more delicate and may introduce long autocorrelation
times.

Using Eq. (14) we can use the variance of the pseud-
ofermion force norm to predict the approximate cost of gen-
erating an RHMC trajectory as a function of npf . Another
prediction of the cost using the condition number of the Dirac
operator is given by Eq. (15). These predictions are compared
to the measured cost of actual simulations using the multishift

FIG. 6. Histogram of e−�H for npf = 1 to 6 with the acceptance
rate tuned to �90%. The black dotted line shows the prediction for
a Gaussian distribution of �H with the same acceptance rate. For
npf = 1 (top left) the distribution is very far from gaussian, with an
excess of very small values, but as npf is increased the distribution
approaches the Gaussian one.

CG solver, with the integrator step size tuned to make the
acceptance rate �90%. The results are shown in Fig. 7, where
all costs are normalized to 1 for the case npf = 1. There is a
large reduction in the cost for npf = 2 compared to npf = 1,
followed by a gradual increase in the cost with npf .

In this section we have shown that using multiple pseud-
ofermions with the usual multishift CG solver significantly
reduces the mean and variance of the pseudofermion force
term, which both speeds up RHMC simulations and results in
a much more Gaussian distribution of �H . In the next section
we take advantage of having multiple pseudofermions to store
them in block form, which allows us to make use of a more
efficient, block version of the multishift CG solver and also
increases the computational efficiency of the Dirac operator.

B. Block solvers

Block solvers have been shown to provide large speed-
ups in two recent lattice QCD studies of inverting the Dirac
operator with multiple right-hand-side (RHS) vectors [21,25].
There are two sources of this speed-up: one is that as the num-
ber of RHS vectors (npf in our case) is increased the number
of iterations required for the solver to converge decreases, the
other is that applying the Dirac operator to a block of vectors
is significantly faster, since the cost of loading the gauge links
is amortized over the many RHS vectors, and these data are
contiguous, allowing better use of the CPU cache.

043306-6

RATIONAL HYBRID MONTE CARLO WITH BLOCK … PHYSICAL REVIEW E 98, 043306 (2018)

FIG. 7. Trajectory speed-up versus npf , normalized to 1 for npf =
1. At each step the multishift CG (SCG) solver is used npf times.
The black dashed line is the simple prediction from the variance of
the pseudofermion force norm using Eq. (14), and the green dotted
line is the simple prediction from the condition number of the Dirac
operator using Eq. (15). Going from npf = 1 to npf = 2 gives a
significant cost reduction, but increasing npf further results in a larger
cost per trajectory.

However, there is a cost that comes with these benefits,
which is that all pseudofermion vector operations in the solver
are promoted to matrix operations in the block solver, and
this overhead grows with a factor npf compared to the cost of
applying the Dirac operator. Figure 8 compares the runtime
of block and nonblock versions of a single Dirac operator
call and a single iteration of the two multishift solvers used
in this work: multishift CG (SCG) and block multishift CG
(SBCGrQ). The top panel shows that the block Dirac operator
is significantly faster than the nonblock version. In the bottom
panel, for npf � 6 one iteration of the block multishift solver
SBCGrQ is also faster than multishift CG for the same reason,
because the cost is dominated by the Dirac operator. For very
large npf the overhead becomes significant however, and can
be seen to dominate the cost of a single SBCGrQ iteration for
npf � 20.

Figure 9 compares the cost of calculating the pseud-
ofermion force term using the block multishift CG (SBCGrQ)

FIG. 8. Top: Runtime of Dirac operator acting on vectors in block
form, normalized to the nonblock form. Bottom: Solver runtime per
Dirac operator call versus npf . For small npf one iteration of block
multishift SBCGrQ is much faster than multishift SCG since the
block Dirac operator is faster. For large enough npf , however, the
SBCGrQ solver overhead that grows ∝ npfNshifts eventually domi-
nates the cost.

solver with pseudofermions in block form against the previous
results using the multishift CG (SCG) solver. We see a large
reduction in both the number of Dirac operator calls and
the overall runtime. The overhead of the SBCGrQ algorithm
will eventually dominate the cost at large npf , but, as we
already saw in Fig. 8, for the region of interest, npf � 6,
this overhead is not prohibitive. It is also possible when
using the block solver to take the stopping criterion for the
force solves to be very small without a significant increase
in cost, which reduces the potential reversibility violations
caused by finite precision, which may be a concern for badly
conditioned systems or if the RHMC trajectory length τ is
increased [39].

