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The sample mean X is probably the most popular estimator of the expected value in all sciences and var(X)
measures the error (standard- and mean-square-errors). Here, an alternative approach to estimation of var(X) for
time series data is presented. The method has an accuracy similar to dependent bootstrapping, but scales in O(n)
time, and applies to stationary time series, including stationary Markov chains. The computational complexity
is bounded by 12n floating point operations, but this can be reduced to n + O(1) in large computations.
Convergence in relative error squared is faster than n−1/2 and the method is insensitive to the probability
distribution of the observations. It is proven that a small part of the correlation structure is relevant to the
convergence rate of the method. From this, proof of the Blocking method [Flyvbjerg and Petersen, J. Chem. Phys.
91, 461 (1989)] follows as a corollary. The result is also used to propose a hypothesis test surveying the relevant
part of the correlation structure. It yields a fully automatic method which is sufficiently robust to operate without
supervision. An algorithm and sample code showing the implementation is available for PYTHON, C++, and R
[www.github.com/computative/block]. Method validation using autoregressive AR(1) and AR(2) processes and
physics applications is included. Method self-evaluation is provided by bias and mean-square-error statistics.
The method is easily adapted to multithread applications and data larger than computing cluster memory, such
as ultralong time series or data streams. This way, the paper provides a stringent and modern treatment of
the Blocking method using rigorous linear algebra, multivariate probability theory, real analysis, and Fisherian
statistical inference.
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I. INTRODUCTION

Estimation of the variance of sample means X =
(1/n)

∑n
i=1 Xi is essential in natural sciences [1,2]. This is

because X is a typical estimator of the expected value of the
observations X1, X2, . . . , if the observations are identically
distributed with finite variance. The variance of the mean
is the expected squared error of the estimate. Already in
1867, Chebyshev [3] explained this by showing that if the
observations have expected value μ, variance σ 2, and X has
finite nonzero variance var(X), then for any real number
k > 0

P (|X − μ| > k[var(X)]1/2) � 1

k2
(Chebyshev’s ineq.).

Here, P is the probability measure of the Xi’s [4]. Cheby-
shev’s inequality says that it is likely that the difference
|X − μ| is a small number. If the observations are independent
and identically distributed, the variance of the mean is easily
obtained by setting var(X) = σ 2/n [5], but for correlated
data, the computation is more complicated [6]. Here, however,
I show that if there is some integer d > 1 such that n = 2d ,
and X1, . . . , Xn are observations from a stationary time series,
then the computational complexity is essentially the same
as that of the sample mean, and one can use an automated
scheme to compute it.

The method uses so called blocking transformations [7].
This refers to forming a new sample of data by taking the
mean of every pair of subsequent observations. To be precise,
blocking transformation number i relates each element Bk of

a vector B ∈ Rni to the elements Ak of A ∈ Rni−1 by

Bk = (1/2)(A2k−1 + A2k ). (1)

Such transformations are applied in many areas of probability
theory, and Flyvbjerg and Petersen [7] popularized a method
where blocking transformations reduced the correlations of
the data, and proposed a way to estimate the variance of X.
In this study, the mathematics is developed and an automation
of the method is given. The rigor is similar to modern math-
ematics and an automation that is robust enough to operate
without supervision is provided. The philosophy of Flyvbjerg
and Petersen [7] is recycled, but the mathematics is different.
The method validation has physics applications and experi-
mental results quantifying all errors involved in applications.
The method works by applying blocking transformations of
the type given in Eq. (1) until correlation of observations
is no longer significantly different from zero. The results
show that the behavior of the method is specified by the
autocovariance γ (1). Furthermore, if γ (1) is not significantly
different from zero, the method has obtained the ideal esti-
mate. Next, I developed an automated statistical test that stops
the algorithm when there is no reason to believe that γ (1) is
different from zero. Hence, speedups of a thousand or more
are possible because the complexity is O(n) as compared
to dependent bootstrapping or other methods of complexity
O(n2) or O(n log n). I give the algorithm and sample code in
[8].

The preliminary background (definitions and theorems) is
scattered throughout in text blocks where they are required.
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First, proof of the blocking method is given and, second, an
automation that is sufficiently robust to operate without super-
vision is derived to perform the calculations. In the discussion
I compare the properties of the present blocking method with
other relevant methods for computing the variance of the
sample mean for correlated data.

A. Key ideas

First, the types of considered time series are defined.
Preliminaries 1. A set of random variables {Xi} is said to

be a time series if it is possible to think of the variables as be-
ing ordered as a function of time. The focus will be on infinite
time series X1, X2, . . . , but also the part of it that is possible
to sample: that is, the first n observations: X1, X2, . . . , Xn.
The random variables {Xi} are said to be stationary or weakly
stationary if (1) there exist μ ∈ R such that 〈Xi〉 = μ for all
i and (2) the covariances cov(Xi,Xj ) only depend on the
difference h = |i − j | for all 1 � i, j � n [6]. A time series
is strictly stationary if the cumulative distribution function
(cdf) of all sets of the form {Xi,Xi+1, . . . , Xi+k} equals the
cdf of the set {Xi+j , Xi+j+1, . . . , Xi+j+k} for all i, j, k [6]. A
strictly stationary time series with finite variance is stationary
[9]. The function γ (h) = cov(Xi,Xi+h) is the autocovariance
of {Xj }∞j=1. �

var(X) will be estimated by a quantity σ 2
k /nk , which is sub-

ject to an error ek , for k ∈ {0, 1, 2, . . . }. These quantities will
be defined soon. The index k denotes how many sequential
blocking transformations have been applied to the data. The
first aim of the paper is to prove that if the autocovariance
γ (h) → 0 as h → ∞, then ek can be made as small as you
may wish, by applying enough blocking transformations:

Theorem. Assume that the stationary time series
X1, X2, . . . has autocovariance γ (h) → 0 as h → ∞. Then,
for every ε > 0 there exists a natural number K such that
|ek| < ε if K � k � d for the time series X1, X2, . . . , X2d .

This begs the question of how to find the number K that
ensures that eK is not significantly different from zero. I
present a hypothesis test that automatically determines this for
you using a function Mj that will be defined later:

Theorem. If X1, X2, . . . is a strictly stationary time series
such that γ (h) → 0 as h → ∞ with limn→∞ var(

∑n
i=1 Xi ) =

∞ and 〈|Xi |2+a〉 < ∞, for some a > 0 then Mj is a test
statistic that is asymptotic χ2

d−j distributed under the hypoth-
esis γk (1) = 0 for all k � j . The rejection region includes all
values Mj larger than qd−j (1 − α) for all 1 � j � d − 1.

Using this theorem, calculations are automated in six steps
(see Fig. 2). Users primarily interested in the algorithm can
jump ahead to Sec. III B to read more. For those interested
in justification of the method, it is necessary to introduce
measure of dependence on time series and under blocking
transformations before starting work on the first theorem:

Preliminaries 2. If the time series has finite length n, it is
possible to form an n-vector or n-tuple X containing the ele-
ments {Xj }nj=1. For any vector X, define 〈X〉 to be the vector
with elements 〈Xi〉. A pair of random variables Xi , Xj are
uncorrelated if cov(Xi,Xj ) = 0. A time series is uncorrelated
if γ (h) = 0 for all h �= 0 and asymptotic uncorrelated if the
autocovariance γ (h) → 0 as h → ∞. The matrix consisting
of elements (Σ )ij = γ (|i − j |) is the covariance matrix of

X, and γ̂ (h) is the sample covariance and σ̂ 2 is the sample
variance according to [6] if

γ̂ (h) = 1

n

n−h∑
i=1

(Xi − X)(Xi+h − X) and σ̂ 2 = γ̂ (0). (2)

Subscripts are used on the variables to indicate that
(Xk )1, (Xk )2, . . . and Xk are subject to k blocking trans-
formations if they are related to X1, X2, . . . and X by k

repeated transformations of the type given in Eq. (1). Sub-
scripts will also be used to denote the length of the vector
Xk by the symbol nk . Since X1, X2, . . . is subject to zero
transformations, {(X0)i}∞i=1 = {Xi}∞i=1 and X = X0 and n =
n0 is used to emphasize this. It will be shown in Lemma
1 that {(Xk )i}∞i=1 is indeed stationary if {Xi}∞i=1 is, so it is
possible to let the mean, autocovariance, and variance of the
blocking-transformed variables be given subscripts to denote
which blocking iteration they belong to: Xk , σ 2

k , σ̂ 2
k , γk (h),

γ̂k (h). Assuming h = |i − j | and using the definition of the
blocking transformation, Eq. (1), and the distributive property
of the covariance, it is clear that

γk+1(h) = cov((Xk+1)i , (Xk+1)j )

= 1
4 cov((Xk )2i−1 + (Xk )2i , (Xk )2j−1 + (Xk )2j )

=
{

1
2γk (2h)+ 1

2γk (2h + 1) if h = 0,

1
4γk (2h − 1) + 1

2γk (2h)+ 1
4γk (2h + 1) else.

(3)

Finally, the variance of the sample mean can be expressed in
terms of the autocovariance function by

var(X) = var

[
1

n

n∑
i=1

Xi

]
= 1

n2
cov

⎡⎣ n∑
i=1

Xi,

n∑
j=1

Xj

⎤⎦
= 1

n2
[nγ (0) + (n − 1)γ (1) + · · · + γ (n − 1)

+ (n − 1)γ (−1) + (n − 2)γ (−2)

+ · · · + γ (1 − n)]

= σ 2

n
+ 2

n

n−1∑
h=1

(
1 − h

n

)
γ (h) if γ (0) = σ 2. (4)

Using these definitions, the first theorem can be obtained. �

II. TIME SERIES BEHAVIOR UNDER BLOCKING
TRANSFORMATIONS

Section III states the idea of the announced algorithm.
However, in order to understand why the algorithm works,
preliminary results are required. The first result explains
which part of the correlation structure is sufficient to survey,
but before showing that, consider the following lemma, which
will be frequently used. One of the main reasons why it is
important, is that it justifies that γk exists for all integers
k � 0. It does this because it turns out that a stationary time
series remains stationary after blocking transformations are
applied.
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Lemma 1. Let X1, X2, . . . be a stationary time series
and X be the vector of the first n = 2d sequential obser-
vations from X1, X2, . . . . Suppose Xk are the nk first ob-
servations of the time series (Xk )1, (Xk )2, . . . . Then, both
(Xk )1, (Xk )2, . . . and Xk are stationary. Moreover, if Xk is
the sample mean of Xk , then X = Xk for all 0 � k � d − 1.

