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Lattice Boltzmann simulation of mixtures with multicomponent van der Waals equation of state
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We developed a general framework for simulating multicomponent and multiphase systems using the lattice
Boltzmann framework. Despite the fact that there is no restriction on the number of components in principle,
in this article we focus an application to two-component mixtures, but we also demonstrate that the algorithm
works for larger numbers of components. To validate our algorithm we separately minimized this underlying
free energy to generate theoretical phase diagrams for mixtures of fluids with a van der Waals–like free energy.
Our phase diagrams and lattice Boltzmann simulation results are presented in a density-density plane, which best
matches with lattice Boltzmann simulations performed at constant volume and temperature. All the theoretical
phase diagrams are well recovered by our lattice Boltzmann method.
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I. INTRODUCTION

In this paper we introduce a lattice Boltzmann (LB) method
for multicomponent, multiphase applications. The develop-
ment of such methods began shortly after the introduction
of lattice Boltzmann methods by McNamara and Zanetti [1].
There are three main categories of multiphase and multicom-
ponent models. The first is based on the lattice gas method
by Gunstensen et al. [2] and focuses on achieving maximal
phase separation of nearly immiscible fluids. There are some
somewhat recent extensions of the LB method based on this
approach [3,4], but generally it has somewhat fallen out of
fashion.

A second approach, developed by Shan and co-workers
[5,6], is based on mimicking microscopic interaction by in-
troducing a pseudopotential. Approaches based on this model
continue to be of interest, and developments along these lines
are ongoing [7,8].

A third approach, developed by Swift et al. [9,10], is based
on relating the lattice Boltzmann method back to an underly-
ing free energy. Methods based on this approach continue to
be developed, and these approaches are particularly of interest
when one can define a free-energy functional [11,12].

There has been some significant cross-fertilization between
the first and second approaches, as equations of state can
be selected for pseudopotential methods. Also, free energy
approaches that originally altered the second moment of the
local equilibrium now typically rely on using a mean-field
forcing approach [13], although this force is derived from
a gradient of a chemical potential rather than an underlying
pseudopotential [14,15].

The model presented in this paper relies on deriving
chemical potentials from an imposed lattice free energy, and
mean-field forcing terms are derived from gradients of these
chemical potentials. Here we use the free energy for a mixture
of van der Waals fluids as our foundation. van der Waals
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descriptions have received only limited attention recently,
since there are free energies with more degrees of freedom
that allow for a better fit for specific substances of interest.
However, here we focus on the generic multicomponent,
multiphase behavior, and even for a simple mixture of van
der Waals fluids with their restricted parameters, a remarkably
complex set of phenomena can be recovered.

Much of this complexity was already understood by van
der Waals and co-workers around the turn of the past cen-
tury. However, the interest of physicists turned to a different
direction after that time, and much of this knowledge had
been lost in the physics community. Most modern studies of
such fluid mixtures were often restricted to chemistry and
chemical process engineering [16,17], which do not contain
descriptions of the phase behavior we observed. However, we
found work by Sengers and Levelt [18,19] and several papers
by Meijer et al. [20–25] extremely enlightening. We then
realized that much of our work constructing equilibrium phase
diagrams for mixtures of van der Waals gases consisted of
rediscovering results that were already known at the beginning
of the 20th century.

We demonstrate the ability of our LB approach to recover
the phase behavior of a mixture of two van der Waals flu-
ids. The real interest of using a LB method for describing
such a fluid mixture lies in nonequilibrium phenomena. The
development of this method was inspired by our interest in
evaporation phenomena and the effects that can occur when
a change in concentration introduces phase separation fronts
[26–30]. One interesting application of a related problem for
a mixture of van der Waals fluids by an approach more closely
related to the original free-energy LB approach looked at the
condensation of a gas of two components into a dendritic
structure of alternating fluid phases [31]. Such a model opens
up the possibility to address a large number of three-phase
problems [32,33], particularly those that involve a gas phase,
as well as other unintuitive phenomena relevant to gas extrac-
tion, like condensation upon expansion, even at a constant
temperature [34]. In this paper, however, we focus first on
establishing the appropriateness of our approach to recover the
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complex phase behavior of these mixtures, since the recovery
of equilibrium behavior is a necessary condition of recovering
the correct nonequilibrium behavior.

Our paper is structured as follows. First we introduce a lat-
tice free energy of a mixture of van der Waals fluids in Sec. II.
In Sec. III we define our lattice Boltzmann approach. In
Sec. IV we derive the hydrodynamic limit of our LB approach.
We then introduce the simplest possible implementation of
this approach in one dimensions in Sec. V and show some
of the most interesting phase diagrams which we recover two
ways: The first is by directly minimizing our free energy and
the second is by running a LB simulation. We show that for a
large variety of complex phase diagrams the two methods give
near identical results, even when we have large density ratios
between different phases. We relate our results to the common
nomenclature of van Konynenburg and Scott [16,17], which is
widely used in chemistry and chemical engineering. Multiple
three-phase regions are recovered, and even metastable re-
gions are recovered. Alone the elusive four-phase point eluded
a recovery by our LB method. This demonstrates that our
lattice Boltzmann method is able to recover complex phase
behavior with good accuracy and is a promising candidate to
investigate novel nonequilibrium behavior.

II. DISCRETE THERMODYNAMICS OF
A MULTICOMPONENT SYSTEM

The free energy of the familiar one-component van der
Waals gas on a lattice can be written as

F =
∑

x

[
ρθ ln

(
ρ

1 − ρb

)
− aρ2 + κ

2
(∇ρ)2

]
, (1)

where θ = kBT , kB is the Boltzmann constant, ρb is the
volume fraction excluded by the repulsive interaction between
the particles, and a is a parameter representing the attraction
between molecules. The κ term is responsible for an interface
free energy. This equation of state predicts a critical point with

θcr = 8a

27b
, (2)

ρcr = 1

3b
, (3)

pc = a

27b2
. (4)

We later use these relations to express the parameters a and
b in terms of the critical temperature and density. This can
be generalized to a multicomponent system by using a linear
combination of the excluded volumina for each species and
quadratic interactions between all components. We introduce
a discrete free energy in terms of densities ρc of component c

for a mixture of van der Waals fluids as

F =
∑

x

∑
c

[
ρc(x)θ ln

(
ρc(x)

1 − ∑
c′ bc′

ρc′ (x)

)

+
∑
c′

∑
�x

ψcc′
(�x)ρc(x)ρc′

(x + �x)

]
. (5)

Here bc is a parameter related to the excluded volume of a
particle of component c and ψcc′

is an interaction function

that includes the strength and the range of the interaction
between components c and c′. We assume here that the
ψcc′

(x) function is symmetric in space ψcc′
(−x) = ψcc′

(x)
and in components ψcc′

(x) = ψc′c(x).
This discrete free energy is equivalent to a standard contin-

uous definition of a van der Waals free-energy mixture. Using
a Taylor expansion we can obtain, up to third-order derivatives
and interpreting the sum as an integral,

F =
∫

dx
∑

c

[
ρcθ ln

(
ρc

1 − ∑
c′ bc′

ρc′

)
−

∑
c′

acc′
ρcρc′

+ 1

2

∑
c′

κcc′∇ρc · ∇ρc′
]
, (6)

where we have identified the van der Waals attraction and
interface parameters in terms of ψ as

acc′ = −
∑
�x

ψcc′
(�x), (7)

κcc′ = −
∑
�x

(�x)2ψcc′
(�x). (8)

The chemical potential for each component in the mixture
is obtained by starting from the discrete free energy (5),
where the discrete nature of the free energy replaces the
usual functional derivative of the free energy with a simple
derivative with respect to ρc(x):

μc(x) = ∂F

∂ρc(x)

= θ ln

(
ρc(x)

1 − ∑
c′ bc′

ρc′ (x)

)
+ θbcρ(x)

1 − ∑
c′ bc′

ρc′ (x)

+ 2
∑
c′

∑
�x

ψcc′
(�x)ρc′

(x + �x). (9)