At the start and end of a trajectory, a high precision
inversion must also be done, and Fig. 10 compares the cost
of this step between the original and block methods, and we
again see a large improvement from the block version.

So far we have compared solvers for different npf while
keeping the residual of the lowest shift the same, but from
Eq. (20) we can also expect the residuals of the shifted
solutions to depend on npf . Figure 2 shows the residual of
shifted solutions using the SBCGrQ solver (for npf = 1 this
reduces to the SCG solver), for a wide range of shifts σ .

043306-7

PHILIPPE DE FORCRAND AND LIAM KEEGAN PHYSICAL REVIEW E 98, 043306 (2018)

FIG. 9. Cost of calculating the pseudofermion force term versus
npf , using either multishift (SCG) or block multishift (SBCGrQ)
solvers with stopping criterion 10−6 or 10−12. The block solver is
a significant improvement, moreover it allows the use of a very
tight stopping criterion without significant extra cost, which reduces
possible reversibility violations.

In the top panel, the number of solver iterations k is kept
constant, and we see the residuals for small shifts decrease
dramatically as npf is increased, which is consistent with the
expectation from Eq. (19). In the bottom panel, the number
of solver iterations is adjusted such that the unshifted relative
residual is |r|/|r0| � 10−7. Here we see a relative increase in
the shifted residuals for intermediate shifts, as predicted by
Eq. (20), since fewer iterations are required as npf is increased.
For large values of npf this might mean that a tighter residual
for the force term inversions will be required to maintain the
accuracy of the force term, but we saw no such issues in our
runs for npf � 6 where we use the same stopping criterion for
all npf .

C. Combined results

Combining our results from the previous two sections,
we can measure the cost of generating an accepted RHMC
trajectory in two ways. One is in terms of Dirac operator
calls per trajectory divided by the acceptance rate, which is
implementation independent but does not take into account
the acceleration of the Dirac operator or the overhead of the
multishift block solver. The second measure of the cost is sim-
ply the CPU time required by our reference implementation

FIG. 10. Cost of calculating the pseudofermion action versus npf ,
using either multishift (SCG) or block multishift (SBCGrQ) solvers
with stopping criterion 10−14. This is done twice per trajectory: at the
start for the heat bath and at the end for the accept/reject step. The
block solver significantly reduces the cost of this step.

(running on a single thread of a CPU) to generate a trajectory,
divided by the acceptance rate. This takes all the costs into
account, but the results are now heavily implementation de-
pendent, and, as our implementation is not parallelized and
prioritises flexibility over performance, the results may be
significantly different on a fully optimized production lattice
QCD code. Moreover, GPU-based hardware with a higher
ratio of compute performance to memory bandwidth should
benefit more from the increased arithmetic intensity of the
block Dirac operator.

Both measures of the cost are shown in Fig. 11 as a
function of the integrator step size for npf = 1 to 6, using
the SBCGrQ inverter and block Dirac operator. For both cost
measures there is a clear benefit from increasing npf to 3 or
4. The optimal integrator step size for each npf in this plot
corresponds to a �90% acceptance rate. Taking these optimal
integrator step sizes, we can compare the overall improvement
the block method offers compared to the previous nonblock
results of Sec. IV A, which is shown in Fig. 12. We see a
∼6× speed-up using npf = 4 compared to HMC, while the
nonblock multishift CG solver gave a ∼3× speed-up using
npf = 2.

