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High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
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We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved
stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-
dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number Re = 5 × 104

for this setup. Excellent agreement with energy balance equations, computational and experimental results are
shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of
turbulent production.
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I. INTRODUCTION

Fluid dynamic turbulence is a fundamental problem for
theoretical physics and applied engineering [1,2]. Particularly
complex, yet paramount for a plethora of real-life situa-
tions (both of natural and technological relevance), is the
case of wall-bounded turbulence. Here, in general, one has
to cope with statistically nonhomogeneous and anisotropic
flows, where highly nontrivial interactions between bulk and
boundary layer physics emerge. Fluids at high Reynolds num-
bers (Re) inside cavities are paradigmatic of wall-bounded
flows and have proven extremely challenging for numerical
simulations [3,4]. In addition to being a prototypical case
study to test the effectiveness of numerical methods to handle
boundary conditions, cavity flows are of interest for a number
of applications in different natural and technological contexts:
from the mixing of composite materials [5,6] to aneurysms in
blood flows [7]. In all such circumstances, a central question is
to understand the emergence of flow structures and their topol-
ogy when Re increases. Unlike other relevant paradigmatic
examples of bounded flows, such as the drag crisis of a flow
past an obstacle, channel flows, Rayleigh-Bénard convection,
and Taylor-Couette flows, high-Reynolds-number lid-driven
cavity flows have been so far overlooked as a physics problem.
The aim of our paper is, therefore, twofold. On one hand
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we will introduce a new way of implementing boundary
conditions in a regularized lattice Boltzmann method (LBM)
and on the other we will provide hints that, at increasing
Re, complex flow dynamics emerge in a lid-driven cavity.
We study numerically the three-dimensional (3D) lid-driven
cavity problem (see Fig. 1), exploring regimes up to the
unprecedented Reynolds number of Re = 5 × 104 for this
type of flow.

Experimental results are available up to Re ≡ uLL/ν =
104, where uL, L, and ν are characteristic velocity, length,
and viscosity, respectively, and they have been used to validate
and compare to computational methods for the past 30 years
[6,8]. With the increasing ubiquity of simulation technologies,
the field of turbulent flow hydrodynamics commonly uses
computational methods to push the frontier. Direct numerical
simulations (DNS) have been conducted with highly accurate
Chebyshev collocation methods [9] and have been extended
up to Reynolds number Re = 2.2 × 104 [10]. Subgrid scale
(SGS) large-eddy simulation (LES) methods have been used
to simulate up to Re = 1.2 × 104 [11] and Re = 2.2 × 104

[12].
An alternative approach to computationally solve three-

dimensional lid-driven cavity flow is to use lattice Boltzmann
methods coupled with SGS turbulence models to simulate
flows up to Re = 1.2 × 104 [13,14]. Lattice Boltzmann meth-
ods for lid-driven cavity flow have previously used simple
boundary conditions, such as bounce-back for the Dirichlet
condition at the stationary cavity walls and interpolation
schemes [14–16], as well as regularized schemes to improve
stability [17]. This improvement in stability for LBM is a key
issue, since the time complexity is on the order of L4.

The previous approaches have never been extended past
Re = 22 000. Given these limitations, both on the computa-
tional and the experimental sides, we present a DNS scheme
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FIG. 1. The magnitude of the vorticity field for the lid-driven
cavity flow at Re = 4.5 × 104 and simulation time of tLB = 3.3 ×
106 time steps or, in nondimensional units, tND = tLBuL/L = 196.
An illustration of the axes and the imposed velocity is also shown.
L = 1024. Note that the walls have been excluded.

using the regularized lattice Boltzmann method where we
introduce a onsite Dirichlet boundary condition, yielding im-
proved stability up to Re = 5 × 104. Due to these improve-
ments, we pave the way to more stable high-Reynolds-number
simulations in arbitrary geometries. This LBM framework
presents two significant advantages over existing methods.
First, the robust stability of the scheme allows simulations
to be conducted at lower grid resolutions, without resorting
to local mesh refinement or turbulence models. Second, the
inherent scalability of both LBM and the boundary conditions
leads to a computational model that scales efficiently on high-
performance computing resources [18].

II. METHODS

The LBM [19–21] is a discrete kinetic model governed by
the following evolution equation for the particle distribution
function f :

fi (r + ci , t + 1) = f
(eq)
i (r, t ) + (1 − τ−1)f̂i

(neq)
(r, t ), (1)

where r , ci , and t are, respectively, the space, microscopic
velocity, and time, all in dimensionless units [22,23]. We
use the D3Q19 stencil with velocity links ci , i = 0, . . . , 18.
We employ the scheme which regularizes f according to the
density, momentum, and second-order moments [24,25],{

ρ, ρuα, ρm
(2)
αβ

} =
∑

i

gi

{
1, ciα, ciαciβ − δαβ/a2

s

}
, (2)

where δαβ is the Kronecker delta, as = √
3 is a scaling factor,

and gi = fi or f̂i ; f̂ represents the regularized distribution.
The moments in Eq. (2) are generated by the Hermite poly-
nomials of order n denoted by H (n)

α1...αn
[26]. The equilibrium

function f (eq) is taken as a second-order velocity expansion in
the Hermite polynomials:

f
(eq)
i (r, t ) = ρwi

(
1 + a2

s uαciα + 1
2a4

s uαuβH (2)
αβ,i

)
; (3)

wi are the quadrature weights which depend on the absolute
value of the direction ci (see Appendix A). The second-order
moments are projected into the velocity space via

f̂i
(neq)

(r, t ) = 1
2ρwia

4
s

[
m

(2)
αβ − uαuβ

]
H (2)

αβ,i . (4)

The regularization procedure is completed by

f̂i (r, t ) = f
(eq)
i (r, t ) + f̂i

(neq)
(r, t ). (5)

While the regularization scheme leads to improved general
stability of LBM [17,25,27], it does not directly address
boundary conditions. Many onsite boundary conditions solve
for the unknown distributions using methods such as (i)
bounce-back of the nonequilibrium distribution [28]; (ii) iter-
ative scheme to solve for an unknown slip velocity [29]; (iii)
diffusive boundary, which assumes that the outgoing stream
of particles lose its memory about the incoming stream of
particles [30]; or (iv) schemes that replaces only the subset
of distributions which are unknown at the boundary [31,32].
However, the restriction to replacing a subset of the distribu-
tions leads to instability at even moderate Reynolds numbers
[33]. Dorschner et al. [34] use a first-order finite-difference
scheme to evaluate the second-order moments, related to the
strain rate tensor, while the velocities are taken from the
previous time step. Krithivasan et al. [35] use a combination of
the bounce-back rule and the nonlocal diffusive boundary con-
dition. Regularized onsite boundary conditions, which replace
the entire distribution at the boundary, have been developed,
but encounter instability at large Re and require complex
iterative schemes to address edges and corners [33,36]. Alter-
native approaches involve extrapolation schemes and finite-
difference methods to handle flows at large Re, but these
methods compromise the inherent parallelism of LBM [37].