In general, ensuring bulk equilibrium requires the equality of
the chemical potentials and equality of the pressures between
the different phases. To ensure thermodynamic consistency,
the full chemical potentials are sufficient in the continuous
case because of the generalized Gibbs-Duehem relation

∇αPαβ =
∑

c

ρc∇βμc. (10)

However, in the discrete case, the validity of a discrete version
of the Gibbs-Duehem relation is not guaranteed [14]. It is
therefore prudent to ensure the consistency by evaluating the
equality of the bulk pressure in different phases. We obtain the
bulk pressure by assuming constant densities ρc in Eq. (5).
With the assumption that the ρc are spatially constant we
obtain

p = − ∂F

∂V
= −

∑
c

∂F
∂ρc

dρc

dV
= 1

V

∑
c

ρc ∂F
∂ρc

=
∑

c

[
ρcθ

1 − ∑
c′ bc′

ρc′ −
∑
c′,�x

ψcc′
(�x)ρcρc′

]

=
∑

c

[
ρcθ

1 − ∑
c′ bc′

ρc′ −
∑
c′

acc′
ρcρc′

]
. (11)
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Note that the bulk values of the pressure for phases that are
separated with a flat interface are expected to be identical,
but that the nominal value of this bulk pressure in interface
regions will deviate. For droplets, i.e., phases with a curved
interface, the pressure inside the drop will be larger, an effect
known as Laplace pressure. In this case the divergence of
the pressure tensor in Eq. (10) would still be zero. For this
equilibrium the chemical potential would also be constant, but
the value will be different from the bulk equilibrium value.
These interface effects are not studied in the present paper and
we restrict our simulations to flat interfaces.

III. LATTICE BOLTZMANN METHOD FOR
A MULTICOMPONENT SYSTEM

To simulate the dynamics of this multicomponent van der
Waals mixture we use a lattice Boltzmann method. Such
a method relies on a discretization of space that we take
to coincide with the discrete free energy introduced in the
preceding section. With each lattice point, we associate a set
of lattice velocities vi that connect it to neighboring lattice
points.

The fundamental variables of the lattice Boltzmann method
are densities fi (x, t ) associated with the lattice velocities. The
exact interpretation of the fi in terms of physical quantities
remains a little obscure, although there are some recent ef-
forts to shed light on this issue [35,36]. At each time step,
these densities get moved (streamed) to the lattice point their
associated velocity points to. After this streaming step, the
densities at each lattice point get redistributed. For clarity, the
rearranging operation is split into two parts here: a collision
operator �c

i associated with the behavior of ideal gases for
one component and a forcing term Fc

i that incorporates the
nonideal interactions as well as momentum exchange among
the components.

For each component we then write a lattice Boltzmann
equation

f c
i (x + vi, t + 1) − f c

i (x, t ) + Fc
i (x, t ) = �c

i (x, t ). (12)

The method conserves the local mass ρc. We also define a
momentum for each component ρcuc

α . These momenta are
not conserved; however, the total local momentum ρuα =∑c

ρcuc
α is conserved. Specifically, they are defined as

ρc =
∑

i

f c
i , (13)

ρcuc
α =

∑
i

f c
i viα, (14)

where we imply ρ = ∑
c ρc and the greek index α denotes a

spatial direction.
For the collision operator we use the Bhatnagar-Gross-

Krook collision operator

�c
i =

∑
j

�ij

(
f

c,0
j − f c

j

)
, (15)

where f
c,0
j is the equilibrium distribution associated with

velocity vj for component c and all the eigenvalues of the
collision matrix �ij are taken to be 1

τ
for simplicity. This

choice implies that the collision operator conserves both the

local mass ρc and the momentum of each component ρcuc.
The exchange of momentum between the species in this
algorithm is included in the forcing term.

The moments of our equilibrium distribution must be such
that the relevant hydrodynamic quantities are recovered:∑

i

f
c,0
i = ρc, (16)

∑
i

f
c,0
i viα = ρcuc

α, (17)

∑
i

f
c,0
i viαviβ = ρcuc

αuc
β + ρcθδαβ. (18)

These moments drive the definition of the equilibrium distri-
bution

f
c,0
i = ρcwi

[
1 + 1

θ
viαuc

α + 1

2θ2

(
viαuc

α

)2 − 1

2θ
uc

αuc
α

]
,

(19)

where wi is a weight associated with a specific lattice velocity
i. We note at this point that although uc

α is not itself a
proper hydrodynamic variable, the hydrodynamic mean fluid
velocity uα is composed by weighting the velocities of each
component uc

α by its respective composition ρc/ρ.
In general, forces on component c do not change ρc, so the

zeroth-order moment of the lattice Boltzmann forcing term Fc
i

is ∑
i

F c
i = 0. (20)

The first velocity moment of Fc
i gives the momentum change

of component c, ∑
i

F c
i viα = Fc

α . (21)

The force Fc
α has two contributions that combine such that

Fc
α = Fμ,c

α + F
f,c
α : thermodynamic forcing from chemical

potential gradients (Fμ,c
α ) and momentum exchanges from

friction between mixture components (Ff,c
α ).

As shown in [14], the lattice Boltzmann model to this
point will contain thermodynamic inconsistencies. We use the
second velocity moment of the forcing term to incorporate
corrections (�c

αβ) to the equilibrium behavior:∑
i

F c
i viαviβ = Fc

αuβ + Fc
βuα + �c

αβ . (22)

Reference [14] demonstrates that a fourth-order analysis of
forcing methods leads to the following choice for �c

αβ to
ensure consistent thermodynamic equilibrium:

�c
αβ = − 1

τ

[(
τ − 1

4

)
Fc

αF c
β

ρc
+ 1

12
∇2ρc

]
. (23)

The frictional contribution has to be proportional to the veloc-
ity difference between the species,

Ff,c
α = −

∑
c′

λcc′ ρcρc′

ρc + ρc′
(
ûc′

α − ûc
α

)
, (24)

where the numerical parameter λcc′
sets an effective scattering

cross section between the components, the ûc
α are true fluid
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velocities, defined through

ûc
α = uc

α + 1

2ρc
F c

α , (25)

and the minus sign sets the convention that friction acts
opposite to any driving forces defined in a positive direction.

A standard lattice Boltzmann method, without extra forc-
ing terms, simulates the evolution of an ideal gas, with an
equation of state p = ρθ . This is consistent with an ideal
gas free energy F id = ∑

x θρln(ρ) and an ideal chemical
potential of μid = θ ln(ρ) + θ . The conservative force results
from the gradient of the nonideal part of the chemical potential

Fμ,c
α = ρc∇α (γμμc − μc,id ), (26)

where we introduced the factor γμ, which can be interpreted
as an arbitrary prefactor for the free energy that does not
affect equilibrium behavior. Although this prefactor is not
explicitly necessary, we use it for numerical convenience to
instead of renormalizing three parameters (θ , acc′

, and κcc′
) to

help stabilize the nonequilibrium behavior of our simulations.
This concludes the brief description of the lattice Boltzmann
approach.

IV. MACROSCOPIC EQUATIONS

We note that by keeping the form of the lattice Boltzmann
equation for a specific component c identical to that of a
regular single-component lattice Boltzmann equation, we can
sum up our lattice Boltzmann equations over all components
[
∑

c Eq. (12)] to recover a lattice Boltzmann equation for the
entire mixture that also has the single-component form

fi (x + vi, t + 1) − fi (x, t ) + Fi (x, t ) = �i (x, t ). (27)

Given our chosen equilibrium distribution and its moments,
we automatically know that the full mixture equations of
motion are the standard continuity equation

∂tρ + ∇α (ρûα ) = 0, (28)

where ûα = uα + 1
2ρ

Fα and the Navier-Stokes equations

∂t (ρûα ) + ∇β (ρûαûβ )

= −∇α (ρθ ) + ρFα + ∇β

[
τρθ

(∇βûα + ∇αûβ

− 2
3∇γ ûγ δαβ

)]
. (29)

However, we must still derive the equations of motion with
respect to a single component. We perform a Taylor expansion
of the first term in Eq. (12) and make use of Eq. (15) to itera-
tively substitute Eq. (12) into itself to obtain an expression for
f c

i in terms of the equilibrium distribution f
c,0
i ,

∂tf
c,0
i + viα∂αf

c,0
i − τ∂tFi − viα∂αFi + Fi

−
(

τ − 1

2

)
(∂t + viα∂α )2

i f
c,0
i + O(∂3) = 1

τ

(
f

c,0
i − f c

i

)
.