043306-8

RATIONAL HYBRID MONTE CARLO WITH BLOCK … PHYSICAL REVIEW E 98, 043306 (2018)

FIG. 11. The cost of generating an accepted τ = 1 trajectory
using the block multishift (SBCGrQ) inverter for different npf versus
the number of integrator steps nsteps = τ/δτ . Top: cost in Dirac
operator calls; bottom: computer runtime cost.

V. CONCLUSIONS

Let us summarize our study. We find that using multiple,
npf > 1, pseudofermions in RHMC simulations of lattice
QCD offers three cumulative advantages:

(1) The magnitude of the fermionic force is reduced,
which allows an increase of the integrator step size. Fewer
steps are required per trajectory.

(2) The computation of the pseudofermionic force at each
step now involves solving npf linear systems with different
right-hand sides, all with the same Dirac matrix. Such systems
are advantageously solved by block Krylov solvers, which
converge with fewer Dirac matrix-vector operations, because
the dimension of the search Krylov space increases by npf at
each iteration.

(3) The computing time for a Dirac matrix-vector oper-
ation decreases, because the gauge field entering the Dirac
matrix needs only to be loaded once for npf vectors to be
multiplied, and cache locality is improved.

In addition, one may speculate that a smaller fermionic
force, as obtained by multiple pseudofermions, indicates a
smoother energy landscape, which might be explored faster
by RHMC dynamics. We looked for a possible reduction of
autocorrelation time under an increase of npf , but found no
clear indication of such (see Table I).

FIG. 12. Trajectory speed-up versus npf at �90% acceptance,
normalised to 1 for npf = 1, using either multishift (SCG) or block
multishift (SBCGrQ) solvers. Top: speed-up in Dirac operator calls;
bottom: speed-up in computer runtime. The black dashed line is the
simple prediction using the force norm variance of Eq. (14), and the
green dotted line is the simple prediction from the condition number
of the Dirac operator using Eq. (15). The optimal npf and the overall
gain are both significantly increased by the use of block methods.

The solver that we use, described in Algorithm 1, is a
multishift block version of the conjugate gradient, constructed
in Ref. [35]. The problem of numerical instability seen in
previous block solvers is handled by reorthogonalization of
the search matrix, as recommended in Ref. [32] and recently
used in Refs. [21,25].

Our simulations, albeit on a small lattice, show that 3 or
4 pseudofermions allow for a gain O(6) in CPU time. Let us
discuss what to expect in a more realistic setup.

An improved, less local Dirac operator of staggered type
would probably lead to further CPU gains because the assem-
bly of the Dirac matrix elements from memory could be amor-
tized even better. Similarly, a GPU-type architecture would
benefit more, since its memory bandwidth is typically more
limited compared to its FLOP performance. Reference [25]
has shown significant gains from a block solver on a GPU
machine. The multishift version thereof should yield similar
benefits.

The reduction in solver iterations is strongly dependent on
the ratio of the npf th eigenvalue of the Dirac operator to the
smallest one; the larger this ratio, the greater the reduction in

043306-9

PHILIPPE DE FORCRAND AND LIAM KEEGAN PHYSICAL REVIEW E 98, 043306 (2018)

the number of iterations, as predicted from the convergence
bound of Eq. (19) and also as seen empirically in Fig. 1.
This observation can guide our expectations for how the gain
from the block solver should depend on the mass, volume, and
lattice spacing. In general, reducing the mass, going to coarser
lattice spacing, or reducing the physical volume should all
increase the gain of the block solver. Conversely, increasing
the mass, going to finer lattice spacing, or increasing the
physical volumes would presumably reduce the benefits of
the block solver, so one scenario where this method may be
particularly advantageous would be simulations done in the ε

regime.
The benefit from using multiple pseudofermions in the

molecular dynamics also grows as the mass is reduced, more-
over the reduced variance of the force term would allow the
use of higher order (but less stable) integrators whose costs
grow more slowly with the volume [18].