Proof. We first show that the time series (Xk )1, (Xk )2, . . .

is weakly stationary using induction. Since elements of
{Xi}∞i=1 are stationary, there is μ ∈ R such that 〈(X0)i〉 =
〈Xi〉 = μ for i � 1 and so the base case is trivially satisfied.
For the induction step, write

〈(Xk+1)i〉 (1)= 1
2 〈(Xk )2i−1 + (Xk )2i〉 = 1

2 (μ + μ) = μ.

For the covariance, the elements of {Xi} are stationary, and
therefore cov(Xi,Xj ) only depends on the difference |i −
j | = h, which proves the base case. Now, if the hypothesis
is true for some k, then according to Eq. (3), it is true for
k + 1 since Eq. (3) says it only depends on the difference h =
|i − j |. This proves that the elements {(Xk )i}∞i=1 are stationary
for all k � 0. The proof works for any smaller time series
{(Xk )i}bi=a for a � 1. By taking b = nk , this proves Xk is
stationary.

To show that the mean satisfies X = Xk for all 0 � k �
d − 1, use induction. Here, the base case is trivially satisfied.
So, write

nk+1Xk+1 =
nk+1∑
i=1

(Xk+1)i
(1)= 1

2

nk/2∑
i=1

[(Xk )2i−1 + (Xk )2i]

= 1

2
nkXk = nk+1Xk,

which provides the induction step. �
Using Lemma 1 and Eq. (4) it is clear that any estimate of

var(X) using σ 2
k /nk has truncation error given by

ek ≡ 2

nk

nk−1∑
h=1

(
1 − h

nk

)
γk (h). (5)

The next proposition is crucial: it says that if
γ0(1), γ1(1), . . . , γd−1(1) are known, then the behavior
of the truncation error ek is known. Corollary 1 will explain
the details of this, but the main idea is that if ek+1 − ek is
known for all k, then the values of ek are known up to a
constant for all k.

Proposition 1. Suppose 2d � 2 is the number of observa-
tions, and σ 2

k is finite for all k ∈ {0, 1, . . . , d − 1}. Then, the
rate of change of the truncation error ek is

ek − ek+1 = γk (1)

nk

for all 0 � k < d − 1. (6)

To prove the proposition, sum each side of Eq. (3) to get

nk+1−1∑
h=1

γk+1(h) = 1

2

nk−1∑
h=1

γk (h) − 1

4
[γk (1) + γk (nk − 1)]. (7)

Similarly, sum Eq. (3):

nk+1−1∑
h=1

hγk+1(h) = 1

4

nk−1∑
h=1

hγk (h) − nk

8
γk (nk − 1). (8)

Plugging these equations into the definition of ek given in
Eq. (5) and using nk+1 = nk/2, it is immediate that

ek+1 = 2

nk+1

nk+1−1∑
h=1

(
1 − h

nk+1

)
γk+1(h)

= 4

nk

nk+1−1∑
h=1

γk+1(h) − 8

n2
k

nk+1−1∑
h=1

hγk+1(h)

(7)(8)= ek − γk (1)

nk

.

The following corollary is the most important takeaway. It
shows the effect of γk (1) on the error of the estimate σ 2

k /nk .
Interestingly, this provides a proof of the behavior of the
Flyvbjerg and Petersen [7] blocking method.

Corollary 1. Suppose X1, . . . , Xn and n = 2d > 2 are ran-
dom variables from a weakly stationary sample with σ 2

k finite
for all k ∈ {0, 1, . . . , d − 1}, and i < j :

(1) If there exists k ∈ N such that for all i � k � j either
γk (1) > 0 or γk (1) � 0 or γk (1) = 0, then the sequence of
errors ek is strictly decreasing or decreasing or constant on
i � k � j , respectively.

(2) If there exists some k ∈ {0, 1, . . . , d − 1} such that the
elements of Xk are uncorrelated, then the sequence of errors
ej is constant, and σ 2

j+1 = σ 2
j /2 for all j � k.

Proof. Suppose the hypothesis is true and first let γk (1) >

0. That means Proposition 1 is true and there exist k ∈ N such
that γk (1) > 0 for all i � k < j . If u, v ∈ {i, i + 1, . . . , j +
1} are distinct natural numbers, assume without loss of gener-
ality that u < v. By hypothesis, nk > 0 and γk (1) > 0, and a
sum of such terms must be positive. That means

0 <

v−1∑
k=u

γk (1)

nk

= γu(1)

nu

+ γu+1(1)

nu+1
+ · · · + γv−1(1)

nv−1

(6)= (eu − eu+1) + (eu+1 − eu+2) + · · · + (ev−1 − ev )

= eu − ev.

Now, by adding ev to each side of the inequality, the first part
is proven. To obtain the result in the case 0 � γk (1), replace <

with � in the argument above. The case γk (1) = 0 is obtained
by replacing < with =.

Suppose δij is the Kronecker delta. To obtain part 2, use
induction: assume that the elements of Xk are uncorrelated.
Then, the base case is trivially satisfied since all uncorrelated
variables have zero covariance [3]. The induction step follows
for k + 1 since Eq. (3) says that γk+1(i) = δi0σ

2
k /2. This

proves γj (1) is zero for all j � k, so the error is constant by
what was proved above. �

These results will be useful in the automation of the
blocking method below. And, as stated, the corollary proves
the behavior of the blocking method. But, experts will spot a
problem: The sequence ek may be decreasing and eventually
constant if the elements of Xk become uncorrelated. But,
there is no guarantee that the variables become uncorrelated.
However, existing users of the blocking method [7] know the
variables do indeed become uncorrelated (and the constant
from part 2 of the corollary is zero). But, so far this is not
guaranteed. So, although our present results are promising
and hint at the conclusions to come, a bit more work is
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required. The next part is technical, but the purpose is to
obtain a decomposition of γk (h) in Lemma 3. Start by fixing
some k ∈ {0, 1, · · · } and consider this interesting sequence of
functions and its properties:

fk (i) =

⎧⎪⎨⎪⎩
i if 0 � i � 2k,

2k+1 − i if 2k � i � 2k+1,

0 else.

(9)

Lemma 2. The sequence {fk} has the following nice prop-
erties:

(1) fk (i) � i for all i ∈ N.
(2)

∑2k+1−1
i=1 fk (i) = 22k .

(3) fk+1(i) = fk (i) + 2fk (i − 2k ) + fk (i − 2k+1).
Proof. See the Appendix. �
Lemma 3. Suppose X1, X2, . . . is a stationary time series

and h and k are positive natural numbers, then,

γk (h) = 2−2k

2k+1−1∑
i=1

fk (i)γ [2k (h − 1) + i]. (10)

Proof. We prove the lemma by induction. Assume k = 1
and write

γ1(h)
(3)= 2−2(γ0(2h − 1) + 2γ0(2h) + γ0(2h + 1))

= 2−2k

2k+1−1∑
i=1

fk (i)γ [2k (h − 1) + i].

Assume now that Eq. (10) is true for some k � 1 and write

22(k+1)γk+1(h)
(3)= 22k

[
γk (2h − 1) + 2γk (2h) + γk (2h + 1)

]
(10)=

2k+1−1∑
i=1

fk (i)γ [2k (2h − 2) + i]

+ 2
2k+1−1∑

i=1

fk (i)γ [2k (2h − 1) + i]

+
2k+1−1∑

i=1

fk (i)γ [2k (2h) + i]

(9)=
2k+1+1−1∑

i=1

γ [2k+1(h − 1) + i]

× [fk (i) + 2fk (i − 2k ) + fk (i − 2k+1)]

Lemma 2=
2k+1+1−1∑

i=1

fk+1(i)γ [2k+1(h − 1) + i].

In the third equality, the summation limits were shifted by
0, 2k , and 2k+1, respectively; in addition, I used that fn(i −
2j ) = 0 whenever i � 2j or 2k+1 + 2j � i from Eq. (9). This
allowed to factor out the term γ [2k+1(h − 1) + i]. �

Proposition 1 shows that γk (1) is of special interest to us
and therefore the following corollary is interesting.

Corollary 2. Suppose X1, X2, . . . is a stationary time se-
ries and k is a positive natural number, then,

22kγk (1) = γ (1) + 2γ (2) + · · · + 2kγ (2k )

+ (2k − 1)γ (2k + 1) + · · · + γ (2k+1 − 1). (11)

Proof. Use the previous lemma with h = 1. �
Using these results, everything is now set to finalize the

investigation of γ under blocking transformations. The fol-
lowing proposition may sound technical at first, but it will
carry us all the way to the final proof of the blocking method.

Proposition 2. Assume that the stationary time series
X1, X2, . . . has autocovariance γ (h) → 0 as h → ∞. Then,
{γk}∞k=1 converges uniformly to the zero function on N.

Proof. Pick ε > 0. By assumption γ (i) → 0 as
i → ∞. So, there exists I ∈ N such that γ (i) < ε/2
when i � I . Define S = | ∑I

i=1 iγ (i)|. Set K =
max{log2(I ), (1/2) log2(2S/ε)}. Assume first that h � 2
and let j ∈ N be any natural number, then, by construction, if
k � K then we have

k � K � log2 I � log2
I

h − 1
only if 2k (h − 1) + j � I

only if γ [2k (h − 1) + j ] <
ε

2

since log2 is a monotonous function. Thus, by Lemma 3 and
the triangular inequality

|γk (h) − 0| � 2−2k

2k+1−1∑
j=1

fk (j )|γ [2k (h − 1) + j ]|

� ε

2
2−2k

2k+1−1∑
j=1

fk (j ) = ε

2
2−2k22k = ε

2
< ε,

where Lemma 2 was used in the third step. By construction,
it is possible to assume k � K � (1/2) log2(2S/ε), so ε/2 �
2−2kS. Assume now that h = 1. Then, by Lemmas 2 and 3 and
the triangular inequality

|γk (h) − 0| � 2−2k

∣∣∣∣∣∣∣
I∑

i=1

fi (h)︸ ︷︷ ︸
�i

γ (i)

∣∣∣∣∣∣∣ + 2−2k

∣∣∣∣∣∣
2k+1−1∑
i=I+1

fi (h)γ (i)

∣∣∣∣∣∣
< 2−2kS + 2−2k ε

2

∣∣∣∣∣∣
2k+1−1∑
i=I+1

fi (h)

∣∣∣∣∣∣
<

ε

2
+ 2−2k ε

2

∣∣∣∣∣∣∣∣∣∣
2k+1−1∑

i=1

fi (h)︸ ︷︷ ︸
=22k

∣∣∣∣∣∣∣∣∣∣
� ε

2
+ ε

2
= ε,

which was required. �
The blocking method follows immediately. The theorem

says that end users can apply blocking transformations to get
the truncation error smaller than every ε > 0 if the time series
is large enough.