(30)

Summing over the indices i and using the previous definition
of ûc

α gives

∂tρ
c + ∇α

(
ρcûc

α

) = O(∂2). (31)

Since ûc
α is a function of the nonhydrodynamic component

velocity uc
α , we wish to eliminate uc

α in favor of the mixture’s
mean velocity uα , which is a hydrodynamic variable. Defining
the component velocity as a deviation from the mean fluid
velocity

ûc
α = uα + δuc

α, (32)

we obtain the component-specific zeroth moment as

∂tρ
c + ∇α (ρcuα ) = −∇α

(
ρcδuc

α

) + O(∂2). (33)

This leaves us with the task of identifying δuc
α in terms

of the hydrodynamic quantities. We begin by determining the
first velocity moment of Eq. (30) and keeping only first-order
terms

∂t

(
ρcuc

α

) + ∇α

(
ρcuc

αuc
β + ρcθδαβ

) + Fc
α = O(∂2). (34)

Substituting in the component velocity defined in Eq. (32)
and noting that derivatives of the small perturbation δuc

α are
negligible, we have

∂t (ρ
cûα ) + ∇α (ρcûαûβ ) + ∇β (ρcθ ) + Fc

α = O(∂2). (35)

Multiplying Eq. (29) by ρc

ρ
, recognizing that −∇αPαβ =

−∇α (ρθ ) + Fα , and absorbing second-order terms into
O(∂2) allows a substitution for the first two terms

−ρc

ρ
∇αPαβ + ∇β (ρcθ ) + Fc

α = O(∂2). (36)

Finally, we substitute in the Gibbs-Duhem relation (10) and
the force definitions from Eqs. (24) and (26) to obtain

−ρc

ρ

∑
c′

ρc′∇βγμμc′ + ∇β (ρcθ ) + ρc∇α (γμμc − μc,id )

−
∑
c′

λcc′ ρcρc′

ρc + ρc′
(
ûc′

α − ûc
α

) = O(∂2). (37)

Using θρc∇ln(ρc ) = θ∇ρc, the second term above is recog-
nized as an ideal chemical potential gradient (for an isother-
mal system), which cancels with part of the nonideal chemical
potential driving force. Given the definition of the full density
ρ, we can simplify the expression as

∑
c′

ρcρc′

ρ
γμ∇α (μc − μc′

) −
∑
c′

λcc′ ρcρc′

ρ

(
ûc′

α − ûc
α

)
= O(∂2). (38)

Expanding this equation and substituting in the Gibbs-Duhem
relation allows us to rewrite as

−γμ∇αμc =
∑
c′

λcc′ ρc′

ρ

(
ûc

α − ûc′
α

) − 1

ρ
∇βPαβ + O(∂2).

(39)
This linear system of equations is the definition of Maxwell-
Stefan diffusion with the addition of a barodiffusion term
∇βPαβ that captures an average pressure gradient force acting
on each component. Provided the pressure tensor is nonsin-
gular, one may use the hydrodynamic substitution for uc

α

[Eq. (32)] and in principle Eq. (39) will always yield a general
solution for δuc

α .
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In the specific case of symmetric, constant λcc′ = λ and a
divergence-free pressure tensor, such as for a two-component
simulation, this reduces to

δuc
α = −1

λ
γμ∂αμc + O(∂2). (40)

In this case Eq. (33) becomes the standard Cahn-Hilliard
equation

∂tρ
c + ∇α (ρcuα ) = −∇α (M∇αμc ) + O(∂2), (41)

where the mobility is given by M = ρcγμ/λ.

V. THE D1Q3 IMPLEMENTATION

The simplest implementation of this lattice Boltzmann
method, and one entirely sufficient to recover the phase be-
havior, consists of a one-dimensional model with only three
velocities vi ∈ {0,+1,−1}. Given the model definition in the
preceding section, the lattice Boltzmann equations for each
component and velocity at a given lattice site are explicitly

f c
0 (x, t + 1) = f c

0 (x, t ) + 1

τ

(
ρc − ρcθ − ρcuc2 − f c

0 (x, t )
)

− (2Fcuc − �c ) (42)

f c
+1(x + 1, t + 1)

= f c
+1(x, t ) + 1

τ

[
1

2
(ρcuc2 + ρcuc + ρcθ − f c

+1(x, t ))

]

−
(

−Fcuc − 1

2
Fc + 1

2
�c

)
(43)

f c
−1(x − 1, t + 1)

= f c
−1(x, t ) + 1

τ

[
1

2
(ρcuc2 − ρcuc + ρcθ − f c

−1(x, t ))

]

−
(

−Fcuc + 1

2
Fc + 1

2
�c

)
. (44)

Equations (7) and (8) can also be explicitly expanded in terms
of the velocity set for the D1Q3 model, with the velocities
implicitly corresponding to �x for a single time step. This
allows us to identify the parts of ψcc′

, assuming we use a
support of only the central lattice point and its neighbors.
Beginning with Eq. (8), we have

κcc′ = − ψcc′
(x + 1) − ψcc′

(x − 1)

= − 2ψcc′
(x + 1). (45)

Equation (7) expands to

acc′ = − ψcc′
(x) − ψcc′

(x + 1) − ψcc′
(x − 1)

= − ψcc′
(x) + κcc′

. (46)

Equations (45) and (46) taken together imply the complete set
of ψcc′

,

ψcc′
(x) = κcc′ − acc′

, (47)

ψcc′
(x + 1) = ψcc′

(x − 1) = − 1
2κcc′

. (48)

Expansion of the interaction term in Eq. (5) and substituting in
Eqs. (45) and (46) allows the identification of an appropriate
gradient stencil for the model. In this particular model, we
recover the standard second-order finite-difference Laplace
stencil.

To aid the accuracy and help control the stability of
the lattice Boltzmann simulations in the regions where we
anticipated phase separation with sizable density ratios and
to accelerate convergence, we implemented two strategies.
First, lattice Boltzmann simulations were initialized with tanh
density profiles with bulk values equal to the results of our
free-energy minimization. Second, we sought to initialize the
density profiles with an interface width w that was close to the
equilibrium interface width.

The initial interface width we imposed drove the choice of
two simulation parameters κcc′

and a chemical potential co-
efficient γμ of Eq. (26), which is a numerical parameter used
to control the abruptness with which the chemical potential-
based forcing Fμ,c is applied. The relationship of these pa-
rameters to the interface width was determined in [15] to be

w(κ, θ/θcr ) =
√

2κcc′

θcr

θ
− 1

, (49)

where θcr is the critical temperature for a component and θ is
the isothermal lattice temperature, and setting

cs =
√

1 − 4κcc′
ρlγμ, (50)

where cs is the lattice speed of sound (equal to 1√
3
) and ρl is

the expected liquid density determined by minimizing the free
energy. Since this was derived for a single-component system,
this is only an approximate guide for the multicomponent
interface width.

Finally, we tested two implementations of thermodynamic
forcing (Fμ,c

α ). First is the nonideal chemical potential gradi-
ent of component c,

Fμ,c
α = ρc∇α (γμμc − θ ln ρc ), (51)

which is the choice that naively corresponds to the ther-
modynamic prediction of the force. This method is termed
the “nid” method. Figure 6 is the only phase diagram that
shows LB simulations using this forcing method. Second is
the gradient of the chemical potential of component c less the
ideal pressure from component c,

Fμ,c
α = ρc∇αγμμc − θ∇αρc. (52)

This method is termed the “log” method. All phase dia-
grams in the following section show LB simulations using
this forcing method. Both are expressions for the nonideal
chemical potential driving force in Eq. (26); however, the
numeric representations of each yield results that differ in
both accuracy and stability. The “log” method outperforms the
“nid” method by a surprisingly large degree, as will be seen in
the following section.