Instead, we present a new onsite, Dirichlet-type, regular-
ized boundary condition that uses the second-order moments
to solve a system of equations analytically. As the system of
equations depends only on lattice topology, this regularized
boundary condition applies equally to faces, edges, and cor-
ners. In this way, it avoids the usage of iterative solvers (e.g.,
Refs. [29,36]) or the nonlocality of extrapolation schemes but
nonetheless demonstrates robust stability.

Two sets of directions must be defined at the boundary
nodes to utilize the current boundary conditions: the incoming
to the site particles Is = {i | r − ci is a fluid site}, and the
outgoing from the site particles Os = {j | cj = −ci , i ∈ Is}
(see Appendix A for details). At each boundary node—which
can be viewed as a fluid node with a distinctive rule of
evolution—we compute the quantity∑

i∈Is

fiHαβ,i
(2).

The reconstruction process of the distribution function f̂ at
a boundary node is performed summing the still-unknown
regularized particles to obtain the second-order moment as:

∑
i∈Is

fiHαβ,i
(2) +

∑
i /∈Is

f̂iHαβ,i
(2) = ρm

(2)
αβ . (6)
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The second-order moment ρm
(2)
αβ can be decomposed as a sum

of regularized particle distributions,

ρm
(2)
αβ =

∑
i∈Is

f̂iHαβ,i
(2) +

∑
i /∈Is

f̂iHαβ,i
(2)

.

The decomposition above combined with Eq. (6) leads to the
following set of D(D + 1)/2 equations (D is the Euclidean
dimension): ∑

i∈Is

fiHαβ,i
(2) =

∑
i∈Is

f̂iHαβ,i
(2)

. (7)

Since we are dealing with Dirichlet boundary conditions,
the velocity u is known a priori. As a closure relation, we
impose the mass conservation during the collision process at
the boundary node:∑
i∈Is

fi (r, t ) =
∑
i∈Os

fi (r + ci , t + 1)

= (1 − τ−1)
∑
i∈Os

f̂i (r, t ) + τ−1
∑
i∈Os

f
(eq)
i (r, t ),

(8)

where we have used an equivalent form of Eq. (1):

fi (r + ci , t + 1) = (1 − τ−1)f̂i (r, t ) + τ−1f
(eq)
i (r, t ).

The relation expressed in Eq. (8) means that the number of
incoming particles to the site, represented in the left-hand side,
is exactly equal to the number of outgoing particles from the
site, represented by the right-hand side. The solution of the
system of Eqs. (7) and (8) for the unknowns ρ and m

(2)
αβ makes

possible the projection of the particle distribution function
through Eq. (5), since f̂ is a function of ρ, uα , and m

(2)
αβ , only,

and the particle distribution function is then explicitly written,
using Eq. (5), as:

f̂i (r, t ) = ρwi

(
1 + a2

s uαciα + 1
2a4

s m
(2)
αβ H (2)

αβ,i

)
. (9)

It follows that the system of equations composed by Eqs. (7)
and (8) has analytical solutions for all kinds of neighborhoods:
faces, edges, and corners. General forms of Eqs. (7) and (8),
as well as explicit relations for the solutions of the above
equations, are given in Appendix A.

III. RESULTS

The flow occurs in a cubic cavity driven by a constant
tangential velocity equal to u = (uL, 0, 0) applied at the top
of the cubic cavity; on the other five faces of the cavity we set
the velocity to zero. We compare our method to the work of
Montessori et al. [17], who have implemented a regularized
LB using the boundary condition described in Guo et al. [38]
and also a plain BGK version of the LBM, without regulariza-
tion. It can be seen in Fig. 2 that our proposed method greatly
enhances stability, generally using only 60% of the grid points
for the other best-case scenario—the regularized LB with
the boundary conditions of Guo et al. Importantly, the only
difference between our scheme and the one used in Ref. [17]
is the boundary condition. Due to the time complexity of the
fourth order and by reducing the required grid size for a stable

50 75 100 125 150
grid points

2000

4000

6000

8000

10000

R
e m

a
x

This work

RBGK [17]

BGK [17]

FIG. 2. Plot of the maximum stable Reynolds number for the
lid-driven cavity flow versus the number of grid points used in several
lattice Boltzmann schemes: plain BGK (bottom line), regularized
LB (middle line) using Guo et al. boundary conditions, and this
work (top line). Data from regularized (middle line) and plain BGK
(bottom line) were extracted from Ref. [17].

simulation, we increase the space of feasible high-resolution
simulations.

We present results for Re between 103 and 5 × 104 and
for resolutions of L = {256, 511, 1024}. We set uL = 0.1cs ,
where cs = 1/

√
3 is the sound speed in the LB fluid, avoiding

compressibility effects by keeping the Mach number low. The
relaxation time is tuned to set the Reynolds number through
the viscosity ν = (τ − 1/2)/a2

s . The pressure p is given by
p = c2

s ρ.
To validate our code, we compare our results to those

of Ref. [9], where highly accurate numerical results for
lid-driven cavity simulations using spectral methods are
presented. The comparison is favorable, with no discernible
differences between the two Re = 103 results for both
velocity and pressure. A plot of the two sets of traces can be
seen in in Fig. 3.

To further verify the model’s consistency, we performed
two direct comparisons with theoretical results, deriving exact
relations from the total kinetic energy and the turbulent kinetic
energy balance equations. These relations act as validation
since there are no experimental or computational results to
compare with for Re = 1.5 × 104 and above.

The total kinetic energy, the strain rate tensor, Sαβ =
1
2 (∂αuβ + ∂βuα ), and the squared velocity u2

x , are related in
the following way:

〈S2〉V = 1

4L
∂zu2

x (z)
∣∣
z=L

, (10)

where S2 ≡ SαβSαβ . The symbol 〈...〉V denotes an average
over the whole volume, while (. . . )(z) stands for an average
over the xy plane; a time average over a statistically stationary
state is also implied. Equation (10) expresses the balance
between power input from the lid (right-hand side) and dissi-
pation (left-hand side). The strain rate tensor (left-hand side)
is locally computed using the expression given in Appendix B,
while the right-hand side is evaluated with finite differences.
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FIG. 3. (a) Plot of normal velocity traces along the centerlines
of the x and z. (b) Plot of the normalized pressure traces along
the same dimensions. The normalized pressure is defined as: p	 =
(p − pmin)/(pmax − pmin), where pmin and pmax are the minimum
and maximum pressure, respectively, along the centerline. Both plots
are for Re = 103(L = 1024). The data in circles for each plot were
extracted from Ref. [9].