A more quantitative statement about the scaling of the
method with these parameters and how it compares to other
recent algorithmic improvements such as multigrid [9,10] and
deflation [8] would be highly desirable, but would require
large scale simulations that are beyond the scope of this work.

Finally, we emphasize that our approach is algorithmically
simple; more realistic tests involve rather small amounts of
programming, and a single parameter to optimize: the number
npf of pseudofermions.

ACKNOWLEDGMENTS

This work is supported by the Swiss National Science
Foundation under Grant No. 200020-162515. Numerical sim-
ulations were performed on the Euler cluster at ETH Zürich.
The authors thank the CERN Theoretical Physics Department
for its hospitality.

[1] A. D. Kennedy, I. Horvath, and S. Sint, A New exact method for
dynamical fermion computations with nonlocal actions, Nucl.
Phys. Proc. Suppl. 73, 834 (1999).

[2] M. A. Clark and A. D. Kennedy, The RHMC algorithm for
two flavors of dynamical staggered fermions, Nucl. Phys. Proc.
Suppl. 129, 850 (2004).

[3] M. A. Clark, The rational hybrid Monte Carlo algorithm, PoS
LAT2006, 004 (2006).

[4] T. A. DeGrand and P. Rossi, Conditioning techniques for dy-
namical fermions, Comput. Phys. Commun. 60, 211 (1990).

[5] T. Lippert, Parallel SSOR preconditioning for lattice QCD,
Parallel Comput. 25, 1357 (1999).

[6] M. Luscher, Solution of the Dirac equation in lattice QCD using
a domain decomposition method, Comput. Phys. Commun.
156, 209 (2004).

[7] A. Frommer, A. Nobile, and P. Zingler, Deflation and Flexible
SAP-Preconditioning of GMRES in Lattice QCD Simulation,
arXiv:1204.5463.

[8] M. Luscher, Local coherence and deflation of the low quark
modes in lattice QCD, J. High Energy Phys. 07 (2007) 081.

[9] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
Adaptive aggregation-based domain decomposition multigrid
for the lattice Wilson-Dirac operator, SIAM J. Sci. Comput. 36,
A1581 (2014).

[10] R. C. Brower, M. A. Clark, A. Strelchenko, and E. Weinberg,
Multigrid algorithm for staggered lattice fermions, Phys. Rev. D
97, 114513 (2018).

[11] P. de Forcrand and T. Takaishi, Fast fermion Monte Carlo, Nucl.
Phys. Proc. Suppl. 53, 968 (1997).

[12] P. de Forcrand, UV filtered fermionic Monte Carlo, Nucl. Phys.
Proc. Suppl. 73, 822 (1999).

[13] T. Takaishi and P. de Forcrand, Testing and tuning new sym-
plectic integrators for hybrid Monte Carlo algorithm in lattice
QCD, Phys. Rev. E 73, 036706 (2006).

[14] M. A. Clark, A. D. Kennedy, and P. J. Silva, Tuning HMC using
Poisson brackets, PoS LATTICE2008, 041 (2008).

[15] A. D. Kennedy, P. J. Silva, and M. A. Clark, Shadow Hamilto-
nians, Poisson Brackets, and Gauge Theories, Phys. Rev. D 87,
034511 (2013).

[16] M. Hasenbusch, Speeding up the hybrid Monte Carlo al-
gorithm for dynamical fermions, Phys. Lett. B 519, 177
(2001).

[17] M. Hasenbusch and K. Jansen, Speeding up lattice QCD sim-
ulations with clover improved Wilson fermions, Nucl. Phys. B
659, 299 (2003).

[18] M. A. Clark and A. D. Kennedy, Accelerating
Dynamical Fermion Computations Using the Rational
Hybrid Monte Carlo (RHMC) Algorithm with Multiple
Pseudofermion Fields, Phys. Rev. Lett. 98, 051601
(2007).