VI. VERIFICATION FOR MIXTURES
OF VAN DER WAALS FLUIDS

In this section we examine the ability of our lattice Boltz-
mann method to recover the complex phase behavior of
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mixtures of van der Waals fluids. The first, quite extensive,
section regards two-component mixtures. We examine the
key types of phase diagrams obtainable for such mixtures.
A shorter second section shows a single example of a three-
component van der Waals fluid, showing four-phase coexis-
tence.

A. Two van der Waals fluids

To verify the theory in the preceding section, we focused
on the simplest case of a mixture of two van der Waals (VdW)
fluids. We chose to specify the two components of the mixture
via three degrees of freedom: component A and B critical
temperatures (θA

cr and θB
cr ) and component B critical density

(ρB
cr ); we fixed the component A critical density ρA

cr = 1. The
other properties of the components were determined by the
VdW relations using Eqs. (2) and (3):

aA = 9
(
θA
cr

)2

8ρA
cr

, bA = 1

3ρA
cr

, (53)

aB = 9
(
θB
cr

)2

8ρB
cr

, bB = 1

3ρB
cr

. (54)

The energetic interaction between components A and B was
controlled by the implementation of a geometric mixing rule
applied to aA and aB [20,37,38],

aAB = ν
√

aAaB, (55)

with the parameter ν allowing the interaction to deviate from
the geometric mixing rule. With this rule in place, a neutral
interaction corresponds to ν = 1, a repulsive interaction cor-
responds to ν < 1, and an attractive interaction corresponds to
ν > 1. Note that we also used the same parameter ν to control
the cross-component interactions in the interface terms of the
chemical potential (i.e., κcc′ = νκcc for c �= c′ and c ∈ A,B).

An illustration of our LB simulations is shown in Fig. 1.
This figure shows the density profile along with the associated
pressure and chemical potentials that the LB simulation recov-
ers for the (ρA, ρB ) pair (0.8, 0.8) for θA

cr = θB
cr = 0.4, ρA

cr =
ρB

cr = 1, and ν = 0.5. This density pair lies in the middle of
the three-phase region in Fig. 6. The simulation is run for
50 000 iterations. The density profile shows an A-rich and a
B-rich liquid domain, both of which are separated by two gas
domains. From these domains we obtain the compositions of
the three phases. The chemical potentials are constant across
the lattice and the pressure in the bulk phases is also constant.
This confirms that the simulation has recovered the thermo-
dynamic equilibrium. The simulated bulk pressure converges
to a constant value across the lattice to better than 10−11 and
it matches theoretical expectations to approximately 10−6.
There are much larger discrepancies at the interfaces that
we attribute to higher-order gradient terms in the pressure,
which were not investigated for the current paper. Note that
the equality of the bulk pressure and chemical potential are
sufficient to ensure the correctness of the phase diagrams.

The simulated chemical potentials for both components are
constant across the entire lattice, interfaces included, to better
than 10−12 and the values also both match theoretical expecta-
tions to approximately 10−6 (we note here that our free-energy
minimization routine converges with an uncertainty of order
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FIG. 1. Simulation results from our baseline phase diagram (see
Fig. 6) for the initial (ρA, ρB ) pair (0.8, 0.8), which exhibits ther-
modynamically consistent three-phase equilibrium (see the text for
details).

10−6). Finally, we note that both the pressure and chemical
potentials converge to near-machine-accuracy constant values
if the simulations are allowed sufficient time to run.

To extensively test the equilibrium behavior of our method,
we created phase diagrams for several two-component mix-
tures spanning a range of component properties to which we
could compare a series of LB simulations. All of the LB
simulations are isothermal with conserved mean densities, so
a natural way to present our data is to plot coexistence curves
on a density-density plane. Note that every point on this plane
represents a mixture with its own equilibrium pressure.

van Konynenburg and Scott [16,17] developed a taxonomy
of binary van der Waals mixtures. It classifies phase behavior
based on characteristics of pressure-temperature phase dia-
grams. The basic idea is that the van der Waals mixtures are
characterized by three dimensionless parameters

ξ = bB − bA

bA + bB
= ρA

cr − ρB
cr

ρA
cr + ρB

cr

, (56)

ζ =
(

aB

(bB )2
− aA

(bA)2

)/(
aA

(bA)2
+ aB

(bB )2

)

= pB
cr − pA

cr

pA
cr + pB

cr

, (57)

� =
(

aA

(bA)2
− 2aAB

bAbB
+ aB

(bB )2

)/(
aA

(bA)2
+ aB

(bB )2

)
,

(58)

which are obtained from the five parameters in the free
energy (6) by using the freedom to choose a time and length
scale. Here ξ characterizes the relative size of the constituent
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FIG. 2. Global phase diagram for a binary van der Waals fluid
mixture showing five regions (I–V) reproducible by the VdW EOS
with pluses approximating the state of phase diagrams depicted in
this paper. The five open symbols with a circular background indicate
symmetric mixtures with equal molecular sizes for each component
(ξ = 0) and the five closed symbols indicate asymmetric mixtures
for unequal molecular sizes. The dashed curve depicts neutral cross-
component interactions (ν = 1) for the geometric mixing rule in
Eq. (55). Azeotropy is not relevant to the current study and is not
depicted here. This figure has been adapted from [39].

components, with equal sizes corresponding to ξ = 0; ζ is a
measure of the asymmetry of the critical pressures of the pure
components (4); and � indicates whether the A-B interactions
are more attractive (� < 0) or less attractive (� > 0) than
that of a neutral mixture. In particular, binary fluid phase
separation is only possible for � > 0.

Figure 2 has been adapted from [39]. This diagram shows
the �-ζ landscape for five different classes of P -T phase
diagrams as detailed in [39] (denoted by roman numerals
I–V). Since the van Konynenburg–Scott system is common
in other scientific and engineering disciplines, we include it
here to outline where our phase diagrams, presented later,
fall within the context of their classification. Note that two-
phase and three-phase behavior cannot be distinguished on
this diagram.

Figure 2 only shows the classification for ξ = 0. We see
that it is symmetric with respect to the ζ = 0 vertical axis. For
nonzero values of ξ , the vertical axis shifts left or right and
the regions for each phase diagram type compress or expand
accordingly. However, the relationships among phase diagram
types remain the same. In our case specifically, the values of
ξ given by our parameter choices were −0.1 � ξ � 0, which
has a negligible effect on the layout of Fig. 2.

At this point we note that although we were able to sample
a variety of � values, our ability to sample a wide array of
ζ values was limited. This was due to the dependence of
the acc′

and bc parameters on the critical temperatures of the

components. Moderate to large values of ζ drove the selection
of critical temperatures that very quickly lead to numerical
instabilities in the lattice Boltzmann method. We were able
to remedy these instabilities by application of stabilization
methods outlined later in this section, but low values of ζ were
the only ones that were able to sample reliably without manual
intervention.

To obtain a theoretical density-density phase diagram from
the free energy (6) we sampled combinations of (ρA, ρB ) for
given parameters. The process is explained in more detail
in the Appendix. It turned out to be necessary to perform
stability analysis for each point to ascertain whether a mixture
is unstable and what variation of the density will lead to a
reduction of the free energy. We obtain the 2 × 2 Hessian H
of free-energy derivatives

H =
⎡
⎣ ∂2ψ

∂ (ρA )2
∂2ψ

∂ρB∂ρA

∂2ψ

∂ρA∂ρB

∂2ψ

∂ (ρB )2

⎤
⎦. (59)

If the determinant of H at point (A,B ) was negative, a single
negative eigenvalue of the Hessian existed and phase separa-
tion was to be expected at that point. We then numerically
minimized the free energy given by Eq. (5) at that point while
allowing for three coexisting phases. The eigenvector of the
negative eigenvalue from the stability analysis was used to
set the direction of the first step for the minimization. The
results of the free energy minimization were logged, allowing
us to define both binodal lines and a spinodal region for the
phase diagram. In all graphs that follow, binodal lines are
all depicted by solid black lines and the edges of the light
gray regions approximate the spinodal regions (referred to
as quasispinodals) where the fluid will be unconditionally
unstable towards a phase separation.