For the turbulent kinetic energy equation, the production P
and the dissipation ε of turbulent kinetic energy obey the
following relation [39]:

〈P〉V = 〈ε〉V . (11)

Relations (10) and (11) examine the large and small scales,
respectively; details of their derivation are shown in Ap-
pendix B. Results for the relative errors of the validation ratios
rS ≡ 4L〈S2〉V/∂zu2

x (z)|z=L and rε ≡ 〈ε〉V/〈P〉V are shown in
Table I. The errors for the runs up to Re = 5 × 104 are limited
to ∼5% at the large scales and to ∼10% at the small scales. As
required by direct numerical numerical simulations, the lat-
tice Boltzmann grid spacing, �LB = 1, should be sufficiently

TABLE I. Relative error values for the validation ratios rS =
4L〈S2〉V/∂zu2

x (z)|z=L (a) and rε ≡ 〈ε〉V/〈P〉V (b). Results are shown
for several Reynolds numbers and resolutions. The dash symbols
represent numerical unstable solutions.

(a) Relative error in rS , ||rS − 1||
Re L = 256 L = 511 L = 1024

3.2 ×103 6.9% 3.5% 1.6%
1.0 ×104 10.2% 4.8% 2.6%
1.5 ×104 13.8% 5.6% 2.9%
2.5 ×104 – 8.2% 3.4%
4.0 ×104 – – 4.8%
4.5 ×104 – – 5.0%
5.0 ×104 – – 5.6%

(b) Relative error in rε , ||rε − 1||
1.0 ×104 9.1% 8.4% 10.5%
1.5 ×104 8.5% 2.2% 6.1%
2.5 ×104 – 5.4% 3.3%
4.0 ×104 – – 1.7%
4.5 ×104 – – 2.2%
5.0 ×104 – – 1.3%

small to solve the Kolmogorov scale η

η =
(

ν3

〈ε〉V

)1/4

. (12)

Using Eq. (11) and the nondimensional production of turbu-
lent kinetic energy P	 = P/(u3

L/L), Eq. (12) is written as

η

L
= 〈P	〉−1/4

V Re−3/4.

Taking the extreme case Re = 5 × 104 (L = 1024), the cal-
culated production is 〈P	〉V = 8.32 × 10−4 (see Table II),
and the corresponding Kolmogorov scale is η = 1.80, which
conforms with the requirement �LB � η [34,40].

In Fig. 4 we present the profiles of Ux (x = L/2, y =
L/2, z) along the vertical coordinate for different Reynolds
numbers. The mean velocity is given by 〈uα〉 ≡ Uα , where
〈...〉 indicates a temporal average over the stationary state. For
the sake of further validation, we compare our numerical data
(solid lines) with experimental results from Ref. [8], for Re =
3.2 × 103 and Re = 104, finding very good agreement. We

TABLE II. Results for the nondimensional production of turbu-
lent kinetic energy, or production, P	 = P/(u3

L/L), as a function of
the Reynolds number (L = 1024). The following results are shown:
the average production over the whole cavity, 〈P	〉V ; the maximum
value for the average of production at the yz plane, P	(x ); and the
location x	

max = xmax/L for the peak of production.

Re 〈P	〉V P	(x	
max) x	

max

1.0 × 104 3.62 × 10−4 2.68 × 10−3 0.966
1.5 × 104 4.23 × 10−4 3.88 × 10−3 0.970
2.5 × 104 4.69 × 10−4 6.42 × 10−3 0.978
4.0 × 104 7.41 × 10−4 2.07 × 10−2 0.989
4.5 × 104 7.77 × 10−4 2.51 × 10−2 0.990
5.0 × 104 8.32 × 10−4 2.85 × 10−2 0.991
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FIG. 4. Normalized averaged velocity profiles in the x direction,
Ux/uL, along the z axis at x = y = L/2 for Reynolds numbers Re =
3.2 × 103, 104, 2.5 × 104, and 5 × 104 (L = 1024). Experimental
values for Re = 3.2 × 103 and Re = 104 (symbols � and 	) were
extracted from Ref. [8].

also show the profiles for Re = 2.5 × 104 and Re = 5 × 104.
As seen in Fig. 4, when the Reynolds number increases, there
is a decrease in the peak of the minimum of Ux near the
bottom wall. This is an effect of the increased production
of turbulence: As Re increases, in fact, turbulent fluctuations
tend to disrupt the large-scale circulation. Consequently, the
drag coefficient, defined as

CD = 2ν〈S2〉(
u3

L

/
L

) , (13)

decreases with Re more slowly than in the laminar case,
∼ Re−1 (in particular we observe that CD ∼ Re−2/3, see inset
of Fig. 5). For Re = 5 × 104, the minimum velocity Ux/uL is
−0.181, and the velocity profile becomes almost flat. Hitherto
computational results have not vastly exceeded experimental
results so there was no incentive to perform quantitative
experiments past Re = 104. Given the new results at greater
Reynolds number, such as in Fig. 4, we encourage others to
further probe this new regime.

Figure 5 shows the profiles of the turbulence production
P (x), averaged in yz planes. For all of the production curves
there is a peak followed by a fast decay from the downstream
wall (plane x = L), towards the negative direction of the x

axis, until x ≈ 0.8L, when the production becomes approxi-
mately constant. The high peaks of production for Re � 4 ×
104 in the vicinity of the downstream wall indicate a larger
conversion of mean (nonturbulent) kinetic energy to turbulent
kinetic energy, resulting in turbulent drag. In Table II we
present the results for the average production over the whole
system, as well as the value of the production peak and the x

coordinate where this peak happens. Both the nondimensional
average volumetric production 〈P	〉V and maximum average
areal production P	(x) increase with the Reynolds number.
The location where the maximum production occurs moves
closer to the wall, from 4% to 1% of L — indicating that

0.80 0.85 0.90 0.95 1.00
x/L

0.000
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0.030

P�
(x

)
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Re = 2.5 × 104

Re = 4.0 × 104

Re = 5.0 × 104

1
2 3 4 5

10−4 Re

10

3

6

9

10
3
c D

FIG. 5. Average production of the turbulent kinetic energy in the
x direction (yz plane), P	(x ), for Reynolds numbers 104, 1.5 × 104,
2.5 × 104, and 4.5 × 104. The resolution is L = 1024. Since the
values of the mean production for 0 � x/L � 0.8 are ≈10−4 for
all Re, only values for x/L � 0.8 are shown. Inset: log-log plot of
the turbulent drag coefficient CD ≡ 2ν〈S2〉L/u3

L versus Reynolds
number: Dots are the numerical data, the dashed line corresponds
to the scaling CD ∼ Re−2/3.