Theorem 1 (The blocking method). Assume that the sta-
tionary time series X1, X2, . . . has autocovariance γ (h) →
0 as h → ∞. Then, for every ε > 0 there exists a natural
number K such that the magnitude of ek < ε if K � k � d

for the time series X1, X2, . . . , X2d .
Proof. Suppose ε > 0 is given. Since {γk}∞k=1 converges

uniformly and identically to zero on N by Proposition 2,
there exists K ∈ N such that if k � K then γk < ε/2 on N.
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Moreover, if d � k, then by the triangular inequality

|ek| � 2

nk

nk−1∑
h=1

(
1 − h

nk

)
|γk (h)| � 2

nk

nk−1∑
h=1

|γk (h)|

� ε

nk

nk−1∑
h=1

1 = ε
nk − 1

nk

< ε,

which is the theorem. �

III. AUTOMATING CALCULATIONS

The previous section provided proof that if X1, X2, . . .

is a stationary time series, then the error {|ek|}∞k=0 is a de-
creasing sequence that converges to zero whenever γ (h) → 0
as h → ∞. The next objective is to provide an algorithm
that automates calculations. Users that just want to know the
algorithm can skip to Sec. III B. Else, I introduce hypothesis
testing and maximum likelihood estimation, which will be
required to understand the results from the the present section.

Preliminaries 3. It is necessary to discuss which distribu-
tion the random variables and vectors represent: A ∼ α(θ)
indicates that the vector A is αdistributed with parameter θ.
In general, θ can have any dimension, and a 1 × 1 matrix or
one-dimensional vector is a scalar. For example, let N(μ,Σ )
denote the multivariate normal distribution with expected
value μ and covariance matrix Σ . If Y ∼ N(μ,Σ ) and Σ is
positive definite, then the probability density function (pdf) of
Y is an Rn → R function

f (y) = (2π )−n/2|Σ |−1/2 exp
(− 1

2 (y − μ)TΣ−1(y − μ)
)
,

where | · | denotes the determinant [10]. It turns out that
Y is multivariate normal if and only if every linear com-
bination of the elements of Y is normally distributed [11].
The components of Y are independent if and only if there
exists σ1, . . . , σn > 0 such that Σ = diag(σ1, . . . , σn) [10]. A
random variable Xi ∼ χ2

1 is χ2 distributed with 1 degree of
freedom (later: dof) if it is the square of a standard normal
random variable [3]. That means there exists a random vari-
able Z ∼ N(0, 1) such that Xi = Z2. A sum of n independent
χ2 random variables with 1 dof,

∑n
i=1 Xi , is χ2 distributed

with n dof and its pdf is

g(x) = 1

2n/2Γ (n/2)
xn/2−1e−x/2.

Conveniently, if Σ is invertible and (Y1, . . . , Yn)T = Y ∼
N(μ,Σ ), then (Y − μ)TΣ−1(Y − μ) ∼ χ2

n [Proof. Write
Z = Σ−1/2(X − μ). What is the distribution of Z and ZTZ?]
If X ∼ χ2

ν , the 100(1 − α) percentile is the value qν (1 −
α) ∈ R such that P [X > qν (1 − α)] = α. χ2 percentiles are
tabulated in Table I. If X1, X2, . . . is a strictly stationary time
series that is asymptotic uncorrelated such that var(Xi ) <

∞ and limn→∞ var(
∑n

i=1 Xi ) = ∞, and 〈|Xi |2+k〉 < ∞ for
some k > 0, then [12] has proved that the central limit theo-
rem holds [13].

The Fisherian approach to inference is the most common
type of inference in natural sciences [14] and will be used
in the following. Suppose there is a pdf f (y;θ) for Y that
depends on a parameter θ and it is necessary to test whether
there exists evidence that θ = θ0 or if θ �= θ0 based on

TABLE I. χ 2 90, 95, and 99 percentiles: percentiles in the
χ 2 distribution for 1 � d − k � 48, which suffices for any error
estimation with �1014 observations, at the three significance levels
that performed best, 1 − α = 0.99, 0.95, and 0.90. See for example
[3] for additional values.

d − k qd−k (0.99) qd−k (0.95) qd−k (0.9)

1 6.634897 3.841459 2.705543
2 9.210340 5.991465 4.605170
3 11.344867 7.814728 6.251389
4 13.276704 9.487729 7.779440
5 15.086272 11.070498 9.236357
6 16.811894 12.591587 10.644641
7 18.475307 14.067140 12.017037
8 20.090235 15.507313 13.361566
9 21.665994 16.918978 14.683657
10 23.209251 18.307038 15.987179
11 24.724970 19.675138 17.275009
12 26.216967 21.026070 18.549348
13 27.688250 22.362032 19.811929
14 29.141238 23.684791 21.064144
15 30.577914 24.995790 22.307130
16 31.999927 26.296228 23.541829
17 33.408664 27.587112 24.769035
18 34.805306 28.869299 25.989423
19 36.190869 30.143527 27.203571
20 37.566235 31.410433 28.411981
21 38.932173 32.670573 29.615089
22 40.289360 33.924438 30.813282
23 41.638398 35.172462 32.006900
24 42.979820 36.415029 33.196244
25 44.31410 37.65248 34.38159
26 45.64168 38.88514 35.56317
27 46.96294 40.11327 36.74122
28 48.27824 41.33714 37.91592
29 49.58788 42.55697 39.08747
30 50.89218 43.77297 40.25602
31 52.19139 44.98534 41.42174
32 53.48577 46.19426 42.58475
33 54.77554 47.39988 43.74518
34 56.06091 48.60237 44.90316
35 57.34207 49.80185 46.05879
36 58.61921 50.99846 47.21217
37 59.89250 52.19232 48.36341
38 61.16209 53.38354 49.51258
39 62.42812 54.57223 50.65977
40 63.69074 55.75848 51.80506
41 64.95007 56.94239 52.94851
42 66.20624 58.12404 54.09020
43 67.45935 59.30351 55.23019
44 68.70951 60.48089 56.36854
45 69.95683 61.65623 57.50530
46 71.20140 62.82962 58.64054
47 72.44331 64.00111 59.77429
48 73.68264 65.17077 60.90661

the observations Y. Let θ̂ = θ̂(Y) be an estimator for θ.
The hypothesis θ = θ0 is called the null hypothesis, denoted
H0. It is common to pick H0 such that the consequences of
an incorrect test conclusion are minimized. The alternative
hypothesis denoted by Ha is typically the negation of H0.
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Suppose there exists a Rk → R function G(θ̂) such that G

has known pdf g whenever H0 is true, then G(θ̂) is called a
test statistic. The values of G(θ̂) that are sufficiently unlikely
according to g whenever H0 is true are called the rejection
region. And, if the estimated value G(θ̂) is in the rejection
region, H0 is rejected in favor of Ha . Prior investigation α ∈
(0, 1) is chosen such that

P (Rejecting H0|H0 is true) � α.

Here, P (A|B ) denotes conditional probability. Since g is
known, this determines the size of the rejection region. It
is convention to let α = 0.05 and say that the test result is
significant if the estimated value G(θ̂) is in the rejection
region. It is possible to determine the largest value of α

such that the test concludes that H0 is false. This value is
called the p value, denoted p. The p value is a measure of
the probability that it is a mistake to reject H0 in favor of
Ha . The likelihood L of θ is the function L(θ) = f (Y;θ).
The estimator θ̂ maximizing L is called the maximum like-
lihood estimator, and is asymptotically multivariate normal
distributed [11]. The estimator γ̂k (1) is a maximum likeli-
hood estimator if X is multivariate normal. The bias of an
estimator θ̂ given a parameter θ is defined as Bias(θ̂ ; θ ) =
〈θ̂ − θ〉 and measures how far from θ one can expect
θ̂ . �

According to the variant of the central limit theorem intro-
duced in Preliminaries 3, the elements of Xj are asymptotic
multivariate normal if γ (h) → 0 as h → ∞ (in addition to
some technical assumptions). This is because the elements of
Xk are a mean of the elements of X, which you can check. In
that case, Preliminaries 3 say that γ̂j (1) is the maximum likeli-
hood estimator of γj (1). Hence, if γ̂j ≡ (γ̂j (1), . . . , γ̂d−1(1)),
then γ̂j ∼ N(μj ,Σj ) is asymptotic multivariate normal ac-
cording to Preliminaries 3. The idea is to find the first index
j such that γk (1) = 0 for all k � j because, by Corollary 1,
the error ej becomes constant and there is no reason to expect
that σ 2

k /nk is a better estimate than σ 2
j /nj for any k > j . To

test this, define

Mj = (γ̂j − μj )TΣ−1
j (γ̂j − μj ) ∼ χ2

d−j . (12)

Hence, Mj has a known distribution (according to Prelimi-
naries 3). This means that if μj is evaluated in the case that
γk (1) = 0 for all k � j , it is a test statistic for the hypothesis
test:

H0 : γk (1) = 0 for all k � j,

Ha : there exists k � j such that γk (1) �= 0. (13)

The idea is to pick the smallest j such that the hypothesis
test finds no evidence for Ha and take var(X) = σ 2

j /nj . Thus,
an appropriate estimator is

v̂ar(X) = σ̂ 2
j /nj . (14)

This works according to Preliminaries 3: Whenever H0 is
true, the distribution of Mj is known [χ2 with d − j dof
by Eq. (12)], so for all j such that a sufficiently improbable
value of Mj is observed, the hypothesis test concludes that
H0 is false. However, once there is a j such that Mj is
smaller than the 100(1 − α) percentile, there is no longer
evidence for Ha and the method concludes that H0 is true,

FIG. 1. Whenever H0 is true, the pdf of Mj is known and plotted
above. The test concludes that H0 is false if the observed value of
Mj is sufficiently unlikely. That is, if the observed value of Mj

is larger than 100(1 − α) percentile for a suitable α; the shaded
area represents a probability of α. The value d − j = 〈Mj 〉 is the
expected value of Mj whenever H0 is true since then Mj ∼ χ 2

d−j is
χ 2 distributed.

i.e., that the error becomes constant, and iterating further
does not improve the estimate. See Fig. 1 for illustration.
However, an expression of the covariance matrix Σj has to be
determined. In this paper, the following approximation will be
used:

Σj 
 diag
(
σ 4

j

/
nj , · · · , σ 4

d−1

/
nd−1

)
. (15)

In the next section, we will see that the approximation is ob-
tained by (a) considering the elements only up to leading order
in 1/nk and (b) by setting all off-diagonal elements equal to
zero. The benefit of the approximation is that inversion of Σj

is easy. It is possible to question the expected error of setting
the off-diagonal elements equal to zero. But, the expected
error is zero, as Proposition 6 explains. However, before
proving that, more work is required. We end this section with
a proposition which says that the estimators of any blocking
method, X and σ̂ 2

j /nj , are necessarily asymptotically unbi-
ased in the following sense.