The LB simulations were initialized with a range of
(ρA, ρB ) density pairs in a near-equilibrium profile and al-
lowed to iterate for 50 000 time steps. We selected up to 35
density pairs shown in Fig. 3 to test in regions of the theoret-
ical phase diagram that were anticipated to exhibit two-phase
behavior; anticipated three-phase regions were exhaustively
tested. The densities associated with the resulting phases were
logged when each simulation concluded. Simulations covered
a range of critical temperature, critical density, and interaction
parameters to test a variety of phase diagram structures.

The lattice Boltzmann simulations that tested each phase
diagram were automated to consistently and comprehensively
test all two- and three-phase regions. To cover the two-phase
regions, we selected paths through the phase diagrams that
were general enough to ensure at least one lattice Boltzmann
simulation would occur in all of the anticipated regions:
vertical from the A-component axis (1,0) to (1,1), horizontal
from the B-component axis (0,1) to (1,1), diagonal from axis
to axis (1,0) to (0,1), and diagonal from (1,1) to near the
van der Waals singularity line at (1.4, 1.4). These path are
shown in Fig. 3. Note that occasionally the asymmetry of the
components in a mixture will also include the point (1.5, 1.5).

In general, we chose κcc′ = 0.1 for our LB simulations.
The major exception to this is in simulating the two-phase be-
havior in the binary liquid regions of a phase diagram, where
we allowed κcc′

to linearly increase from 0.15 at (1.0,1.0) to
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FIG. 3. Set of points used to initialize the LB simulations to
test the two-phase regions of our phase diagrams. The algorithm
moves vertically from the A-component axis, horizontally from the
B-component axis, diagonally from axis to axis, and diagonally from
(1.0,1.0) to (1.4,1.4). The point (1.5,1.5) is also tested if mixture
components are asymmetric enough to admit it.

0.5 at (1.4,1.4). Deviations from these values are noted in the
captions of the associated phase diagrams.

Starting with a specified value for κcc′
, all simulations be-

gan by estimating the width of the equilibrium interface given
in [15] (for a single component) as the minimum interface
width

wmin = 1√
4ρv|θcr − θ | , (60)

which we modified to allow phase diagrams with components
to be warmer than their respective critical temperatures. This
initial width from the single-component theory in [15] proved
to overestimate the equilibrium interface width in most cases.
This had the effect of shifting the resulting bulk density val-
ues, affecting the accuracy of the simulations. To improve the
accuracy, this initial estimate was then iterated to an equilib-
rium state (usually 50 000 time steps) where the equilibrium
interface width was numerically measured. The measured
interface width was used to reinitialize the simulation and a
coefficient was calculated to preserve the relationship w ∝√

κcc′ . The value of γμ was initialized according to the relation
in Eq. (50). When a simulation was unstable (∼5% of the
total simulations), γμ was numerically optimized to find the
maximum value that would provide a stable simulation. If
this automation failed to find a stable simulation, parameters
were manually tuned by either decreasing γμ by a factor
of anywhere from 2 to 10 or setting the initial interface
width to two lattice spaces. This occurred 13 times in ∼160
simulations in the two-phase regions and not at all in ∼5600
simulations in the three-phase regions.
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FIG. 4. Phase diagram for a van der Waals mixture of two iden-
tical components, generated using parameters of θA

cr = θB
cr = 0.4,

ρB
cr = 1.0, and a neutral interaction parameter ν = 1.0 (ξ = 0.0, ζ =

0.0, � = 0.0). Overlaid on top of the theoretical diagram generated
by free-energy minimization are the results of the LB simulations.
Also depicted is a diagonal connecting the VdW equation disconti-
nuities for both components.

The sections that follow outline our LB simulation results
for the phase diagrams indicated in Fig. 2. Results are grouped
in three ways: symmetric components (closed symbols in
Fig. 2), asymmetric components (open symbols in Fig. 2), and
the so-called shield region (enclosed region around ζ = 0 and
� = 0.4364 in Fig. 2). Several LB simulations touched areas
of numerical instability, but the automated parameter tuning
performed exceptionally and lattice Boltzmann simulations
were still able to reproduce all binodals very well.

When reviewing the following sections, please keep in
mind that our phase diagrams get complicated to depict. To
simplify the coloring, we use a common color to show points
our minimization algorithm identified as both unconditionally
unstable two-phase and metastable two-phase behavior. These
are collectively referred to as two-phase/metastable in the
figure legends.

1. Symmetric components

The first test case was for that of a mixture of two identical
components with neutral interactions. Figure 4 shows the
phase diagram recovered by minimizing the free energy of
such a system along with the associated lattice Boltzmann
simulations. As we expected for a de facto single-component
simulation, we obtained a perfectly symmetrical diagram with
straight binodal lines connecting equal densities on the A-
and B-component axes. The values of the phase-separated
densities on each axis corresponded to the results of a single-
component simulation given the same initial conditions. The
liquid and the gas have identical compositions, which is
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FIG. 5. This type II phase diagram is identical to the de facto
single-component mixture except phase separation was induced by
setting ν = 0.7 (ξ = 0.0, ζ = 0.0, � = 0.3). The interaction param-
eter is not quite repulsive enough to connect all regions of phase
separation or provoke three-phase behavior.

indicated here by the fact that the tie lines for liquid-gas
coexistence would all meet in the origin.

Proceeding from the neutral interaction case in Fig. 4, we
induced repulsive behavior between the two components by
reducing the interaction parameter ν. Figure 5 shows this
behavior with ν = 0.7. The liquid-gas densities now depend
on the concentration of the A and B components. More mixed
fluids show a gas density that is increased whereas the liquid
density at coexistence is decreased. Also the compositions of
the liquid and gas are no longer equal. This has important
consequences for the phase separation dynamics. Such a
system will first phase separate into liquid and gas phases of
approximately equal composition in a process dominated by
hydrodynamics and then the domains will slowly exchange
components through diffusion until the final equilibrium com-
positions are reached. At high densities a further miscibility
gap appears showing liquid-liquid phase separation where the
two VdW fluids behave as a binary liquid. The lattice Boltz-
mann simulations recover the predicted phase behavior well.

For attractive intercomponent interactions ν > 1 we find
the opposite behavior and the difference between liquid and
gas densities increases for mixed components. An example of
this (for a slightly asymmetric mixture) is shown in Fig. 10.

Gradually decreasing ν further to ν = 0.5 leads to a pinch-
ing of the liquid-gas binodals and the creation of two critical
points. At the same time the liquid-liquid phase separation
region expands. Then the two separated liquid-gas binodals
get close to the liquid-liquid binodal. Before they merge,
however, the liquid-liquid critical point splits into two liquid-
gas critical points and the binodals of the two new liquid-gas
binodals and the liquid-liquid binodal meet at three-phase

coexistence points, similar to the phase diagram of Fig. 7. The
liquid-gas critical points then approach each other and merge.
This complex transition as a function of ν is shown in movie
1 in the Supplemental Material [40].

In the creation of the three-phase region, the three-phase
coexistence points lead to binodals from the binary liquid re-
gion that intersect the liquid-gas coexistence curves as shown
in Fig. 6. The binodal lines that define the vapor densities
for the two liquid-vapor regions intersect at the gas phase of
the three-phase coexistence. These three binodal intersections
now define a new region in the phase diagram that exhibit
either metastable two-phase behavior, extending the now
metastable binodals, or unconditionally unstable three-phase
behavior. We depict this region in Fig. 6(b) by connecting
the three binodal intersection points with solid lines to form
a triangle. The LB simulations of metastable points follow the
binodals well after the crossing point as shown in Figs. 6(c)
and 6(d).