the boundary layer thickness decreases as Re increases from
104 to 4.5 × 104. In Fig. 6 we plot the maximum production
P	(x	

max) vs. Re: interestingly, we observe a linear relationship
P	(x	

max) ∝ Re for Re up to 2.5 × 104, whereas P	(x	
max) ∝

Re3/2 for Re � 4 × 104. The latter might be the indication
that for some critical Reynolds 2.5 × 104 < Rec < 4 × 104 a
transition to a new dynamical regime occurs, characterized by
the presence of further topological structures in the flow. This
picture is corroborated by Fig. 7, where we plot the probability
density function (pdf) of the Laplacian of the pressure field
�p ≡ ∂2

ααp. The latter fulfills, for an incompressible velocity

1 2 3 4 5 6
10−4 Re

0.5

1

2

3
4

10
2
P�

(x
� m

a
x
)

FIG. 6. Maximum production of the turbulent kinetic energy at
the yz plane vs. Re. Dashed lines indicate the power laws P	(x	

max) ∝
Re, for Re � 2.5 × 104, and P	(x	

max) ∝ Re3/2, for 4 × 104 � Re �
5 × 104.
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f
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FIG. 7. Probability density function (pdf) of the Laplacian of the
pressure field �p, computed over the whole volume, for Re = 2.5 ×
104 and Re = 4.5 × 104 (L = 1024).

field, the following equality:

�p = �2 − S2, (14)

where S2 is the trace of square strain rate tensor (defined
as above), and �2 = �αβ�αβ is the trace of the square
of the antisymmetric part of the gradient tensor, �αβ =
1
2 (∂αuβ − ∂βuα ). Minima of the pressure field, where �p >

0, correspond to regions of high rotation and low strain, like
vortex cores. We observe in Fig. 7 that the pdf of �p develops
a fat tail at large positive values when Re is increased from
2.5 × 104 to 4.5 × 104. This tail suggests the emergence of
new strong vortical structures, on top of the primary and
secondary vortices (notice that the magnitude of �p is given
in units of (uL/L)2, which gives a measure of the enstrophy
content of the large-scale primary vortex).

IV. CONCLUSIONS

We have proposed a new lattice Boltzmann boundary con-
dition for Dirichlet problems based on a regularized form
of the lattice Boltzmann equation. The robust stability of
this DNS scheme allows simulations to be conducted with-
out resorting to local mesh refinement or turbulence models
and leads to a computational model that scales efficiently
on high-performance computing resources. This numerical
scheme is applied to a turbulent flow and simulation results
are compared with available experimental data for Re =
3.2 × 103 and 104, showing good agreement. Simulations are
conducted up to Re = 5 × 104, beyond the limit that was
found in the published literature and leads to new insights
into the role of the physical mechanisms that are responsible
for the production of the turbulent kinetic energy inside the
cavity. Particularly, we find that when Re increases, there is
an increasing conversion of the main stream kinetic energy
into turbulent kinetic energy along the downstream wall, and
the effect of the turbulent drag reveals itself in the velocity
field. In a future work, we plan to make a more systematic
analysis in terms of scaling properties of global quantities,
such as dissipation, momentum fluxes, over an extended the

range of Re, in order to probe new emerging dynamical
regimes. As a method developed within the lattice Boltzmann
framework, it may be directly applied to this class of models.
The immediate follow-ups are other standard velocity stencils
(like D3Q27, D2Q9 [41]) and high-order models [42]. For
the standard D3Q27 and D2Q9 velocity sets using BGK, the
set of Eqs. (7) and (8) must be solved again and these solutions
will give rise to the Dirichlet boundary conditions for these
models. Regarding the D3Q15 velocity set, there will be no
solution for corners, since the number of particle distributions
(four) is smaller than the number of equations (seven) leading
to an undetermined system, and then the application of the
present method is not straightforward for the D3Q15. The
present model can also be applied to other collision kernels,
like the entropic LB [43,44] and the regularized LB with
recurrence relations [45,46]. For instance, the present method
can be applied to the entropic collision model at the bound-
aries leading to a nonlinear system of equations in order to
guarantee the nonlinear stability of the entropic scheme and
the conservation of mass.
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APPENDIX A: BOUNDARY CONDITIONS

We provide details of the proposed method for the bound-
ary conditions in the following order: (1) the D3Q19 velocity
set; (2) the types of boundary sites: corner, edges, and faces;
(3) the explicit equations for the moments; (4) the solutions
for all kinds of concave boundary sites; and (5) a summary of
the method.

1. D3Q19 stencil

The D3Q19 stencil is defined by the following particle
dimensionless velocities: c0 = (0, 0, 0), c1 = (1, 0, 0), c2 =
(0, 1, 0), c3 = (0, 0, 1), c4 = (−1, 0, 0), c5 = (0,−1, 0),
c6 = (0, 0,−1), c7 = (1, 1, 0), c8 = (1, 0, 1), c9 = (0, 1, 1),
c10 = (1,−1, 0), c11 = (1, 0,−1), c12 = (−1, 1, 0), c13 =
(−1, 0, 1), c14 = (0, 1,−1), c15 = (0,−1, 1), c16 =
(−1,−1, 0), c17 = (−1, 0,−1), c18 = (0,−1,−1). The
weights wi associated with the directions ci are the following:
w0 = 1/3; wi = 1/18 for i = 1, . . .,6; and wi = 1/36 for
i = 7, . . .,18. An image of the stencil is shown in Fig. 8.
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FIG. 8. D3Q19 stencil. For simplicity, the origin of the system of
coordinates is located at the center of the grid. The velocity vectors
of the lattice are shown pointing from the origin toward their next
step sites.

2. Boundary sites

In our approach to solve the Dirichlet boundary conditions,
we have assumed that the boundaries are aligned with spatial
and velocity coordinates, a common practice in lattice Boltz-
mann (LB). Since we are dealing with a wet-node boundary
type, all boundary sites can be divided into three groups: faces,
edges, and corners. As mentioned, we have also restricted this
work to concave boundaries, considering our main goal was
to perform simulations of an LB fluid inside a concave cavity.

FIG. 9. Example of a corner boundary site, located at the point
(x, y, z) = (0, 0, 0). The fluid portion is defined by the intersection
of the regions x � 0, z � 0, and y � 0. The normals are given
by n̂1 = (0, 0, −1), n̂2 = (−1, 0, 0), and n̂3 = (0, 1, 0). The shaded
part of the figure represents the solid region. The visible vectors
are the outgoing vectors of a corner boundary site. At this site
l1 = l2 = −1 and l3 = 1. Also, I = {0, 2, 4, 6, 12, 14, 17} and O =
{0, 1, 3, 5, 8, 10, 15}.

FIG. 10. Example of an edge boundary site, located at the
point (x, y, z) = (0, 0, 0). The fluid portion is defined by z �
0 and x � 0. The normals are given by n̂1 = (0, 0, −1) and
n̂2 = (−1, 0, 0). In this case, l1 = l2 = −1. The set I is given
by {0, 2, 4, 5, 6, 12, 14, 16, 17, 18} and the outgoing set is O =
{0, 1, 2, 3, 5, 7, 8, 9, 10, 15}. The visible vectors form the outgoing
set at this site.