[19] T. Sakurai, H. Tadano, and Y. Kuramashi, Application of
block Krylov subspace algorithms to the Wilson-Dirac equation
with multiple right-hand sides in lattice QCD, Comput. Phys.
Commun. 181, 113 (2010).

[20] H. Tadano, Y. Kuramashi, and T. Sakurai, Application of
preconditioned block BiCGGR to the Wilson-Dirac equation
with multiple right-hand sides in lattice QCD, Comput. Phys.
Commun. 181, 883 (2010).

[21] Y. Nakamura, K.-I. Ishikawa, Y. Kuramashi, T.
Sakurai, and H. Tadano, Modified block BiCGSTAB
for lattice QCD, Comput. Phys. Commun. 183, 34
(2012).

[22] S. Birk and A. Frommer, A CG method for multiple right
hand sides and multiple shifts in lattice QCD calculations, PoS
LATTICE2011, 027 (2011).

[23] S. Birk and A. Frommer, A deflated conjugate gradient method
for multiple right hand sides and multiple shifts, Numer. Algo-
rithms 67, 507 (2014).

[24] S. Birk, Deflated Shifted Block Krylov Subspace Methods
for Hermitian Positive Definite Matrices, Ph.D. Thesis,
Fachbereich Mathematik und Naturwissenschaften der
Bergischen Universität Wuppertal, 2015, http://elpub.bib.uni-
wuppertal.de/edocs/dokumente/fbc/mathematik/diss2015/birk
/dc1505.pdf

[25] M. A. Clark, A. Strelchenko, A. Vaquero, M. Wagner, and
E. Weinberg, Pushing memory bandwidth limitations through
efficient implementations of Block-Krylov space solvers on
GPUs, Comp. Phys. Comm. 233, 29 (2018).