Intuitively it is clear that the metastable binodals have to
end when one branch intersects with the spinodal region,
because this branch now has to undergo a second round of
phase separation leading to three-phase behavior. Connect-
ing pairs of binodals at these spinodal end points inscribes
the region of unconditionally unstable three-phase behavior,
shown by the dashed lines in Fig. 6(b). Initial density pairs that
always minimize to three phases are indicated by the dark gray
regions of our phase diagrams. The minimization algorithm
predicts three-phase behavior for every point in this region and
the behavior was reflected in all LB simulations in this region.
The LB simulations for three-phase points show only very
small deviation from the point of intersection of the binodals.

We exhaustively tested every density pair in the full three-
phase region with LB simulations, and as shown in Fig. 6(a)
the LB simulations recover both the metastable behavior and
three-phase behavior within the three-phase region quite well.
In particular, every simulation within the unconditionally un-
stable three-phase region [see Fig. 6(b)] exhibited three-phase
behavior. Metastable points that were initialized with three
phases held the three-phase behavior as well as points in
the unconditionally unstable three-phase region. Metastable
points that were initialized with two phases also held the two-
phase behavior very well and followed the theoretical binodals
after the points of intersection. However, we note that all two-
phase metastable LB simulations show small inaccuracies that
we anticipate may be attributed to interfacial effects, but the
analysis of which are outside the scope of this paper.

We used the baseline mixture in Fig. 6 to perform a com-
parison between the two forcing methods based on chemical
potential gradients. This comparison was performed only in
the two-phase regions of the phase diagram. We found that
the nid chemical potential forcing method (51) was greatly
outperformed, in terms of both accuracy and stability, by the
log method of Eq. (52). Given this, we based all subsequent
simulations on only the method of Eq. (52).

Figure 7 is an example of a symmetric mixture where the
lattice temperature is below the common critical temperature
of the two components. For this mixture both components
severely repel each other (ν = 0.2). The behavior shown in
this particular phase diagram is striking: Despite the fact
that we are well above the critical temperature of either
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FIG. 6. Baseline case of three-phase behavior in a type III-H phase diagram. (a) Phase diagram for a mixture identical to the component in
Fig. 4 except ν = 0.5 (ξ = 0.0, ζ = 0.0, � = 0.5). We also include a comparison of the LB results using the two kinds of chemical potential
gradient forcing. (b) Close-up showing the three binodal intersections that define the full three-phase region and the connections between
binodals that are used to inscribe the unconditionally unstable three-phase region. The minimization algorithm predicts three-phase behavior
for every point in this region, and the behavior was reflected in all LB simulations in this region. (c) Crossing binodals in the vapor region of
the three-phase behavior. The LB simulations of metastable points follow the binodals well after the crossing point. The LB simulations for
three-phase points show a very small deviation from the point of intersection of the binodals, which is an error of ∼10−3. (d) Crossing binodals
in the A-rich liquid region of the three-phase behavior; those in the B-rich liquid region are similar. The LB simulations of metastable points
follow the binodals well, but they show the same small deviation from the binodal intersection point as noted in (c).

mixture, this phase diagram shows two separate symmetric
regions of liquid-gas phase separation as well as a three-
phase coexistence. This is particularly unexpected since we
previously observed in Fig. 5 that liquid-gas phase separation

was suppressed for γ < 1. For this peculiar kind of liquid-gas
phase separation the gas and liquid have substantially different
compositions and the actual density of one of the components
is larger in the gas than in the liquid. In terms of differential
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FIG. 7. Type III-H phase diagram showing a variation of Fig. 6
where the lattice temperature is above the critical temperatures of
each component, but the interaction parameter is repulsive enough
to still elicit three-phase behavior. It was generated using parameters
of θA

cr = θB
cr = 0.32, ρB

cr = 1.0, and ν = 0.2 (ξ = 0.0, ζ = 0.0, � =
0.8). The maximum density ratio is ∼118.

geometry Korteweg identified these additional liquid-gas re-
gions with “accessory plaits” to the free-energy surface [18].
Encouragingly, the lattice Boltzmann simulations are able to
recover the predicted phase separation behavior well. Note
that this behavior was also shown in movie 1 in the Supple-
mental Material [40].

2. Asymmetric components

So far our analysis has focused on symmetric mixtures,
corresponding to points in the global phase diagram on the
ζ = 0 axis of Fig. 2. However, there is nothing in our lattice
Boltzmann method that requires this choice. In the following
we show a few example of simulations for ζ �= 0.

Figure 8 shows the phase diagram for a mixture of two
components with asymmetric critical traits. The A and B

components are asymmetrical in both their critical tempera-
tures and critical densities, but they have a neutral interaction
between them (ν = 1). The overall appearance of this phase
diagram is similar to that of a single-component VdW fluid
with the B density taking over the role of the temperature. The
LB simulations recovered the theoretical expectations well
overall; however, the accuracy of the vapor density results
fell off by an order of magnitude (∼10−3 error) at the higher
density ratios. Such systems are of interest in that a change in
composition can act in a similar way to a change in tempera-
ture to induce phase separation. This is the basic phenomenon
in the formation of asymmetric precipitation membranes [27].

Figure 9 is another mixture of components that are asym-
metric in both critical temperatures and densities (ζ �= 0
and ξ �= 0). In this case, the lattice temperature is slightly
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FIG. 8. Type II phase diagram showing a lattice temperature
that is in between the critical temperatures of the two components
(θB

cr < θ < θA
cr ) and asymmetric critical densities (ρA

cr < ρB
cr ); the

interaction parameter is neutral. It was generated using parameters
of θA

cr = 0.5, θB
cr = 0.3, ρB

cr = 1.2, and ν = 1.0 (ξ = 0.090 909, ζ =
0.162 791, � = 0.013 339). Six test points defaulted to values for
κcc′

derived from single-component theory; the values were all
between 3.6 and (slightly above) 3.7.

below the critical temperatures of each component and the
cross-component interaction is moderately repulsive. The net
result is three separate domains with large miscibility gaps
separating them: a liquid-vapor region rich in A component, a
liquid-vapor region rich in B component, and a binary liquid
region. This particular example is a good approximation if
the mixture in Fig. 5 was examined at a higher temperature
(except for the slight asymmetry).

Figure 10 illustrates the behavior when asymmetric com-
ponents that have a moderate affinity for each other are
mixed. The lattice temperature is again below the critical
temperatures of both components, which has the effect of
detaching the spinodal region from the pure component axes
and creating a “bubble” of two-phase behavior bordered by
two critical points. Such a system will have the unusual
property that two pure gases above their critical temperatures
will, when brought in contact, phase separate into a liquid and
a gas phase.

If one of the mixtures is well above its critical point and
the other one below it and there is a significant repulsive
interaction we find a merged liquid-gas liquid-liquid binodal.
Such a system is shown in Fig. 11. In this case we have
only one binodal, and no critical point, similar to the neutral
case shown in Fig. 4. It is interesting to note that in Fig. 11
there is a continuous transition between liquid-gas and liquid-
liquid coexistence. Only the sharp turn in the binodal around
(ρA, ρB ) ≈ (0.2, 2.2) gives a soft indication where the change
in slope of the tie lines changes from −45◦, indicating equal
density for the two phases of a liquid-liquid coexistence to
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FIG. 9. Type III-H phase diagram showing a lattice temperature
that is close enough to the critical temperatures of each com-
ponent that there are three distinct regions of phase separation;
the interaction parameter is repulsive. It was generated using pa-
rameters of θA

cr = 0.35, θB
cr = 0.36, ρB

cr = 1.2, and ν = 0.6 (ξ =
−0.090 909, ζ = 0.104 859, � = 0.403 308).

slope of −90◦, indicating a larger density difference indicative
of liquid-gas coexistence.