Proposition 3. Assume that X1, X2, . . . is a weakly sta-
tionary time series. Then, X is an unbiased estimator of 〈Xi〉
for all i ∈ N and

Bias(σ̂ 2
j /nj ; X) = −V (X)/nj − ej for all j � 0. (16)

If in addition γ (h) → 0 as h → ∞, then for every ε > 0,
there exists K ∈ N such that |Bias(σ̂ 2

K/nK ; X)| < ε.
Proof. Whenever X1, X2, . . . is a weakly stationary time

series, there exists μ ∈ R such that 〈Xi〉 = μ for all i ∈ N, so

〈X〉 =
〈

1

n

n∑
i=1

Xi

〉
= 1

n

n∑
i=1

〈Xi〉 = 1

n
nμ = 〈Xi〉.

To obtain the bias formula, use both the variance formula
var(Y ) = 〈Y 2〉 − 〈Y 〉2 (∗) and

∑nk

i=1(Xk )i = nX (‡). Then,
the following expression is obtained:〈̂
σ 2

K

〉 = 1

nK

nK∑
i=1

〈[(XK )i − X]2〉

(‡)= 1

nK

nK∑
i=1

[〈
(XK )2

i

〉] + 〈X2〉 − 2〈X2〉 (∗)= σ 2
K − var(X).

(17)
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Use Eq. (4) and write

〈v̂ar(X)〉 =
〈̂
σ 2

j

〉
nj

= σ 2
j

nj

− 1

nj

var(X)

= var(X) − ej − 1

nj

var(X). (18)

Subtract var(X) from each side of the equation, and the bias
formula (16) is obtained.

For the third part, suppose that ε > 0 is given. Since the
hypothesis of Theorem 1 is true, there is a K ∈ N such that
|ek| < ε/2 if K � k � d for the time series X1, X2, . . . , X2d .
Pick k = K and let d > 1 + K + log2 var(X) − log2 ε. Be-
cause d − K > 1 + log2 var X − log2 ε,

var(X)

nK

= var(X)2−(d−K ) < var(X)2log2(ε)−log2(X)−1 = ε

2
.

Apply the triangular inequality and see

|Bias(σ̂ 2
K/nK ; var(X))| =

∣∣∣∣∣−var(X)

nK

− eK

∣∣∣∣∣
�

∣∣∣∣∣var(X)

nK

∣∣∣∣∣ + |eK | <
ε

2
+ ε

2
= ε,

which was required. �

A. Covariance matrix of γ̂ i (h) and the matrix Σ j

It is necessary to compute the covariance matrix of the
estimators γ̂ (1) because the estimator of the hypothesis test
from the previous section depends on it. It is impractical to
compute the covariance matrix directly. However, developing
linear algebra for the task is a fruitful alternative. Two lemmas
and two propositions are required. The idea is to lay the
foundation to apply the following theorem from the theory of
quadratic forms of random variables.

Preliminaries 4. Assume Y ∼ N(μ,Σ ) with Σ singular. If
A,B are symmetric n × n matrices and there exists some n ×
r matrix Q of rank r such that Σ = QQT, then

cov(YTAY, YTBY) = 2 Tr(ΣAΣB ) + 4μTAΣBμ. (19)

For proof, see [15]. �
Consider now a lemma that contains all the information

required about probability distributions:
Lemma 4. Assume 1 denotes the vector of ones, X ∼

N(m1, σ 2In) and Y = X − X1. Then, Y is multivariate nor-
mal with expected value μ = 0, and there exists some n ×
(n − 1) matrix Q of rank n − 1 such that the covariance
matrix ΣY = QQT and

ΣY = σ 2

n
(nIn − 11T ). (20)

Proof. First note that Yi is a linear combination of elements
of X because X is multivariate normal, which means that
Yi is univariate normal. This holds also for every linear
combination of the elements of Y, so Y is multivariate nor-
mal by Preliminaries 3. The expected value of Y is 0 since
〈Yi〉 = 〈Xi − X〉 = m − m = 0. To get Eq. (20), notice that
the covariance matrix of X is diagonal, which means that the

elements of X are independent since X is multivariate normal,
and if δij denotes the Kronecker delta, then the elements of
ΣY are

(ΣY)ij = cov(Yi, Yj ) = cov(Xi − X,Xj − X)

= σ 2δij − 1

n

n∑
k=1

cov(Xi,Xk )

− 1

n

n∑
k=1

cov(Xj,Xk ) + var X

= σ 2δij − 1

n

n∑
k=1

σ 2δik − 1

n

n∑
k=1

σ 2δjk

+ σ 2

n
= σ 2δij − σ 2

n
(21)

only if ΣY = (σ 2/n)(nIn − 11T ). This proves that ΣY is
symmetric. Note that 11T1 = n1, so 1 is an eigenvector of ΣY
with eigenvalue 0. Furthermore, if k ∈ {1, 2, . . . , n − 1} and
qk = ek − en, then

ΣYqk

(21)= σ 2

n

⎡⎣nqk − 1(1Tek − 1Ten︸ ︷︷ ︸
=1−1=0

)

⎤⎦ = σ 2qk,

which proves that σ 2 is an eigenvalue of ΣY with multiplicity
n − 1. And since ΣY is symmetric, it has a spectral decompo-
sition [16]:

ΣY = σ 2
n−1∑
k=1

qkqT
k = σ 2[q1 q2 . . . qn−1]

[
qT

1 qT
2 . . . qT

n−1

]T
.

So if Q = σ [q1 q2 . . . qn−1], then Q is an n × (n − 1)
matrix and ΣY = QQT. Moreover, according to the spectral
theorem [16], the dimension of span{q1, . . . , qn−1} equals the
multiplicity of σ 2. That means the columns of Q are n − 1
linearly independent vectors, which also equals its rank. �

Define transformations Si : Rni → Rni and Ti : Rni−1 →
Rni with standard matrices

Si =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0
...

...
. . .

0 0 · · · 0 1

0 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦,

Ti = 1

2

⎡⎢⎢⎢⎢⎣
1 1 0 0 · · · 0

0 0 1 1 · · · 0
...

...
. . .

. . .
...

0 0 0 0 1 1

⎤⎥⎥⎥⎥⎦. (22)

According to Eq. (1), the matrices Ti generate the observations
Xk subject to i blocking transformations by

Xi = TiTi−1 . . . T1X. (23)
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Using the matrices {Si}d−1
i=0 and {Ti}d−1

i=1 , define the n × n

matrices {Γi}d−1
i=0 by

Γi = 1

2

1

ni

T T
1 T T

2 . . . T T
i

(
Si + ST

i

)
Ti . . . T1. (24)

According to the following proposition, these matrices are
interesting because they generate the estimator γ̂i (1) from
the vector Y whose probability distribution is multivariate
normal.

Proposition 4. The matrices {Γi} are symmetric. Hence, if
Y = X − X1, then YTΓiY is a quadratic form and YTΓiY =
γ̂i (1).

Proof. Fix 0 � i � d − 1. It is clear that Γi is symmetric
by construction:

Γ T
i = 1

2

1

ni

(
T T

1 T T
2 . . . T T

i

(
Si + ST

i

)
Ti . . . T1

)T

= 1

2

1

ni

(Ti . . . T1)T(
Si + ST

i

)T(
T T

1 T T
2 . . . T T

i

)T = Γi.

That means YTΓiY is a quadratic form. It remains to prove
YTΓiY = γ̂i (1). First, use the definition of blocking transfor-
mation and that any real number equals it own transpose to
obtain

niYTΓiY
(24)= 1

2 YTT T
1 . . . T T

i SiTi . . . T1Y

+ 1
2

[
YTT T

1 . . . T T
i SiTi . . . T1Y

]T

= [Ti . . . T1Y]TSiTi . . . T1Y
(23)= YT

i SiYi . (25)

Second, fix 1 � k � ni and use induction to see (Yi )k =
(Xi )k − Xi . The base case is satisfied by hypothesis and the
induction step follows by

(Yi+1)k
(1)= 1

2 [(Yi )2k−1 + (Yi )2k]

= 1
2 [(Xi )2k−1 − Xi + (Xi )2k − Xi]

(1)= (Xi+1)k − 2 1
2Xi

Lemma (1)= (Xi+1)k − Xi+1, (26)

where Lemma 1 was used twice to get Xi = X = Xi+1. Third,
using the definition of the matrices Si from Eq. (22) notice that
Si shifts the indices of vectors by one:

niYTΓiY
(25)= YT

i SiYi = YT
i (SiYi )

= ((Yi )1, · · · , (Yi )ni
)T((Yi )2, · · · , (Yi )ni

, 0)

=
ni−1∑
h=1

(Yi )h+1(Yi )h
(2)(26)= niγ̂i (1), (27)

using (Yi )k = (Xi )k − Xi and the definition of γ̂i (1) in the
final step. �

Experts will immediately see that the above result is eas-
ily generalized to γ̂k (h) for any h � 0 by considering the
operators Sh

k by raising to a power h ∈ Z. But, according
to Proposition 1, it suffices to consider h = 1. Some readers
may later aim to compute the mean-squared error (MSE) of
the blocking method estimator v̂ar(X). In doing so, they may
want to repeat calculations for h = 0 after reading Sec. III B.
In the case of h = 1, we have a technical lemma; the following

three quantities determine the expression for the covariance
matrix of γ̂k (1).