Nevertheless, we are currently working on the extension of
this idea to convex boundary sites as well.

Recall the definitions of the incoming and outgoing direc-
tions at a boundary site: The incoming particles to the site
index set Is is defined by Is = {i | r − ci is a fluid site}, while
the outgoing particles from the site index set Os is given by
Os = {j | cj = −ci , i ∈ Is}. Outgoing vectors for a corner, an
edge, and a face are shown in Figs. 9, 10, and 11, respectively,
while one incoming set of vectors for a face is shown in
Fig. 12.

FIG. 11. Example of a face boundary site, located at the
point (x, y, z) = (0, 0, 0). The fluid portion is defined by z �
0; the orientation of this face boundary site is defined by
the normal n̂1 = (0, 0,−1) at the xy plane. Also, l1 = −1.
The outgoing vectors are shown, and the outgoing set is O =
{0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16}. The incoming vectors are
depicted in Fig. 12.
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FIG. 12. The same face boundary site of Fig. 11, and now the
incoming vectors are shown. With this orientation, the incoming set
is given by I = {0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 16, 17, 18}.

The corner boundary site is defined by the intersection of
three perpendicular planes defined by the normals n̂k = lk êk ,
where êk is the vector of the canonical basis in R3 associated
with the coordinate xk . Hereafter, k = 1, 2, 3; (x1, x2, x3) is
any permutation of the coordinates (x, y, z); and lj = ±1
defines the orientation of the planes: the normals must point
from the fluid toward the solid (see label in Fig. 9). There are
seven incoming and seven outgoing particle distributions at a
corner boundary site and a typical one is shown in Fig. 9.

The second type of boundary site is the edge, which is the
intersection of two perpendicular planes. The edge is defined
by the two normals of these planes, n̂1 = l1 ê1 and n̂2 = l2 ê2.
Since there is no need for a third plane, l3 = 0. There are a
total of ten elements in the I and O sets, each. An example of
an edge is shown if Fig. 10.

The face boundary site is simply defined by a normal vector
n̂1 = l1 ê1. In this case, l2 = l3 = 0. There are 14 incoming—
and 14 outgoing—particle distributions at a face boundary
site. Figures 11 and 12 depict an example of a face.

3. General explicit equations for the moments

The following known quantities are defined at the bound-
ary sites:

ρI ≡
∑
i∈Is

fi, (A1)

ρIm
(2)
αβ,I ≡

∑
i∈Is

fiH
(2)

αβ,i , (A2)

where Greek letters represent the spatial coordinates, H (2)
αβ,i =

ciαciβ − δαβ/a2
s is the second-order tensor Hermite polyno-

mial, and as =√
3 is the scaling factor. In some places we will

also use the equivalent definition

m
(2)
αβ,I = ρ−1

I

∑
i∈Is

fiH
(2)

αβ,i .

Note that in Eqs. (A1) and (A2) the distributions fi are the
incoming populations, so they are not regularized yet. Now,

recall that the system of equations for the moments m
(2)
αβ and

ρ is given by the following D(D + 1)/2 + 1 equations:

ρIm
(2)
αβ,I =

∑
i∈Is

f̂iH
(2)

αβ,i , (A3)

ρI = (1 − ω)
∑
i∈Os

f̂i (r, t ) + ω
∑
i∈Os

f
(eq)
i (r, t ), (A4)

where ω = τ−1 and D is the number of spatial dimensions.
Equations (A3) and (A4) are Eqs. (7) and (8) from the
main text. In three dimensions, for instance, there are seven
equations total, and in the following we will proceed with
D = 3. Due to the Dirichlet-type of boundary conditions, the
velocities ux1 , ux2 , and ux3 are prescribed so Eqs. (A3) and
(A4) lead to a system of equations for the unknown moments
ρ and m

(2)
αβ , since f̂ is a function of ρ, uα , and m

(2)
αβ only.

In order to avoid a nonlinear system of equations, we will
now seek solutions for ρm

(2)
αβ instead of m

(2)
αβ .

We split the set of Eqs. (A3) into their diagonal moments
ρIm

(2)
x1x1,I

, ρIm
(2)
x2x2,I

, and ρIm
(2)
x3x3,I

and the nondiagonal mo-

ments ρIm
(2)
x1x2,I

, ρIm
(2)
x1x3,I

, and ρIm
(2)
x2x3,I

. We will make use
of a modified δ function, defined by:

δ̃lk =
{

1, if lk = 0,

0, otherwise,

valid for k = 1, 2, 3.
For the diagonal moment ρm

(2)
x1x1,I

, the regularized distri-
bution of the right-hand side in Eq. (A3) is expanded and
summed in a general way, taking into account the geometrical
parameters that form the boundaries, leading to:

ρIm
(2)
x1x1,I

= ρ
(
P

(1)
123 + ux1P

(u)
123 + ux2S

(u)
123 + ux3S

(u)
132

)
+ ρm(2)

x1x1
P

(m)
123 + ρm(2)

x2x2
S

(m)
123 + ρm(2)

x3x3
S

(m)
132

+ ρm(2)
x1x2

1
6 l1l2 + ρm(2)

x1x3

1
6 l1l3 − ρm(2)

x2x3

1
12 l2l3,

(A5)

where we have defined

P (1)
pqr = − 1

12
+ 2

27
δ̃lp + 1

54
δ̃lp (δ̃lq + δ̃lr )

− 1

108

(
δ̃lq + δ̃lr + δ̃lq δ̃lr

)
, (A6)

P (u)
pqr = lp

(
2

9
+ δ̃lq

18
+ δ̃lr

18

)
, (A7)

S (u)
pqr =

(
− 1

36
− δ̃lr

36
+ δ̃lp

18

)
lq , (A8)

P (m)
pqr = 11

24
+ 2

9
δ̃lp + 7

72

(
δ̃lq + δ̃lr

)+ δ̃lp

18

(
δ̃lq + δ̃lr

) + 1

72
δ̃lq δ̃lr ,

(A9)

S (m)
pqr = 1

12
− 1

36

(
δ̃lp + δ̃lq + δ̃lr

)
− 1

36

(
δ̃lp + δ̃lq

)
δ̃lr + 1

18
δ̃lp δ̃lq , (A10)
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and {p, q, r} can assume all of the permutations of the set
{1, 2, 3}. Equations (A6)–(A10) depend purely on geometrical
parameters given by the definition of the boundary. Analogous
expressions can be readily written for the other two diagonal
terms, ρIm