In Fig. 12 we see perhaps our most interesting phase
diagram with effects arising due to the asymmetry of the
components. Relative to our very symmetric well-behaved
baseline case in Fig. 6, only two parameter adjustments were
made: The critical temperature of the B component was
raised to 0.45 (from 0.40) and the critical density of the B

component was raised to 1.1 (from 1.0). All other parameters
are unchanged. For symmetric mixtures the two liquid-gas
critical points have to merge with the liquid-liquid binodal
and that can only happen if the liquid-liquid binodal first
generates a three-phase region with two critical points through
the process described in the discussion of Fig. 6(d). For very
asymmetric systems this is not necessary. If the system is well
above the critical point for one pure system the liquid-liquid
critical point can merge with the other liquid-gas critical point
without first forming a three-phase region (not shown). For
only slightly asymmetric systems, however, the formation of
a three-phase region inside one of the binodals is typical.

Now let us consider the specific example of Fig. 12. At
first look, it appears that the binodal from the B vapor simply
rides up and over an independent A-liquid-vapor region to
join the A-binary-liquid binodal. However, when zooming in
to the peak of the A liquid-vapor region, we see that the
situation is far more complicated. The binodals cross again
to define two points of the three-phase region. However in the
three-phase region a new, and completely unexpected, binodal
for metastable two-phase behavior emerges. This gap has the
effect of dividing part of the metastable points into two new
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FIG. 10. Phase diagram showing a mixture with a lattice tem-
perature that is above the asymmetric critical temperatures of the
individual components (θA

cr < θB
cr < θ ); however, the interaction pa-

rameter is attractive enough to still produce two-phase behavior. It
was generated using parameters of θA

cr = 0.3, θB
cr = 0.31, ρB

cr = 1.3,
and ν = 1.5 (ξ = −0.130 435, ζ = 0.146 515, � = −0.483 813).

accessory plaits: one region at the apex of the A-liquid-vapor
area and another at the bottom of the three-phase region that
is defined by two new, short binodal line segments. This
binodal line is particularly unusual as it does not continuously
connect to any of the three basic liquid-gas or liquid-liquid
binodals. The miscibility gap within the three-phase region
is certainly possible in the context of Korteweg’s work (this
phenomenon was demonstrated for a symmetrical case); how-
ever, the formation of accessory plaits that are encapsulated
within the three-phase region was entirely unexpected and we
were unable to find any references to this phenomenon in the
literature [18,19]. At this point we have not been able to find
another example of this specific behavior.

3. Shield region

The shield region depicted in the upper, center of Fig. 2
encloses a zone where four-phase behavior between two VdW
fluids is theoretically possible. The transition through this
region was described by Korteweg using the tools of differ-
ential geometry and his phase diagrams were replicated by
computational means following the work of van Konynenburg
and Scott [17]. One of our goals was to replicate this process
using the lattice Boltzmann method and to obtain a stable
LB simulation of two-component four-phase behavior. The
general strategy was to use the center of the shield region
as identified by [16,17] (ζ = 0,� = 0.4364) and gradually
increase the critical temperatures of the components (i.e., a
deeper quench). Although we fell short of observing four-
phase behavior, we found that the simple D1Q3 model was
still able to replicate the transition through the shield region
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FIG. 11. Mixture with a lattice temperature that is above the crit-
ical temperature of one component but below that of the other (θA

cr <

θ < θB
cr ) and with repulsive interactions between the species. It was

generated using parameters of θA
cr = 0.32, θB

cr = 0.45, ρB
cr = 1.1, and

ν = 0.5 (ξ = −0.047 619, ζ = 0.214 724, � = −0.511 663).

well. Note that the description and phase diagrams in this
section are all for symmetric components.

Our exploration of the shield region is shown in movie
2 of the Supplemental Material [40]. We started by creating
a phase diagram with θc = 0.4 for both the A and B com-
ponents, which yielded a phase diagram remarkably similar
to the case shown in Fig. 9. We then increased the critical
temperatures in small uniform increments (i.e., equal changes
to θA

c and θB
c ) to quench the mixture temperature even further

below the critical temperatures. As the quench became deeper,
each region of the phase diagram developed independent
three-phase behavior with associated metastable accessory
plaits. The critical points of each accessory plait eventually
coincide at θcr = 0.427 and the phase diagram regions merge,
which isolates a bubble of single-phase behavior in the middle
of the phase diagram. This is shown in Fig. 13.

When initialized in near-equilibrium profiles in the three-
phase regions, the LB simulations hold the predicted densi-
ties for all three regions well. The three-phase regions are
separated by regions of two-phase behavior that form shortly
after the critical point merger. The majority of these two-
phase points are not bound by a three-phase region and are
thus not expected to exhibit metastable behavior, and the LB
simulations show that the predicted tie lines are recovered.

Further increase of the critical temperatures brings us
closer to the theoretical four-phase behavior, and the first
sign of this is when the densities associated with three-phase
behavior coalesce into a single set. The independence of the
separate three-phase regions is lost, yet they are still separated
by ribbons of two-phase metastable behavior. The single-
phase bubble shrinks in size, which slowly zeros in on the
expected density of the fourth phase.
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FIG. 12. Phase diagram with asymmetries that have produced an
auxiliary binodal for the metastable region of the phase diagram.
A zoomed-in view of the auxiliary binodals is shown in (b). This
phase diagram was generated using parameters of θA

cr = 0.4, θB
cr =

0.45, ρB
cr = 1.1, and ν = 0.5 (ξ = −0.047 619, ζ = 0.106 145, � =

0.502 825). Unlike the rest of the phase diagrams shown, the
metastable and three-phase LB simulations were done with κcc′ =
0.2. One point (0.0,1.0) used the single-component value of κcc′ = 2.

In this sensitive range the recovery of the results predicted
by minimizing the free energy with the lattice Boltzmann
starts to become inaccurate. The tie lines that define the
metastable two-phase ribbons have end points that retreat
closer to the three-phase densities forming a shape that looks
closer to ram’s horns. This is shown in detail in Fig. 14(c).
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FIG. 13. Phase diagram from the shield region showing three in-
dependent three-phase regions shortly after the accessory plaits from
each region connect. The single-phase region in the middle is fully
enclosed and contains binodal segments that are very nearly con-
tinuous. The intermediary two-phase regions contain points where
metastable behavior would not be anticipated. This phase diagram
was generated using parameters of θA

cr = θB
cr = 0.427, ρB

cr = 1.0, and
ν = 0.5636 (ξ = 0.0, ζ = 0.0, � = 0.4364). The metastable and
three-phase LB simulations were done with κcc′ = 0.2, and we only
show the metastable results associated with one three-phase region
to more clearly depict the binodal segments elsewhere.

Such a shape is clearly not consistent with theoretical pre-
dictions. To understand this curious result we examine the
lattice Boltzmann simulations at three points in the ram-horn
shape (these points are marked in yellow). These three graphs
are shown in Fig. 14(d). The values plotted in Fig. 14(c)
correspond to the densities at lattice point 100 in Fig. 14(d).
While it is impossible to discern the very small differences
at lattice point 100 in Fig. 14(d), we observe another inter-
esting phenomenon. At the interfaces around lattice points 0
and 200 a new A-rich phase is partially formed. This result
suggests the possibility that in some cases interfaces may act
as nucleation kernels for new phases, potentially reducing the
regions of metastability. Such phenomena are not unknown:
This is a key phenomenon to quantitatively understand phase
separation fronts [28]. The material absorbed in the interface
leads to the small deviation in the metastable phase diagram
shown in Fig. 14(c), since the binodal is now moving towards
the three-phase points. It does not quite reach the three-phase
point since the A-rich domain is not fully formed. This partial
nucleation is presumably a finite-size effect, since there is
simply not enough A material to fully form the A-rich domain.
A larger simulation should show a sharper transition. Another
interesting feature visible in Fig. 14(c) is a tiny binodal
segment. This, however, is a phenomenon also predicted by
minimizing the free energy.