Lemma 5. If 1 denotes the vector of ones and i � j , then
Γi and Γj constitute the following:

ni1TΓi1 = ni − 1,

n2ninj Tr[ΓiΓj ] = 1
2n2

i (ni − 1),

2nninj 1TΓiΓj 1 = 2nj (ni − 1) − ni.

Proof. The following is used throughout: If {ek}ni

k=1 denotes
the standard basis of Rni , then according to Eq. (22),

Siek =
{

0 if k = 1,

ek−1 else
and ST

i ek =
{

0 if k = ni,

ek+1 else.

By multiplying Ti by each vector from {ek}ni

k=1 and summing
over k, it is clear that

Ti

ni−1∑
k=1

ek = Tie1 + Tie2 + Tie3 + · · · + Tieni−1

(22)= 1

2
e1 + 1

2
e1 + 1

2
e2 + · · · 1

2
eni

=
ni∑

k=1

ek. (28)

Write 1 as
∑n

u=1 eu = 1, and get the first equation:

ni1TΓi1 = 1

2

n∑
u=1

eT
uT T

1 T T
2 . . . T T

i

(
Si + ST

i

)
Ti . . . T1

n∑
v=1

ev

(28)= 1

2

ni∑
u=1

ni∑
v=1

eT
u

(
Si + ST

i

)
ev

= 1

2

ni∑
u=1

ni∑
v=2

eT
uev−1 + 1

2

ni∑
u=1

ni−1∑
v=1

eT
uev+1 = ni − 1,

where orthonormality of {ek} was used in the final step. Next,
it is necessary to show TiT

T
i = (1/2)Ini

for all 1 � i � d −
1. To see this is true, write Ti as a Kronecker product Ti =
(1/2)Ini

⊗ (1, 1) and use the mixed product rule [17]:

TiT
T
i = 1

4
(Ini

⊗ (1, 1))(IT
ni

⊗ (1, 1)T )= 1

4
I 2
ni︸︷︷︸

Ini

(1, 1)(1, 1)T︸ ︷︷ ︸
=2

.

Using this and working in a similar way as before, the follow-
ing is obtained:

2nninj 1TΓiΓj 1 = 2ninj − ni − 2nj . (29)

Prove now two more properties of {ek}: First, see that if
M is any n × n, then a diagonal element mkk = eT

k Mek , so
Tr(M ) = ∑n

k=1 eT
k Mek , as you can check. Second, if M is a

nj+h × nj+h matrix, then there is a real number K ∈ R such
that

nj −1∑
k=1

eT
k T T

j+1 . . . T T
j+hMTj+h . . . Tj+1ek+1

= 2−2h

nj+h−1∑
k=1

eT
k Mek+1 + K

nj+h∑
k=1

eT
k Mek. (30)

043304-8



STANDARD ERROR ESTIMATION BY AN AUTOMATED … PHYSICAL REVIEW E 98, 043304 (2018)

Prove this by induction. If h = 1, then
nj −1∑
k=1

eT
k T T

j+1MTj+1ek+1

= 1

4
eT

1 Me1 + 1

4
eT

1 Me2

+ · · · + 1

4
eT
nj+1−1Menj+1 + 1

4
eT
nj+1

Menj+1

= 2−2
nj+1−1∑

k=1

eT
k Mek+1 + 1

4

nj+1∑
k=1

eT
k Mek,

which proves the base case. To get the induction step, assume
the hypothesis is true for h then define the matrix N =
T T

j+h+1MTj+h+1. This matrix is nj+h × nj+h, so it is possible
to use it in the place of the matrix M . Then, use the same
procedure as before to prove the result for h + 1.

To get the final equation from the lemma, use again that
TjT

T
j = 2−1Inj

, as well as cyclic permutation of the factors
and write Tr[ΓiΓj ] in the following way:

4ninj Tr[ΓiΓj ]
(24)= 2−2j Tr

[
T T

j+1 . . . T T
i

(
Si + ST

i

)
× Ti . . . Tj+1

(
Sj + ST

j

)]
. (31)

Distribute the terms in the trace. One of the terms is
Tr[T T

j+1 . . . T T
i SiTi . . . Tj+1S

T
j ]. To evaluate it, use what was

just proven and write
nj∑

k=1

eT
k T T

j+1 . . . T T
i SiTi . . . Tj+1S

T
j ek

=
nj −1∑
k=1

eT
k T T

j+1 . . . T T
i SiTi . . . Tj+1ek+1

(30)= 4−(i−j )
ni−1∑
k=1

eT
k Siek+1 + K

ni∑
k=1

eT
k Siek︸ ︷︷ ︸

eT
k ek−1=0

.

This term equals 4−(i−j )(ni − 1) since eT
k Siek+1 = eT

k ek = 1.
Make the replacement Si 
→ ST

i throughout the above equa-
tion, in which case the term will evaluate to zero since
eT
k ST

i ek+1 = eT
k ek+2 = 0. The third and fourth terms from

Eq. (31) are evaluated in a similar way. The sum of all four
terms is 2 × 4−(i−j )(ni − 1), hence,

n2ninj Tr[ΓiΓj ]
(31)= 2 1

4 2−2j n24−(i−j )(ni − 1)

= 1
2n2

i (ni − 1),

which is the final part of the lemma. �
The following proposition gives an expression for the

elements of the covariance matrix of γ̂i (1).
Proposition 5. If there is some m ∈ R such that the

vector X ∼ N(m1, σ 2In), then the expected value of γ̂i (1)
is −σ 2

i (ni − 1)/n2
i . Furthermore, the covariance matrix of

(γ̂0(1), . . . , γ̂d−1(1))T has elements

cov(γ̂i (1), γ̂j (1)) = 2

(
σiσj

ninj

)2[
1 + (ni − 1)

(
1

2
n2

i − nj

)]
whenever 0 � j � i � d − 1.

Proof. Assume 0 � j � i � d − 1. To obtain the expecta-
tion, use the defining equation (2) and notice that the elements
of Xi are independent by hypothesis, so

ni〈γ̂i (1)〉

=
ni−1∑
j=1

〈(Xi )j (Xi )j+1〉︸ ︷︷ ︸
γi (1)+m2=0+m2

+ 〈X2〉︸︷︷︸
σ2
i

ni
+m2

− 〈[(Xi )j + (Xi )j+1]X〉︸ ︷︷ ︸
2(m2+σ 2

i /ni )

,

and the first part is proven. Assume now that Y = X − X1.
To get the covariance matrix, note that by Lemma 4, Y is
multivariate normal with expected value 0 and there exists a
n × (n − 1) matrix Q of rank n − 1 such that the covariance
matrix ΣY = QQT. According to Proposition 4, Γi and Γj are
symmetric, so according to Preliminaries 4,

cov(γ̂i (1), γ̂j (1)) = cov(YTΓiY, YTΓj Y)

(19)= 2 Tr(ΣYΓiΣYΓj ). (32)

Recall that it is possible to cyclic permute the ele-
ments of a trace and that Γi = Γ T

j , and Tr(M ) = Tr(MT)

and Tr(1TM1) = 1TM1 (since it is a real number) for
all square matrices M . Using this and Lemma 4, write
(n2/σ 4)Tr(ΣYΓiΣYΓj ) in the following way:

n2

σ 4
Tr(ΣYΓiΣYΓj ) = n2 Tr(ΓiΓj ) + 1TΓi11TΓj 1

− 2n1TΓiΓj 1.

To complete the proof, use now Lemma 5 and that ni = n/2i .
Furthermore, since the elements of X are independent, σ 2

j =
σ 2/2j by Corollary 1. Thus,

Tr(ΣYΓiΣYΓj ) = σ 4

n2
[ni nj ]−1

[
1

2
n2

i (ni−1)+(ni−1)(nj−1)

+ ni − 2nj (ni − 1)

]
=

(
σiσj

ninj

)2[
1+(ni − 1)

(
1

2
n2

i − nj

)]
.

Multiply each side of the equation by 2 and recall Eq. (32)
above, which proves the proposition true. �

As we discussed, the diagonal elements of the covariance
matrix of γ̂i (1) are of special interest to us, and they are given
by the following corollary.

Corollary 3. Assume there is some m ∈ R such that the
vector X ∼ N(m1, σ 2In). Then, the variance of γ̂j (k) is ex-
actly

var(γ̂j (1)) =
(

σj

nj

)4

[2 + nj (nj − 1)(nj − 2)],

whenever 0 � j � d − 1.
It remains to determine the error of discarding the off-

diagonal elements of Σj in Eq. (15). In order to understand
how the error may influence the calculation, recall that the
purpose of finding Σj is to evaluate Mj . If we form a diagonal
matrix Σ ′

j that contains the diagonal elements of Σj and
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make the approximation

M ′
j ≡ (γ̂j − μj )TΣ ′

j
−1(γ̂j − μj ),

then the expected error 〈Mj − M ′
j 〉 is zero according to the

following proposition:
Proposition 6. If Ej = Mj − M ′

j , then 〈Ej 〉 = 0.
Proof. Set Gj = γ̂j − μj and use the definition of Σj to

write Σj in a convenient way:

Σj = 〈(γ̂j − μj )(γ̂j − μj )T〉 = 〈
GjG

T
j

〉
. (33)

In this notation we can write Mj = GT
j Σj

−1Gj and similarly
for M ′

j . Since Ej is a 1 × 1 matrix and using that the trace is
invariant under cyclic permutation of its elements (†),

Ej = Tr Ej = Tr[Mj − M ′
j ] = Tr

[
GT

j

(
Σ−1

j −Σ ′
j

−1)
Gj

]
(†)= Tr

[(
Σ−1

j − Σ ′
j

−1)
GjG

T
j

]
.

It follows directly from the definition of matrix trace and
linearity of expected value that if A is a (nonrandom) matrix
then 〈Tr AGjG

T
j 〉 = Tr 〈AGjG

T
j 〉 = Tr A〈GjG

T
j 〉 [10]. That

means

〈Ej 〉 = Tr
[(

Σ−1
j −Σ ′−1

j

)〈
GjG

T
j

〉] (33)= Tr
[(

I − Σ ′−1
j Σj

)]
.