(2)
x2x2,I

and ρIm
(2)
x3x3,I

based on the symmetric proper-

ties of the terms in Eq. (A5). These full equations for ρIm
(2)
x2x2,I

and ρIm
(2)
x3x3,I

read as follows:

ρIm
(2)
x2x2,I

= ρ
(
P

(1)
213 + ux2P

(u)
213 + ux1S

(u)
213 + ux3S

(u)
231

)
+ ρm(2)

x2x2
P

(m)
213 + ρm(2)

x1x1
S

(m)
213 + ρm(2)

x3x3
S

(m)
231

+ ρm(2)
x1x2

1
6 l1l2 + ρm(2)

x2x3

1
6 l2l3 − ρm(2)

x1x3

1
12 l1l3,

(A11)

ρIm
(2)
x3x3,I

= ρ
(
P

(1)
312 + ux3P

(u)
312 + ux1S

(u)
312 + ux2S

(u)
321

)
+ ρm(2)

x3x3
P

(m)
312 + ρm(2)

x1x1
S

(m)
312 + ρm(2)

x2x2
S

(m)
321

+ ρm(2)
x1x3

1
6 l1l3 + ρm(2)

x2x3

1
6 l2l3 − ρm(2)

x1x2

1
12 l1l2.

(A12)

For the nondiagonal moment ρIm
(2)
x1,x2,I

the same argument
that we have used to obtain Eq. (A5) is applied and we can
extract from Eq. (A3)

ρIm
(2)
x1x2,I

= ρ
(
Q

(1)
12 + ux1Q

(u)
12 + ux2Q

(u)
21

)
+ ρm(2)

x1x1

1
12 l1l2 + ρm(2)

x2x2

1
12 l1l2

− ρm(2)
x3x3

1
24 l1l2 + ρm(2)

x1x2
Q

(m)
12 , (A13)

where

Q(1)
pq = 1

36 lplq, (A14)

Q(u)
pq = 1

12

(
1 + δ̃lp

)
lq , (A15)

Q(m)
pq = 1

4

(
1 + δ̃lp

)(
1 + δ̃lq

)
. (A16)

In Eqs. (A14)–(A16), Q(1)
pq , Q(u)

pq , and Q(m)
pq are dependent only

on the geometrical parameters of the boundary site. For the
other two nondiagonal terms, namely ρIm

(2)
x1x3,I

and ρIm
(2)
x2x3,I

,
equivalent expressions can be obtained from Eq. (A13) based
on symmetry arguments, and for the sake of completeness we
write down the full expressions for ρIm

(2)
x1x3,I

and ρIm
(2)
x2x3,I

:

ρIm
(2)
x1x3,I

= ρ
(
Q

(1)
13 + ux1Q

(u)
13 + ux3Q

(u)
31

)
+ ρm(2)

x1x1

1
12 l1l3 + ρm(2)

x3x3

1
12 l1l3

− ρm(2)
x2x2

1
24 l1l3 + ρm(2)

x1x3
Q

(m)
13 , (A17)

ρIm
(2)
x2x3,I

= ρ
(
Q

(1)
23 + ux2Q

(u)
23 + ux3Q

(u)
32

)
+ ρm(2)

x2x2

1
12 l2l3 + ρm(2)

x3x3

1
12 l2l3

− ρm(2)
x1x1

1
24 l2l3 + ρm(2)

x2x3
Q

(m)
23 . (A18)

Finally, for the mass conservation, the regularized f̂ and
equilibrium f (eq) particle functions, on the right-hand side of

Eq. (A4), are expanded and summed up in the outgoing set
index Os to explicitly obtain:

ρI = ρ
(
R

(1)
123 + ux1R

(u)
123 + ux2R

(u)
231 + ux3R

(u)
312

)
+ ρω

(
u2

x1

a4
s

2
P

(1)
123 + u2

x2

a4
s

2
P

(1)
231 + u2

x3

a4
s

2
P

(1)
312

+ ux1ux2a
4
s Q

(1)
12 + ux1ux3a

4
s Q

(1)
13 + ux2ux3a

4
s Q

(1)
23

)

+ (1 − ω)

(
ρm(2)

x1x1

a4
s

2
P

(1)
123 + ρm(2)

x2x2

a4
s

2
P

(1)
231

+ ρm(2)
x3x3

a4
s

2
P

(1)
312 + ρm(2)

x1x2
a4

s Q
(1)
12

+ ρm(2)
x1x3

a4
s Q

(1)
13 + ρm(2)

x2x3
a4

s Q
(1)
23

)
, (A19)

with

R(1)
pqr = 7

12 + 1
9

(
δ̃lp + δ̃lq + δ̃lr

) + 1
36

(
δ̃lp δ̃lq + δ̃lp δ̃lr + δ̃lq δ̃lr

)
,

(A20)

R(u)
pqr = − 1

3 lp
(
1 + 1

4 (lq + lr )
)
. (A21)

It can readily be seen from Eqs. (A5), (A13), and (A19) that
if we set l1 = l2 = l3 = 0, i.e., a regular bulk fluid site, the
identities ρI = ρ and ρIm

(2)
αβ,I = ρm

(2)
αβ immediately follow.

4. Explicit solution for the boundary conditions

Here we show the solutions for corners, edges, and faces
for the system of equations composed by Eqs. (A5), (A13),
and (A19).

Corners—A corner is defined by the signs of l1, l2, and l3,
and hence δ̃l1 = δ̃l2 = δ̃l3 = 0. The solution of the system of
equations at the corners is for ρ:

ρ = ρI

bC

dC

, (A22)

where

bC = 1
24 (1 − ω)

(
m

(2)
x1x1,I

+ m
(2)
x2x2,I

+ m
(2)
x3x3,I

− 2l1l2m
(2)
x1x2,I

− 2l1l3m
(2)
x1x3,I

− 2l2l3m
(2)
x2x3,I

)
(A23)

and

dC = 4 + 10ω + (4ω − 12)
(
l1ux1 + l2ux2 + l3ux3

)
− 9ω

(
u2

x1
+ u2

x2
+ u2

x3

) + 6ω
(
l1l2ux1ux2

+ l1l3ux1ux3 + l2l3ux2ux3

)
. (A24)

The moments ρm
(2)
αβ are then:

ρm(2)
x1x1

= 1
3ρI

(
10m

(2)
x1x1,I

− 2m
(2)
x2x2,I

− 2m
(2)
x3x3,I

− 6l1l2m
(2)
x1x2,I

− 6l1l3m
(2)
x1x3,I

+ 6l2l3m
(2)
x2x3,I

)
+ 2

9ρ
(
1 − 2l1ux1 + l2ux2 + l3ux3

)
, (A25)
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ρm(2)
x1x2

= 1
3ρI

(−3l1l2m
(2)
x1x1,I

− 3l1l2m
(2)
x2x2,I

+ 3l1l2m
(2)
x3x3,I

+ 17m
(2)
x1x2,I

− l2l3m
(2)
x1x3,I

− l1l3m
(2)
x2x3,I

)
− 2

9ρ
(
l1l2 + l1ux2 + l2ux1 + l1l2l3ux3

)
. (A26)

Again, by symmetry, relations for ρm(2)
x2x2

and ρm(2)
x3x3

can be
obtained directly from ρm(2)

x1x1
, as well as ρm(2)

x1x3
and ρm(2)

x2x3

are obtained from ρm(2)
x1x2

. For example, one can get ρm(2)
x2x2

from Eq. (A25) swapping indexes 1 and 2, leaving 3 alone. For
the cross terms, to obtain, for example, the moment ρm(2)

x1x3
,

one must swap between indices 1 and 3 in Eq. (A26), leaving
aside index 2.