B. Three van der Waals fluids

To demonstrate the extensibility of our method, we im-
plemented a LB simulation of a three-component mixture of
nonideal fluids. Since our LB implementation was designed
to simulate each component in its own right rather than order
parameter style relationships, the extension was little more
than a simple copy and paste operation in code. Nothing
else had to be derived for implementation and we made zero
changes to the corrections for thermodynamic consistency that
we used in the two-component case.

The LB simulation shown in Fig. 15 was initialized with
a near-equilibrium density profile and parameters manually
tuned to ensure stability for at least 1 000 000 iterations. The
top view of the density profile shows a stable density ratio of
∼1700. The middle and bottom panels are the pressure and
chemical potentials, respectively. Filtered values are plotted
on top of the noisy raw profiles to show that the bulk pressure
is constant to 10−4 and constant chemical potentials to 10−5.
This density ratio is at the limit of what can easily be achieved.
We already see indications of instability for higher density
ratios in the alternating oscillations in the chemical potential
and pressure. Other simulations with lower equilibrium den-
sity ratios showed pressure and chemical potentials that were
constant to 10−6 and did not show these oscillations.

VII. OUTLOOK

We have demonstrated that a LB method based on the
minimization of a free-energy function for a mixture of an
arbitrary number of VdW fluids can recover the complex
equilibrium behavior predicted for such a mixture. The cor-
rections to single-component simulations proposed earlier by
Wagner [14] were applied to this method. With these correc-
tions applied, our method was shown to recover consistent
and accurate thermodynamics across a wide range of sym-
metric and asymmetric two-component fluid mixtures. We
also demonstrated that it is very easily extended to simulate
mixtures of three or more nonideal fluid mixtures with equally
consistent and accurate thermodynamic consistency.

Our discrete free energy was formulated in a manner rem-
iniscent of the pseudopotential methods of Shan and Doolen
[6]. This allowed us to identify the interaction strength ψ in
terms of other commonly used nonideal interaction variables.
We also showed that this formulation can help reveal an
appropriate choice of gradient stencil.

The numerical stability of our simulations was greatly
improved with only a basic application of the findings of
Wagner and Pooley [15]. Using the common methods of im-
plementing numerical parameters to tune interface and forcing
strength led to phase separation with standard density ratios
on the order of ∼20. However, by ensuring that the widths
of phase interfaces in our initialized density profiles were
at or above a minimum threshold, we were able to easily
obtain density ratios over 150. Further manual optimization
of our parameters combined with ensuring a minimum initial
interface width resulted in a density ratio of over 1700. We
anticipate that the application of a more advanced stabilizing
mechanism (e.g., multiple relaxation time or entropic lattice
Boltzmann method) would further improve our results.
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FIG. 14. Phase diagram from the shield region progressing towards four-phase behavior. (a) Regions of unconditionally unstable three-
phase behavior, now sharing the same three equilibrium phases. The intermediary two-phase regions are now metastable. (b) Binodals in
the middle single-phase region separated into three segments. The parameters are θA

cr = θB
cr = 0.45, ρB

cr = 1.0, and ν = 0.5636 (ξ = 0.0, ζ =
0.0, � = 0.4364). Metastable and three-phase LB simulations used κcc′ = 0.2. (c) Highlight of the lower left of the three-phase density of (a).
The metastable simulations lose track of their respective binodals and curl back towards the binodal crossing. (d) Elucidation of this behavior
by showing a series of LB simulations that follow the curve of metastable results. Three yellow (white) circles in (c) correspond to lattice site
100 shown in (d) (see the text for details).

In all cases, our LB simulation results recover all features
of our phase diagrams very well. Since our free-energy mini-
mization does not account for interface effects, the majority
of our LB simulations do not lie exactly at the ends of

the theoretical tie lines. However, most simulations show a
10−4 or less deviation from a binodal line after only 50 000
iterations. Occasionally the error increases to 10−3, but al-
lowing simulations to run past our iteration cap to reach full
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FIG. 15. Simulation results for three components with the initial
A, B, C component set (1.0, 1.0, 1.0), which exhibits thermodynam-
ically consistent four-phase equilibrium. We use parameters θA

cr =
θB
cr = θC

cr = 0.5, ρB
cr = ρC

cr = 1.0, ν = 0.05, and κcc′c′′ = 2.0.

equilibrium shows that the error gradually shrinks as material
diffuses among phases.

We were extremely pleased to learn that for such a simple
model that included only three discrete lattice velocities and
considered only bulk equilibrium properties, the LB simula-
tions were able to replicate such a rich set of phase diagram
features with outstanding accuracy. Future extensions of this
LB model should expand the method to higher dimensions and
examine the ability to recover a range of interfacial properties
and, most importantly, the dynamics. We are particularly
interested in extending this to evaporation phenomena, treated
more phenomenologically in [26].

APPENDIX: ALGORITHM FOR GENERATING
PHASE DIAGRAMS

The theoretical phase diagrams by which we judged the
performance of the LB method were created by numerically
minimizing the underlying free energy. A design decision was
made to design a quasi-brute-force minimization algorithm
to accentuate the underlying physics of the mixture. As this
was a key component to the research, we provide a high-level
description of the algorithm here; the C code is open source
and provided online [41].

(1) Loop over all (A,B ) particle pairs below the line
connecting van der Waals discontinuities for each component.
Here A is the number of particles of component A, and B is
the number of particles of component B.

(2) Perform a stability analysis of the free energy at the
point (A,B ) via second derivatives with respect to component
densities.

(a) If the point is stable, phase separation is not ex-
pected. Continue to the next (A,B ) test point in step 1.

(b) If the point is not stable, proceed with an attempt to
divide the (A,B ) particles among phases to minimize the
free energy.
(3) Initialize the free energy of the mixture and choose

an initial step size by which to vary the particle counts and
volumina for each phase.

(a) Assume equal volumina for the three allowed
phases (V 1, V 2, and V 3). For simplicity, we constrain the
total volume of the system to equal 1, so each phase is
initially allocated 1/3.

(b) Use the eigenvector associated with the negative
eigenvalue to divide the (A,B ) particles between phases
1 (A1, B1) and 2 (A2, B2). Phase 3 is initially empty.
(4) Create a 6 × 3 array of free-energy trial values.

(a) For the six physical degrees of freedom (A1, B1,
and V 1 in phase 1 and A2, B2, and V 2 in phase 2), vary
each independently by a positive, negative, and neutral
step.

(b) Determine phase 3 (A3, B3, and V 3) by applying
the conservation statements NA = A1 + A2 + A3, NB =
B1 + B2 + B3, and V = V 1 + V 2 + V 3.
(5) Evaluate the free-energy trial array to see if the mini-

mum free energy in the array is less than that of the current
particle-volume phase combinations.

(a) If the the array has a new minimum free energy,
declare that a phase change has occurred and save the
associated particle-volume combination. Keep the current
step size and return to step 4 for the next iteration.

(b) If the minimum free energy is unchanged, halve the
step size used to populate the free-energy trial array and
return to step 4 for the next iteration.

(c) Declare that the free energy has been sufficiently
minimized when the change in free energy is less than a
chosen threshold (we use a threshold of 10−12). Continue
to step 6.
(6) Divide the particle counts for each component by the

volumina of each phase to create the resulting densities of
each phase. Examine the densities that correspond to the
minimum free energy to classify the resulting phase behavior.

(a) If there was no phase change, return to step 1 to
evaluate the next (A,B ) pair.

(b) If a stability analysis of the resulting densities
shows that a phase is still unstable, adjust the particles al-
located to each phase to attempt another minimization. We
make this adjustment by packing the two stable phases to-
gether (which in this implementation have densities equal
to 10−4) into phase 1 and go to step 2b to split the unstable
phase according to its unstable eigenvector for additional
minimization iterations.

(c) If the phase change resulted in two or three stable
phases, log the associated particle-volume data for use in
creating the phase diagram for the mixture. Go to step 1 to
evaluate the next (A,B ) particle pair.
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