(34)

Define m = d − j , then Σj and Σ ′
j are m × m matrices. Also,

note that by assumption, Σ ′
j is the diagonal matrix consisting

of diagonal elements of Σj . That means (1) the inverse of Σ ′
j

is a diagonal matrix, and (2) it has diagonal elements that are
the multiplicative inverse of the diagonal elements of Σj . So,(

Σ ′
j

−1)
ik

= (Σj )−1
ik δik.

Consequently, each diagonal element of Σ ′−1
j Σj equals 1

because(
Σ ′−1

j Σj

)
ii

=
m∑

k=1

(
Σ ′−1

j

)
ik

(Σj )ki =
m∑

k=1

(Σj )−1
ik δik (Σj )ki

= (Σj )−1
ii (Σj )ii = 1. (35)

So, since the matrix trace is the sum of all the diagonal
elements,

Tr Σ ′−1
j Σj =

m∑
i=1

(
Σ ′−1

j Σj

)
ii

(35)=
m∑

i=1

1 = m (36)

and has the consequence that

〈Ej 〉 (34)(33)= Tr I︸︷︷︸
=m

− Tr Σ ′−1
j Σj

(36)= m − m = 0,

which is the proposition. �
Applying this proposition in combination with Corollary 3

to leading order in 1/nk provides justification for the use of
diag(σ 4

j /nj , · · · , σ 4
d−1/nd−1) in the place of Σj in computa-

tion of Mj .

B. Algorithm

By summarizing the results from the two previous sections,
the following is clear:

Theorem 2. If X1, X2, . . . is a strictly stationary
time series such that γ (h) → 0 as h → ∞ with
limn→∞ var(

∑n
i=1 Xi ) = ∞ and 〈|Xi |2+a〉 < ∞, for some

a > 0, then Mj is a test statistic that is asymptotic χ2
d−j

distributed under the hypothesis γk (1) = 0 for all k � j .
The rejection region includes all values Mj larger than
qd−j (1 − α) for all 1 � j � d − 1.

The above theorem outlines the algorithm. Form a vec-
tor X consisting of 2d observations. The algorithm pro-
ceeds as follows: Compute σ̂ 2

i and γ̂i (1) for Xi for
each i ∈ {0, 1, . . . , d − 1}. Then, form Mi for all i ∈
{0, 1, . . . , d − 1} using the estimates σ̂ 2

i and γ̂i (1). Us-
ing the results from the two previous sections, Mj

becomes

Mj =
d−1∑
k=j

nk

[
(nk − 1)̂σ 2

k

/(
n2

k

) + γ̂k (1)
]2

σ̂ 4
k

.

Pick some significance level α. It is convention in inference to
let α = 0.05, but it is possible to pick some other value. Then,
compare Mk to qd−k (1 − α) for all k. Choose the smallest
k such that Mk � qd−k (1 − α). Using this k, make the final
estimate for the variance var(X) = σ̂ 2

k /nk .
The method has built in safety features (see Fig. 6). This

is necessary because the method may operate without super-
vision. If the conditions above are not met, the method may
fail. In case this happens, it is necessary to present a warning
to the end user or application so they can take necessary
action. Recall the conditions for the method (see Theorem 2):
(i) the time series is strictly stationary, (ii) γ (h) → 0 as h →
∞, and (iii) the χ2 approximation works. Therefore, if the
method does not conclude that H0 is true for any k � d − 1,
one of these are false, and the fault is caught with an if
test. The conditions (i) and (ii) are either present or not by
construction and, as such, end users will know whether these
are satisfied or not. However, condition (iii) can fail if there
are little data available. So, the bottom line is that the end
user should check whether conditions (i) and (ii) are satisfied
in order to guarantee that the method works reliably. If the
end user is unsure if the time series is stationary, there exist
statistical tests for stationary, such as the Dickey-Fuller test,
which can be used. It is usually easy to check condition
(ii) by estimating the autocovariance matrix by γ̂ (h) using
a suitably small chunk of the data. See Fig. 6 for sample
code of one implementation, or use flow chart of Fig. 2 for an
overview.

The method is asymptotically unbiased in the way
one would expect according to Proposition 3, which also
gives an equation for the bias. Using that and Eq. (4)
gives

Bias(v̂ar(X); var(X))
(16)= −var(X)

nK

− eK

(4)= − var(X)

(
1 + 1

nK

)
+ σ 2

K

nk

. (37)
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FIG. 2. Flow chart of algorithm. The idea is to return the estimate
of var(X), as σ̂ 2

k /nk for the smallest value of k such that there is
no evidence that γj (1) �= 0 for j > k. This is sensible because then,
according to Corollary 1, there is no reason to believe that error ek is
reduced by further iterations of the method.

By estimating each quantity separately, this is the resulting
estimator of the bias of v̂ar(X) given var(X):

B̂ias
(37)= −v̂ar(X)

(
1 + 1

nK

)
+ σ̂ 2

K

nK

(14)= − v̂ar(X)

nK

.

The estimator can be used to survey the performance of the
method if bias is critical to the application. In addition, it
turns out to be relatively easy to compute the variance of the
estimator v̂ar(X). Summing the bias squared and the variance
of an estimator yields the mean-squared error (MSE) [3].

Preliminaries 5. MSE is a risk function corresponding to
the expected value of the squared error loss, and one of the
most popular measures of the performance of an estimator.
According to [3], if θ̂ is any estimator and θ a parameter, then

MSE(θ̂ ; θ ) = 〈(θ̂ − θ )2〉 = Bias2(θ̂ ; θ ) + var(θ̂ ). (38)

�
Since an expression of the bias is available, it remains

to determine the variance of v̂ar(X). Working in a similar
way as in Sec. III A, by first writing σ̂ 2

K as a quadratic form
and then applying the result of Preliminaries 4, the following
expression is obtained:

var
(
σ̂ 2

K

) = 2

(
σ 2

K

nK

)2

(nK − 1). (39)

It is possible to estimate each quantity of the equation sepa-
rately, obtaining the following estimator of the MSE of v̂ar(X)
given var(X):

̂MSE
(38)= [v̂ar(X)]2 2nK − 1

n2
K

. (40)

It is now straightforward to implement these self-evaluation
features in your estimation program. In the final part of this
section, the announced upper bound on the computational
complexity is derived.

An upper bound of the computational complexity of
the method is 12n. Consider the sample code in Fig. 6.
The only contributions at order n are from the while
loop. At iteration number i, the while loop can be com-
puted using exactly 6ni floating point operations. Using
geometric series, the total floating point operations are

cost =
d−1∑
j=0

6nj = 6 × 2d

d−1∑
j=0

2−j = 12(n − 1). (41)

For time consuming computations that require multithread
computing or time series so large that it comes in chunks,
this bound can be reduced to n + O(1) as will be shown in
Sec. III D, but first consider these test results of the present
implementation.

C. Test results

The method validation uses autoregressive models because
Wold decomposition justifies their use in modeling stationary
time series [6]. Moreover, var(X) can be be computed exactly
for autoregressive models. This makes them ideal for our
purpose.

Preliminaries 6. An autoregressive model of order p de-
noted AR(p) is a stochastic process {Xt }∞t=1 such that

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + εt

for φi ∈ R and random variables εt that are independent,
identically distributed with zero expected value and constant
variance σ 2 for all t . The autoregressive models used have
orders 1 and 2, they have autocovariance in closed form, and
are stationary [6]. For all stationary processes, var(X) is given
by the autocovariance γ , and for the AR(p)-processes of
interest to us, γ is determined by the polynomial P (z) = 1 −
φ1z − φ2z

2 − · · · − φpzp. The autoregressive model is said to
be causal if all the roots zi of P (z) satisfy |zi | > 1. �

Causal AR(1) and AR(2) process are easily parameterized
to be asymptotic uncorrelated and stationary [6]. Two tests
of the algorithm are presented. First, 6080 causal random
AR(1) and AR(2) processes were generated. According to
Preliminaries 6, this means the exact value of var(X) can be
computed from the autoregressive coefficients φi for each of
the AR(p) processes. The relative error squared, ε2, converged
to zero as a function of n/τ . Here, τ denotes the time constant
of the autocorrelation function [τ is the smallest integer
such that |γ (h)| � γ (0)e−1 for all h � τ ]. Gamma regression
is suitable because the observations of ε2 are independent,
identically gamma distributed, and the model is log(ε2) =
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TABLE II. Regression summary for the AR(p) processes: regres-
sion table for the AR(1) process (left) and AR(2) (right). If ε denotes
expected relative error, the model was log(ε2) = β0 + β1 log(n/τ ).
The regression family is taken to be gamma, and fitted by maximum
likelihood estimation using iterative reweighted least squares. The
estimated values of βj are given above along with standard errors.
The p values are given for the null hypothesis that βj = 0. Deviances
explained are 50.65% and 65.39% for the AR(1) and AR(2) on 6078
degrees of freedom, respectively.

AR(1) AR(2)

Estimate Std error p value Estimate Std error p value

β0 0.7402 0.2592 0.00431 2.4566 0.0991 <10−16

β1 −0.5202 0.0271 <10−16 −0.7022 0.0108 <10−16

β0 + β1 log(n/τ ). The expected relative error squared is

ε2 = eβ0

(
n

τ

)β1

. (42)

Maximum likelihood estimates of βj and standard errors are
given for the causal AR(1) and AR(2) processes in Table II.
The table shows that if there are very little data available
(say n = τ ), then the relative error ε = 0.74021/2 = 0.861
and 2.45661/2 = 1.567 for the AR(1) and AR(2) processes,
respectively. It is also evident that the convergence rate of
the AR(2) processes are faster than the AR(1) processes.
Among the processes, the type of autocovariance was the main
differentiator of the AR(p) processes. For p = 1, the auto-
correlation is of the form γ (h)/σ 2 = φ−h, while in the case
p = 2, there exist z ∈ C and a, b, c ∈ R such that γ (h)/σ 2 =
a|z|−h cos(hb + c). Furthermore, no effect is found of the
sampling distribution (p � 0.34, t test), and therefore the
difference in ε2 between the AR(1) and AR(2) experiments is
attributed to the γ (h) according to Preliminaries 2. A plot of
the regression analysis is given in Fig. 3 and for the regression
summaries, see Table II.