043306-10

https://doi.org/10.1016/S0920-5632(99)85217-7
https://doi.org/10.1016/S0920-5632(99)85217-7
https://doi.org/10.1016/S0920-5632(99)85217-7
https://doi.org/10.1016/S0920-5632(99)85217-7
https://doi.org/10.1016/S0920-5632(03)02732-4
https://doi.org/10.1016/S0920-5632(03)02732-4
https://doi.org/10.1016/S0920-5632(03)02732-4
https://doi.org/10.1016/S0920-5632(03)02732-4
https://doi.org/10.22323/1.032.0004
https://doi.org/10.22323/1.032.0004
https://doi.org/10.22323/1.032.0004
https://doi.org/10.22323/1.032.0004
https://doi.org/10.1016/0010-4655(90)90006-M
https://doi.org/10.1016/0010-4655(90)90006-M
https://doi.org/10.1016/0010-4655(90)90006-M
https://doi.org/10.1016/0010-4655(90)90006-M
https://doi.org/10.1016/S0167-8191(99)00055-1
https://doi.org/10.1016/S0167-8191(99)00055-1
https://doi.org/10.1016/S0167-8191(99)00055-1
https://doi.org/10.1016/S0167-8191(99)00055-1
https://doi.org/10.1016/S0010-4655(03)00486-7
https://doi.org/10.1016/S0010-4655(03)00486-7
https://doi.org/10.1016/S0010-4655(03)00486-7
https://doi.org/10.1016/S0010-4655(03)00486-7
http://arxiv.org/abs/arXiv:1204.5463
https://doi.org/10.1088/1126-6708/2007/07/081
https://doi.org/10.1088/1126-6708/2007/07/081
https://doi.org/10.1088/1126-6708/2007/07/081
https://doi.org/10.1137/130919507
https://doi.org/10.1137/130919507
https://doi.org/10.1137/130919507
https://doi.org/10.1137/130919507
https://doi.org/10.1103/PhysRevD.97.114513
https://doi.org/10.1103/PhysRevD.97.114513
https://doi.org/10.1103/PhysRevD.97.114513
https://doi.org/10.1103/PhysRevD.97.114513
https://doi.org/10.1016/S0920-5632(96)00829-8
https://doi.org/10.1016/S0920-5632(96)00829-8
https://doi.org/10.1016/S0920-5632(96)00829-8
https://doi.org/10.1016/S0920-5632(96)00829-8
https://doi.org/10.1016/S0920-5632(99)85214-1
https://doi.org/10.1016/S0920-5632(99)85214-1
https://doi.org/10.1016/S0920-5632(99)85214-1
https://doi.org/10.1016/S0920-5632(99)85214-1
https://doi.org/10.1103/PhysRevE.73.036706
https://doi.org/10.1103/PhysRevE.73.036706
https://doi.org/10.1103/PhysRevE.73.036706
https://doi.org/10.1103/PhysRevE.73.036706
https://doi.org/10.22323/1.066.0041
https://doi.org/10.22323/1.066.0041
https://doi.org/10.22323/1.066.0041
https://doi.org/10.22323/1.066.0041
https://doi.org/10.1103/PhysRevD.87.034511
https://doi.org/10.1103/PhysRevD.87.034511
https://doi.org/10.1103/PhysRevD.87.034511
https://doi.org/10.1103/PhysRevD.87.034511
https://doi.org/10.1016/S0370-2693(01)01102-9
https://doi.org/10.1016/S0370-2693(01)01102-9
https://doi.org/10.1016/S0370-2693(01)01102-9
https://doi.org/10.1016/S0370-2693(01)01102-9
https://doi.org/10.1016/S0550-3213(03)00227-X
https://doi.org/10.1016/S0550-3213(03)00227-X
https://doi.org/10.1016/S0550-3213(03)00227-X
https://doi.org/10.1016/S0550-3213(03)00227-X
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1016/j.cpc.2009.09.006
https://doi.org/10.1016/j.cpc.2009.09.006
https://doi.org/10.1016/j.cpc.2009.09.006
https://doi.org/10.1016/j.cpc.2009.09.006
https://doi.org/10.1016/j.cpc.2009.12.025
https://doi.org/10.1016/j.cpc.2009.12.025
https://doi.org/10.1016/j.cpc.2009.12.025
https://doi.org/10.1016/j.cpc.2009.12.025
https://doi.org/10.1016/j.cpc.2011.08.010
https://doi.org/10.1016/j.cpc.2011.08.010
https://doi.org/10.1016/j.cpc.2011.08.010
https://doi.org/10.1016/j.cpc.2011.08.010
https://doi.org/10.22323/1.139.0027
https://doi.org/10.22323/1.139.0027
https://doi.org/10.22323/1.139.0027
https://doi.org/10.22323/1.139.0027
https://doi.org/10.1007/s11075-013-9805-9
https://doi.org/10.1007/s11075-013-9805-9
https://doi.org/10.1007/s11075-013-9805-9
https://doi.org/10.1007/s11075-013-9805-9
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fbc/mathematik/diss2015/birk/dc1505.pdf
https://doi.org/10.1016/j.cpc.2018.06.019
https://doi.org/10.1016/j.cpc.2018.06.019
https://doi.org/10.1016/j.cpc.2018.06.019
https://doi.org/10.1016/j.cpc.2018.06.019

RATIONAL HYBRID MONTE CARLO WITH BLOCK … PHYSICAL REVIEW E 98, 043306 (2018)

[26] D. P. O’Leary, The block conjugate gradient algorithm and
related methods, Linear Algebra Appl. 29, 293 (1980), Special
Volume Dedicated to Alson S. Householder.

[27] I. Omelyan, I. Mryglod, and R. Folk, Symplectic analytically
integrable decomposition algorithms: Classification, derivation,
and application to molecular dynamics, quantum and celestial
mechanics simulations, Comput. Phys. Commun. 151, 272
(2003).

[28] A. Bussone, M. Della Morte, V. Drach, and C. Pica,
Tuning the Hybrid Monte Carlo algorithm using molecu-
lar dynamics forces’ variances, Comput. Phys. Commun.,
doi:10.1016/j.cpc.2018.07.012.