Edges—An edge is defined by the orientations l1 and
l2. Therefore, δ̃l1 = δ̃l2 = 0 and δ̃l3 = 1, since l3 = 0. The
solution of the linear system at the edges leads to the following
relations for the moment ρ:

ρ = ρI

bE

dE

, (A27)

where

bE = 1656 − 216(ω − 1)
[
8m

(2)
x1x1,I

+ 8m
(2)
x2x2,I

− 2m
(2)
x3x3,I

− 19l1l2m
(2)
x1x2,I

]
, (A28)

and

dE = 720 − 660
(
l1ux1 + l2ux2

)
+ ω

(
430 − 30

(
l1ux1 + l2ux2

) + 414l1l2ux1ux2

− 690
(
u2

x1
+ u2

x2

) − 69u2
x3

)
. (A29)

With a solution for the density ρ, the relations for the moments
ρm

(2)
αβ follow:

ρm(2)
x1x1

= 1
23ρI

(
47m

(2)
x1x1,I

+ m
(2)
x2x2,I

− 6m
(2)
x3x3,I

+ −34l1l2m
(2)
x1x2,I

)
− 2

69ρ
(−8 + 15l1ux1 + 8l2ux2

)
, (A30)

ρm(2)
x3x3

= 2
69ρI

(−9m
(2)
x1x1,I

− 9m
(2)
x2x2,I

+ 54m
(2)
x3x3,I

+ 30l1l2m
(2)
x1x2,I

)
− 4

69ρ
(
1 + l1ux1 + l2ux2

)
, (A31)

ρm(2)
x1x2

= 1
23ρI

(
l1l2

(−17m
(2)
x1x1,I

− 17m
(2)
x2x2,I

+ 10m
(2)
x3x3,I

) + 118m
(2)
x1x2,I

)
− 19

69ρ
(
l1l2 + l1ux2 + l2ux1

)
, (A32)

ρm(2)
x1x3

= 2ρIm
(2)
x1x3,I

− 1
3 l1ρux3 . (A33)

Due to symmetry, the relation from ρm(2)
x2x2

is derived from
Eq. (A30) and ρm(2)

x2x3
is derived from Eq. (A32), simply by

exchanging indices 1 and 2 in the previous equations.

Faces—At a given face, we will consider l1 �= 0 only, so
l2 = l3 = 0, and δ̃l2 = δ̃l3 = 1, δ̃l1 = 0. The orientation of the
face is defined by the sign of l1. The solution of the linear
system for the faces leads to the following relations for the
moment ρ:

ρ = ρI

9(1 − ω)m(2)
x1x1,I

+ 12

ω
(
1 − 6u2

x1

) − 3l1ux1 (1 + ω) + 9
. (A34)

With the expression for the density ρ, the expressions for the
moments ρm

(2)
αβ read:

ρm(2)
x1x1

= 3
2ρIm

(2)
x1x1,I

− 1
2 l1ρux1 + 1

6ρ, (A35)

ρm(2)
x2x2

= 4
33ρI

(
10m

(2)
x2x2,I

− m
(2)
x3x3,I

)
, (A36)

ρm(2)
x1x2

= 2ρIm
(2)
x1x2,I

− 1
3 l1ρux2 , (A37)

ρm(2)
x2x3

= ρIm
(2)
x2x3,I

. (A38)

Due to symmetry, similar expressions for ρm(2)
x3x3

and ρm(2)
x1x3

can be obtained from ρm(2)
x2x2

and ρm(2)
x1x2

, respectively, written
down explicitly as:

ρm(2)
x3x3

= 4
33ρI

(
10m

(2)
x3x3,I

− m
(2)
x2x2,I

)
, (A39)

ρm(2)
x1x3

= 2ρIm
(2)
x1x3,I

− 1
3 l1ρux3 . (A40)

5. Summary of the boundary conditions

The present boundary condition can be summarized as
follows: It is a Dirichlet, onsite explicit scheme, where we
have divided the sites as fluid and boundary nodes. Mass is a
preserved quantity, while second-order moments are modeled.

The algorithm of the scheme can be described as follows:
(1) In the streaming step, at a given boundary site, record

the distribution values propagating or arriving from the neigh-
boring fluid sites (including other boundary sites); the as-
sociated microscopic velocity vectors are referred to as the
incoming directions.

(2) Compute the second-order moment—the momentum-
flux tensor—as a sum over only these incoming distribution
values; the distribution values which would arrive from the
neighboring solid sites are not considered.

(3) The local velocity is treated as known (due to a Dirich-
let boundary condition), whereas the local boundary density
still remains unknown.

(4) To ensure mass conservation, the total mass carried
by the outgoing postcollisional distribution values (associated
with the microscopic velocity vectors opposite to the incom-
ing directions) must be equal to the total mass carried by the
incoming precollisional, original distribution values.

(5) The incoming (as well as the outgoing) distribution
functions are reconstructed according to the usual regulariza-
tion procedure. To this end, it is required that the second-order
moment, computed as the sum over the reconstructed incom-
ing distributions only, is equal to the moment computed in step
2 (i.e., the sum over the original, incoming distributions).

(6) The conditions from steps 4 and 5 are used to setup
a system of equations from which the local density and the
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true or full momentum-flux tensor can be solved, ultimately
resolving the outgoing reconstructed distributions.