Second, two standard textbook physics applications were
studied. The variance of the mean energy was estimated
using the Flyvbjerg and Petersen [7] blocking method and the
automated blocking method. The estimates were compared
with dependent bootstrapping using geometric simulation

FIG. 3. Relative error squared of two autoregressive models versus observations per time autocorrelation time constant. There is
exponential convergence rate for two common correlation structures in natural sciences. In the tail of the distribution, there are outlayers
that failed the probabilistic test. The outlayers are not of major concern because (1) they are rare and (2) induced mistakes are small in
magnitude. (a), (c) Represent test results for an AR(1) time series with an autocorrelation that is positive with exponential decay, typical
of Metropolis-type Markov chains, where it is expected that the observations correlate positively. The process was distributed Gamma(1,1).
(b), (d) Represent test results for an AR(2) process. The autocorrelation has exponential decay, but oscillates. The process was distributed
multivariate standard normal. It was found that the method was insensitive to the distribution of the observations (p � 0.34). Consequently,
the difference in behavior of the method is attributed to γ (h), as explained by Corollary 1. The expected relative error squared ε2 was modeled
by gamma regression, log(ε2) = β0 + β1 log(n/τ ). Deviance explained was 50.65% and 65.39% for AR(1) and AR(2) on 6078 degrees of
freedom, respectively. Dashed lines give 95% confidence intervals of the expected relative error squared. The plots indicate that it is reasonable
to expect the first digit of the method was correct for some n � 20τ , and two digits correct for some n � 25 000τ .
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FIG. 4. Case study of two textbook physics applications for mean variance estimation. The variance of the mean energy was estimated
using manual and automatic Blocking methods and compared with dependent bootstrapping using geometric simulation. The estimates are
plotted in (a) and (b), while the autocorrelation is depicted in (c) and (d). (a), (c) Represent test results for a two electron quantum dot with trail
energy of a Slater-Jastrow–type state function for a theory of a harmonic oscillator potential with Coulomb repulsion (ω = 1). The importance
sampling/Hastings-Metropolis theorem implementation implies acceptance rate >99.999. The autocorrelation time constant was τ = 360.
It is clear that var(X) = 1.46 × 10−8 at 108 samples according to all three models, and by the above discussion, the error of the variance
estimate is correct to the second digit. (b), (d) Represent test results for the Ising model for a 20 × 20 grid of spins with periodic boundary
conditions at temperature T = 2.4. The energy was sampled from a Boltzman distribution at significance level 95% according to a χ2 test
using a Metropolis-type Markov chain. The autocorrelation time constant was measured at τ = 16, so at 106 samples var(X) = 1.49 × 10−1

according to all three methods, and there is reason to believe that the first two digits are correct.

type [18]. In either application, the autocorrelation functions
bore resemblance of the AR(1) autocorrelation (in light of
Corollary 1). The first application was an n-electron quantum
dot with trail energy of a Slater-Jastrow–type state function
for a theory of a harmonic oscillator potential with Coulomb
repulsion. The angular frequency was ω = 1. Importance
sampling/Hastings-Metropolis theorem was used together
with a Fokker-Plank–type prior [19]. The implementation
has acceptance rate >99.999% for each proposed state. The
autocorrelation time constant was τ = 360, and the time
until the observations were close to uncorrelated was h ≈ 4τ .
The second application was an implementation of the Ising
model using a 20 × 20 grid of spins with periodic boundary
conditions at temperature T = 2.4 [20]. The energy was
sampled from a Boltzman distribution at significance level
α = 0.05 according to a χ2 goodness-of-fit test [3] using a
stationary, time-reversible Markov chain constructed using the
Metropolis algorithm [21]. The autocorrelation time constant
was measured to be τ = 16. Figure 4 plots the results.

D. Multithread computing and memory limitations

If the time series is sufficiently large, it is common to
store the time series in smaller chunks, rather than in one

file, or in memory all at once. Such can happen if the
computing facility memory is smaller than the time series,
or the application generating the time series runs on multi-
ple threads. This is typically the case when the time series
is generated by a Markov chain on multithread clusters.
As shown above, it is possible to reduce the size of the
data by applying blocking transformations on each chunk
until the chunks are small enough to be imported onto
a single node or personal computer. Suppose the amount
of memory that can be allocated on this node is 2d real
numbers.

Assume now that the total length of the time series is
n = 2D , divided into 2k smaller chunks of length 2D−k . Let
X denote any such vector containing a chunk of the time
series. It is important that within such a chunk, the order
of the observations is preserved. Now on the chunk, apply
blocking transformations D − d times and form XD−d =
TD−dTD−d−1 . . . T1X where Ti is defined in Eq. (22). The size
of XD−d is exactly 2D−k/2D−d = 2d−k . The same procedure
is executed on each of the 2k chunks, and thus the total
data are of all the transformed chunks is 2k2d−k = 2d , as
required. On the parent node, or personal computer doing
the final estimate, write the data to memory by concatenating
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FIG. 5. In the case that the time series is too large for memory, or
is so large that it is not saved in a single file, it is possible to reduce the
size of each chunk of the time series by repeated use of the matrices
Tj . This is convenient in the case that the time series is generating by
a multithreaded program. The procedure is as follows: Choose one
of the chunks of the time series, number i. (Step 1) Transform chunk
number i by applying the matrix TD−dTD−d−1 . . . T2T1. Define Yi to
be the result of this transformation. (Step 2) Repeat for all j �= i.
(Step 3) Concatenate all the chunks after they have been formed into
one long vector (Y1, Y2, . . . , Y2k )T. This vector will now have size
2d , thus is small enough to (Step 4) be handled on a single node
by using the algorithm of Fig. 2. See Sec. III D for more details
including the definitions of the numbers D, d , and k.

each of the 2d−k blocks end to end into a long vector of
size 2d , then perform the ordinary algorithm as it is given in
Fig. 2. Figure 5 provides an overview of the procedure.

The computational cost of this is low. Performing the
transformations Ti as it is done in the code of Fig. 6 requires
precisely ni−1 floating point operations, as you can check.
So, the total number of floating point operations is computed
using geometric series:

D−d∑
j=1

nj−1 =
D−d−1∑

j=0

2D−k−j = 2D − 2d

2k−1
. (43)

According to Eq. (41), it is necessary to add the 12(2d − 1)
floating point operations that the parent node must spend at
the end, so the total cost is bounded above by

cost
(43)
� 2D︸︷︷︸

=n

1

2k−1
+ 2d

⎛⎜⎜⎝12 − 1

2k−1︸︷︷︸
�1

⎞⎟⎟⎠
� n + O(1) as n → ∞.

FIG. 6. PYTHON implementation of the algorithm. The code is
purposefully verbose to aid implementation in languages of lower
level of abstraction, such as C. In practice, the implementation can
be optimized and shrunk to about 10–15 lines of code. The most
recent implementations for PYTHON, C++, and R are available (see
[8]).

The reason it is possible to rejoin the time series by putting it
end to end is the same reason dependent bootstrapping works:
As long as the chunks are large enough, the resampling of
putting the observations end to end does not change γ . See
for example [18,22]

Analogously, the total mean can also be computed in
chunks since it splits up into a mean of means. Define mean

of chunk number j by μ̂j = (1/2D−k )
∑j2D−k

i=(j−1)2D−k Xi , then
write

X = 1

2D

2D∑
i=1

Xi =
2k∑

j=1

1

2D

j2D−k∑
i=(j−1)2D−k

Xi︸ ︷︷ ︸
2D−kμ̂j

= 1

2k

k∑
j=1

μ̂j . (44)

That implies the total mean of the time series is just the mean
of all the means. All in all, there is no problem in splitting the
whole time series in chunks since both statistics of interest are
recovered at the end.

If the data are generated by a program, it is a time saver
to compute the estimates on each thread at the same time the
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program is generating data. If you choose to do so, precision
is maximized by making the chunks as large as possible.
Working in this way saves considerable time because then
the data do not have to be read back into memory for post-
processing later.

IV. DISCUSSION

This study provides the following four new contributions:
(a) rigorous proof of the Flyvbjerg and Petersen [7] blocking
method conforming to the standard of modern mathematics.
The results give prospects for new research with relevance
to any blocking method. (b) An automated blocking method
is provided. It works for a variety of autocovariance func-
tions. (c) Autoregressive models were chosen to provide
error estimates. These account for error due to both (i) the
method and (ii) the sampling. (d) Integration of the blocking
method for multithread computing or extremely large time
series. The contributions include proof of the behavior of the
method. Furthermore, Proposition 1 outlines an approach to
(i) estimate the standard error more efficiently and (ii) provide
economical error estimates, both in terms of computation
simplicity and in precision. This method is simple to explain
and implement (requires no more than 10–20 lines of code),
and will appeal to those using the Flyvbjerg and Petersen [7]
blocking method, because it works under more general condi-
tions and maintains the simplicity of the original method.

Several authors have attempted to give justification for
the use of the blocking methods. Best known is the work
of Flyvbjerg and Petersen [7] providing motivational math-
ematics to explain the idea of Blocking transformations for
standard error estimation. They claim that there exists “an
obvious fixed point” but gives no proof [7]. For mathemat-
ically interested readers, this can present a distraction since
fixed points of any function Tj : A → B are defined when
A = B [4,23,24]. In this context, A �= B since A = Rni and
B = Rni/2 (see Sec. I). Thus, in mathematical sense, there
is no fixed point present. Instead, the justification given in
the results is the following: For the blocking method, the
variables subject to k blocking transformations Xk form a
stationary time series if X is stationary. This means that it is
possible to express the error ek as a function of γk (h). From
this and the transformation properties of the γj (h), it follows
that the behavior of the truncation error is given by {γk (1)}.
See Proposition 1. This may come as a surprise because this
implies that the behavior of the method is determined by the
set of {γk (1)}d−1

k=0 . Flyvbjerg and Petersen [7] appear unaware
of this because they state that the blocking method converges
if γ (h) ∝ 1/h [7], which does not capture the essence, as
was proved in Theorem 1. In fact, their blocking method
works whenever X1, X2, . . . is asymptotic uncorrelated, as
Theorem 1 makes precise.