[29] J. C. Sexton and D. H. Weingarten, Hamiltonian evolution for
the hybrid Monte Carlo algorithm, Nucl. Phys. B 380, 665
(1992).

[30] M. Creutz, Global Monte Carlo algorithms for many-fermion
systems, Phys. Rev. D 38, 1228 (1988).

[31] S. Gupta, A. Irback, F. Karsch, and B. Petersson, The accep-
tance probability in the hybrid Monte Carlo method, Phys.
Lett. B 242, 437 (1990).

[32] A. A. Dubrulle, Retooling the method of block conjugate gradi-
ents, Electron. Trans. Numer. Anal. 12, 216 (2001).

[33] A. Frommer, B. Nockel, S. Gusken, T. Lippert, and K.
Schilling, Many masses on one stroke: Economic compu-
tation of quark propagators, Int. J. Mod. Phys. C 6, 627
(1995).

[34] B. Jegerlehner, Krylov space solvers for shifted linear systems,
arXiv:hep-lat/9612014.

[35] Y. Futamura, T. Sakurai, S. Furuya, and J.-I. Iwata, ‘Efficient al-
gorithm for linear systems arising in solutions of eigenproblems
and its application to electronic-structure calculations, in High
Performance Computing for Computational Science–VECPAR
2012 (Springer, Berlin, 2013), pp. 226–235.

[36] M. Gutknecht and Z. Strakos, Accuracy of two three-term and
three two-term recurrences for krylov space solvers, SIAM J.
Matrix Anal. Appl. 22, 213 (2000).

[37] A reference C++ implementation of the algorithm is available
at https://github.com/lkeegan/blockCG

[38] P. de Forcrand and M. D’Elia, Continuum limit and universality
of the Columbia plot, PoS LATTICE2016, 081 (2017).

[39] H. B. Meyer, H. Simma, R. Sommer, M. Della Morte, O.
Witzel, and U. Wolff, Exploring the HMC trajectory-length
dependence of autocorrelation times in lattice QCD, Comput.
Phys. Commun. 176, 91 (2007).

043306-11

https://doi.org/10.1016/0024-3795(80)90247-5
https://doi.org/10.1016/0024-3795(80)90247-5
https://doi.org/10.1016/0024-3795(80)90247-5
https://doi.org/10.1016/0024-3795(80)90247-5
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/j.cpc.2018.07.012
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1103/PhysRevD.38.1228
https://doi.org/10.1103/PhysRevD.38.1228
https://doi.org/10.1103/PhysRevD.38.1228
https://doi.org/10.1103/PhysRevD.38.1228
https://doi.org/10.1016/0370-2693(90)91790-I
https://doi.org/10.1016/0370-2693(90)91790-I
https://doi.org/10.1016/0370-2693(90)91790-I
https://doi.org/10.1016/0370-2693(90)91790-I
https://doi.org/10.1142/S0129183195000538
https://doi.org/10.1142/S0129183195000538
https://doi.org/10.1142/S0129183195000538
https://doi.org/10.1142/S0129183195000538
http://arxiv.org/abs/arXiv:hep-lat/9612014
https://doi.org/10.1137/S0895479897331862
https://doi.org/10.1137/S0895479897331862
https://doi.org/10.1137/S0895479897331862
https://doi.org/10.1137/S0895479897331862
https://github.com/lkeegan/blockCG
https://doi.org/10.22323/1.256.0081
https://doi.org/10.22323/1.256.0081
https://doi.org/10.22323/1.256.0081
https://doi.org/10.22323/1.256.0081
https://doi.org/10.1016/j.cpc.2006.08.002
https://doi.org/10.1016/j.cpc.2006.08.002
https://doi.org/10.1016/j.cpc.2006.08.002
https://doi.org/10.1016/j.cpc.2006.08.002