APPENDIX B: BALANCE EQUATION RELATIONS FOR
THE TOTAL AND TURBULENT KINETIC ENERGIES

1. Total kinetic energy balance equation

In order to obtain a relation to verify the consistency of the
simulation results, let us begin with the total kinetic energy
balance equation [39]

∂tE + ∂α (uαE + Tα ) = −2νSαβSαβ, (B1)

where E = 1
2uαuα is the total kinetic energy, Tα ≡ uαp/ρ −

2νuβSαβ , and Sαβ = 1
2 (∂αuβ + ∂β uα ) is the strain tensor,

which can be locally computed within the lattice Boltzmann
framework through [33,47]

Sαβ = a2
s

2τ

(
uαuβ − m

(2)
αβ

)
. (B2)

We average Eq. (B1) over the whole volume V and over time
t ∈ [ti , tf ] in the statistically stationary state of extension δ ≡
tf − ti :

〈∂α (uαE)〉V + 〈∂αTα〉V = −2ν〈SαβSαβ〉V , (B3)

where usage has been made of the incompressibility condition
and, hereafter,

〈φ〉V ≡ 1

δ

∫ tf

ti

(
1

|V|
∫∫∫

V
φ(x, y, z, t ) dx dy dz

)
dt

and

φ(z) ≡ 1

δ

∫ tf

ti

(
1

L2

∫∫
L×L

φ(x, y, z, t ) dx dy

)
dt

for a generic field φ = φ(x, y, z, t ). Also, |V| ≡ L3. The
time dependence of Eq. (B1) disappears (in the following
derivations we will omit, for simplicity, the integration on
time, which is, however, implicitly assumed). Applying Gauss
theorem to the left-hand side of Eq. (B3) we get:

1

|V|
∫∫
©

∂V
n̂ · uEdσ + 1

|V|
∫∫
©

∂V
n̂ · Tdσ = −2ν〈S2〉V ,

(B4)

where S2 ≡ ¯̄S : ¯̄S and the integrals are extended over the
bounding surface. The first integral is identically zero because
of the impenetrability condition at the walls, n̂ · u|∂V = 0; for
the second integral the following holds:∫∫

©
∂V

n̂ · Tdσ =
∫∫
©

∂V

(
(n̂ · u)p

ρ
− 2ν(n̂ ⊗ u) : ¯̄S

)
dσ

= −2ν

∫∫
©

∂V
(n̂ ⊗ u) : ¯̄Sdσ, (B5)

again due to n̂ · u|∂V = 0. Because of the no-slip bound-
ary condition, the integrand (n̂ ⊗ u) : ¯̄S is zero over all
faces except the lid, where u(x, y, z = L, t ) = (uL, 0, 0).
The only nonzero term of (n̂ ⊗ u) : ¯̄S at the lid is uxSzx ,

hence:∫∫
©

∂V
(n̂ ⊗ u): ¯̄Sdσ =

∫∫
L×L

(
ux

1

2
(∂xuz + ∂zux )

)∣∣∣∣
z=L

dx dy

=
∫∫

L×L

(
ux

1

2
(∂zux )

)∣∣∣∣
z=L

dx dy

= 1

4
∂z

(∫∫
L×L

u2
x dx dy

)∣∣∣∣
z=L

= L2

4
∂zu2

x (z)

∣∣∣∣
z=L

. (B6)

Combining Eqs. (B4), (B5), and (B6) we get the relation:

〈S2〉V = 1

4L
∂zu2

x (z)
∣∣
z=L

. (B7)

2. Turbulent kinetic energy balance equation

Now we derive a second consistency relation. The balance
equation for the turbulent kinetic energy, k, is [39]

∂tk + Uα∂αk + ∂αT ′
α = P − ε, (B8)

where k ≡ 1
2 〈u′

αu′
α〉. The turbulent transport term is

T ′
α = 1

2 〈u′
αu′

βu′
β〉 + 〈u′

αp′/ρ〉 − 2ν〈u′
βsαβ〉,

and the production of turbulence is P = 〈u′
αu′

β〉∂βUα . The
dissipation of turbulent kinetic energy ε is defined by

ε = 2νsαβsαβ,

where

sαβ = 1
2 (∂αu′

β + ∂βu′
α ),

and the fluctuating velocity u′
α = uα − Uα , where Uα = 〈uα〉.

Furthermore, p′ = p − 〈p〉. The symbol 〈...〉 represents the
time average of a property dependent on (x, y, z, t ) over a
time interval of length δ during which the system is in a
statistical steady state:

〈φ〉(x, y, z) ≡ 1

δ

∫ tf

ti

φ(x, y, z, t )dt.

Taking the average of Eq. (B8) over the volume V and
over time t ∈ [ti , tf ], we note that the time-dependent term
disappears and we are left with:

〈∂α (Uαk)〉V + 〈∂αT ′
α〉V = 〈P〉V − 〈ε〉V . (B9)

Following the procedure analogous to the one executed at the
total kinetic energy equation, we apply the divergence theo-
rem to the the left-hand side of Eq. (B9). Due to the impene-
trability condition, i.e., n̂ · U |∂V = 0, the term 〈∂α (Uαk)〉V is
identically zero. For the second term at the left-hand side of
Eq. (B9) we have

©
∫∫

∂V
n̂ · T ′dσ =

∫∫
©

∂V

(
1

2
n̂ · u′u′2 + (n̂ · u′)p′

ρ

− 2ν(n̂ ⊗ u′) : ¯̄s

)
dσ = 0, (B10)
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since the velocity fluctuation at the boundaries is null, i.e., u′|∂V = (0, 0, 0). Then, the relation between production and
dissipation follows:

〈P〉V = 〈ε〉V .

APPENDIX C: SIMULATION CODE

The regularized boundary conditions were implemented in HARVEY, a parallelized hemodynamics code [18]. The code is
written in C and C++ and uses MPI for parallelization. As can be seen in Algorithm 1, the regularized wall boundary condition
occurs after both the collision and stream steps.

As most of the operations in the boundary condition are constant across time steps, the values are cached in a lookup table.
The appropriate value is then indexed using the type of wet wall condition (face, edge, or corner).

Algorithm 1 Regularized lattice Boltzmann for lid-driven cavity

1: procedure LBM ts � ts is the total number of time steps in the simulation
2: d ← initialize_distribution() � Maxwellian equilibrium distribution
3: i = 0
4: while i < ts do
5: d ← collide(d)
6: d ← stream(d)
7: w ← filter_wall_sites(d)
8: mI ← incoming_moments(w) � Moments using only the incoming site D3Q19

velocities for a given wall type
9: mR ← WALL_CONDITION(mI ) � All moments after wall condition is applied

10: w ← convert_to_discrete_velocities(mR)
11: d ← update_wall_sites(d, w)
12: end while
13: p ← get_density(d)
14: v ← get_velocity(d)
15: return p, v

16: end procedure
17: procedure WALL_CONDITION (mI )
18: ρI ← get_rho(mI )
19: mxxI

← get_secondmoments(mI )
20: ρ ← density_at_wall(ρI , mxxI

) � Use Eq. (A22) for a corner, (A27) for an edge,
and (A34) for a face

21: mxx ← density_at_wall(mxxI
, ρI , ρ) � Use Eqs. (A25) and (A26) for a corner,

(A30)–(A33) for an edge, and (A35)–(A40) for a face
22: mx ← 0 � First-order moment, no slip condition
23: mR ← pack_moments(ρ, mx, mxx)
24: return mR

25: end procedure
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