Proposition 1 proves that the blocking method is applicable
under more general conditions than assumed by Flyvbjerg and
Petersen [7]. First, because γ (h) need not be proportional to
1/h [note Proposition 1, which places no restriction on γ (h),
although finite variance is required]. Therefore, γ (h) can
have any shape. Second, Flyvbjerg and Petersen [7] constrain
γ (h), exactly n degrees of freedom (since γ is a function

γ : {0, 1, . . . , n − 1} → R), while the results only constrain
{γk (1)}, exactly log2(n) = d degrees of freedom. Theorem 1
may also have theoretical interest in statistical mathematics.
The sum sk = ∑nk−1

h=1 (1 − h/nk )γk (h), for k = 0, appears fre-
quently in the study of time series [6], Proposition 1 and
Lemma 1 together imply that (2/nk )sk is determined up
to a constant1 by the set {γk (1)}. Moreover, according to
Theorem 1, γk (h) converges uniformly to zero on N. In this
way, blocking transformations are intimately linked to sk . This
provides interesting prospects for further work: for physics, it
is possible to provide realistic error estimates and improve the
method substantially if {γk (1)} is estimated more accurately
[since ek = (2/nk )sk]. However, elegant solutions probably
require non-Fisherian statistics. Perhaps Bayesian statistics
can be used because estimation is difficult for large k simply
because when k is large, then the sample size nk available
for estimation is small. For example, a suitable shrinkage
estimator may be particularly useful. See, for example, Stein’s
phenomenon [25] and applications such as those by Schäfer
and Strimmer [26]. Another proposed application of Proposi-
tion 1 is the proof of Corollary 1, which explains the behavior
of the blocking method [7], and why the automatic blocking
method works. The corollary shows that the estimates var(X)
improve with each blocking transformation, until (i) the vari-
ables Xk become uncorrelated or (ii) there exist j such that the
covariances γk (1) = 0 for all k � j . In case (i) the truncation
error ek = 0 since if the components of Xk are uncorrelated,
then cov((Xk )i , (Xk )j ) = σ 2

k δij by definition, so γk (h) = 0
for h � 1 and, hence,

ek = 2

nk

nk−1∑
h=1

(
1 − h

nk

)
γk (h)︸ ︷︷ ︸

=0

= 0.

Proposition 2 strengthens this statement to include case (ii)
because it shows that γk converges uniformly and identically
to zero on N whenever γ (h) → 0 as h → ∞.

There are several methods that automates computation of
var(X). In physics, the most well known automated method
for standard error estimation is perhaps dependent bootstrap-
ping [18]. Dependent bootstrapping is useful when n is small
or if n is large and the required precision is small. The main
advantage of bootstrapping methods over the present method
is their flexibility. Since bootstrap methods are popular, much
is known about their applications, for example, Parr [27] has
shown that Frechét differentiability is a sufficient condition
that the independent bootstrap works. According to Politis
and Romano [18], dependent bootstrapping has asymptoti-
cally valid procedures even for multivariate parameter spaces.
However, high precision estimates for large data sets are often
needed. Flyvbjerg and Petersen [7] proposed an alternative
method to automate computation. They proposed an automa-
tion by providing a confidence interval to test for normality of
Xk using σ̂ 2. Typically, this method works well since γ (h) ∝
1/h is commonly used in physics. However, this is not always

1That constant is σ 2
0 , as can be proved by iteratively using Proposi-

tion 1.

043304-15



MARIUS JONSSON PHYSICAL REVIEW E 98, 043304 (2018)

the case, and for automations operating without supervision,
it is possible to provide improvements. For example, stability
of the method depends on the shape of the covariance γ (h).
This can fail for certain types of correlation structures, for
example, oscillatory AR(2)-like processes introduced here.
The automation works for causal AR(p) processes for any p,
and places no assumption on the shape of γ (h). In addition,
this paper provides updates that make it convenient to use
the method for multithread computing. Another alternative
method is the Gamma method proposed by Wolff [28]. The
Gamma method works well with correct setup, with errors
claimed to be lower than those of the automatic blocking
method proposed here. Wolff [28] claims that the Gamma
method works for other types of correlation structures than
exponential decaying types. But, it may be necessary to set
up the method’s integration window manually. Wolff provides
suitable tools for the purpose, and explains that it seems
impossible to design automatic windowing that is adequate in
all possible cases. As such, it is possible to introduce a fully
automated method. In contrast to Wolff [28] recommendation,
Lee et al. [29] are proponents of a method that Wolff has
called binning (which is essentially a blocking method). Lee
et al. proposed inequalities that can be used to automate
calculations. However, this approach requires estimates that
may or may not be available. The automated blocking method
has none of the complications mentioned above.

The proposed automation uses exactly two approxima-
tions; namely, that (1) Σj is diagonal and (2) calculated to
leading order in 1/nk . In practice, approximation (2) can
be avoided because an exact expression for the covariance
matrix is provided by Proposition 5. However, the method will
often fail when approximation (1) is dropped. Consequently,
I recommend keeping it as a minimum. The problem is that
inversion of Σj can become difficult because the condition
number often become very large as n increases. However,
using this approximation is not a problem because Proposi-
tion 6 guarantees that the expected error of approximation
(1) is precisely zero. And, if nk is large, then (2) is not a
problem because then (1/nk )j � (1/nk )i for all i < j . The
bottom line is that Mj must be computed using a diagonal
covariance matrix diag(sj , sj+1, . . . , sd−1) but it is up to the
end user whether he/she sets si = var(γ̂i (1)) using Corollary 3
or expanding to leading in order by setting si = σ 4

i /ni for all
j � i � d − 1. In this paper I opted for si = σ 4

i /ni because
the tests I have performed showed found no effect of higher
precision (p = 0.72, t test).

Using AR(p) process for method validation is natural in
this context because it is possible to quantify both the error
due to (i) the method and (ii) due to the sampling of the data.
It would have been impossible to encompass the error due to
sampling if the estimates had been compared to high precision
estimates from another industry standard method. The error
estimates are empirical rather than analytical, but one draw-
back is that it is only possible to validate the method on a finite
number of problems. AR(1) and AR(2) processes were chosen
because Wold decomposition says that the random component
of any time series can be expressed as an autoregressive model
[6]. AR(1) and AR(2) correlation functions are the two most
common ones encountered in modeling of time series. The

two textbook cases, quantum dot and the Ising model, show
that their correlation structures were similar to the AR(1)
processes. Using Eq. (42), the results show that the accuracy
is as follows: With almost no data available, end users can
expect that the estimates are of correct order of magnitude
(since ε2 = eβ0 if n = τ ). The expected accuracy increases
to produce the first correct digit already at circa n = 104

and 105 observations for the Ising model and quantum dot,
respectively. While it is expected that the second digit is
also correct if n circa 106 and 108 for the Ising model and
quantum dot, respectively. This means that the convergence
of the relative error to zero is slower than the claimed value
for the Gamma method [28]. However, unlike the estimates
due to Wolff [28], Table II gives regression results, thus
providing a measure on all sources of error (even the errors
made by the end users in sampling of the data). In practice,
the physics application shows that the estimates are similar
to those of dependent bootstrapping and the Flyvbjerg and
Petersen [7] blocking method, regardless of n (see Fig. 4), is
fully automatic and works in O(n) time.

V. CONCLUSION AND PERSPECTIVES

A rigorous proof of the blocking method (Flyvbjerg and
Petersen [7]) is a main result of this study. That method has
become one of the industry standards for estimating standard
errors var(X)1/2 of the mean whenever the number of obser-
vations is large. Second, the proof gives an automated im-
plementation that eliminates the need for human intervention.
The method uses Fisherian inference to propose a hypothesis
test that can be used to determine the estimate of the standard
error. The method has complexity O(n), and works for all
common covariance structures in natural sciences. This should
first and foremost appeal to researchers in computational
physics, but also in other sciences, since the study conforms to
the standard rigor of modern mathematics and introduces ter-
minology standard in the other sciences. By being automated
and complexity O(n), the present method is less expensive
than other methods for standard error estimation of the mean
used in computational physics (source code is available from
[8]).

The paper proposes prospects for more research. Propo-
sition 1 shows that the behavior of any blocking method is
determined by the set {γk (1)}d−1

k=0 . However, more advanced
estimation is needed to use the result for efficient estimation
of var(X). The problem is that for large k, the data available
to estimate γk (1) are small and, consequently, any classical
Fisherian estimation is inappropriate. Accordingly, shrinkage
estimation or Bayesian estimation may be used. The result
is interesting for applications because the truncation error
of blocking methods can be expressed in terms of {γk (1)}.
Therefore, professional error bounds may be provided by
developing the mathematics further. Or, better yet, it may
be possible to estimate the errors, which would provide
significant benefits to end users. Furthermore, it is probably
possible to relax the requirements of Theorem 2 because work
is constantly being done on central limit theorems. Finally, it
would be useful to classify all the Markov chain Monte Carlo
methods that are common in computational physics (see for
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example [30]), such that it is more clear for which methods
Theorem 2 continues to hold.
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APPENDIX

Lemma 6. The sequence {fk} satisfies the following prop-
erties:

(1) fk (i) � i for all 1 � i � 2k+1 − 1.
(2)

∑2k+1−1
i=1 fk (i) = 22k .

(3) fk+1(i) = fk (i) + 2fk (i − 2k ) + fk (i − 2k+1).

Proof. The first property is obvious. For the second prop-
erty, use the arithmetic series formula. Write

2k+1−1∑
i=1

fk (i) = 1 + 2 + · · · + 2k + (2k − 1) + · · · + 2 + 1

= 2k + 2
2k−1∑
i=1

i = 2k + 2
2k − 1

2
2k = 22k.

For the third property, use induction. The base case is satisfied
for k = 0, then,

1 = f1(1) = f0(1)+2f0(1 − 1) + f0(1 − 2) = 1 + 0 + 0,

2 = f1(2) = f0(2)+2f1(2 − 1) + f0(2 − 2) = 0 + 2 + 0,

1 = f1(3) = f0(3)+2f2(3 − 1) + f0(3 − 2) = 0 + 0 + 1.

For the induction step, suppose hypothesis is true for k. If 0 �
i � 2k+1, then fk+1 = i. Moreover, either 0 � i � 2k or 2k �
i � 2k+1. If the former is true, then

fk (i) + 2fk (i − 2k ) + fk (i − 2k+1) = i + 2 × 0 + 0 = i.

If the latter is true, then

fk (i) + 2fk (i − 2k ) + fk (i − 2k+1)

= 2k+1 − i + 2(i − 2k ) + 0 = i.

The other cases are proved similarly. �
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