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Lamellar eutectic growth under forced convection: A phase-field lattice-Boltzmann study based
on a modified Jackson-Hunt theory

Ang Zhang,1 Jinglian Du,1 Zhipeng Guo,1,* and Shoumei Xiong1,2,†
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China

2Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University,
Beijing 100084, People’s Republic of China

(Received 15 March 2018; revised manuscript received 23 July 2018; published 2 October 2018)

Effect of forced convection on the lamellar eutectic growth was investigated by combining a modified
Jackson-Hunt theory and a phase-field lattice-Boltzmann approach. Under the consideration of the asymmetrical
tilting pattern and curvature effect, the classical eutectic Jackson-Hunt theory [Jackson and Hunt, Trans. Metall.
Soc. AIME 236, 1129 (1966)] was modified to better understand the physical mechanism driving the eutectic
growth with convection. Results showed that the eutectic growth velocity increased linearly with increasing
undercooling and exhibited a parabola trend versus the inverse of initial lamellar spacing. The flow induced
by a horizontal external force tilted the eutectic lamellae by altering the solute distribution near the interface.
Under weak convection, the phase-field lattice-Boltzmann simulation results agreed well with those predicted by
the modified Jackson-Hunt theory. But under strong convection, the consistency of the two results was largely
dependent on the alloy parameters and convection intensity.
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I. INTRODUCTION

Investigation of eutectic growth against convection has
been a popular but challenging subject for decades since
the pioneering work by Jackson and Hunt (JH) [1–3]. The
interaction of convection and growth kinetics of eutectic
lamellae determines the local solute and/or thermal distribu-
tion, which significantly influences the ultimate properties of
materials [4–6].

Extensive theoretical and experimental studies have been
conducted to investigate the eutectic growth against melt
convection. Quenisset et al. [7] proposed a simple model to
predict the influence of forced convection on eutectic growth
by assuming a laminar stationary flow parallel to the growth
interface. Ma et al. [8] adopted the asymptotic expansion
to solve the convection-diffusion eutectic equations under a
low Péclet number. Lee et al. [3] performed experiments to
investigate the spatiotemporal Al-Cu microstructure evolution
under fluid flow. Nevertheless, the effect of fluid flow on eu-
tectic growth still remains unclear. For example, most existing
theoretical studies assumed that the eutectic growth direction
would not be affected by the fluid flow [2,7,8], i.e., ignoring
the lamellar tilt under convection. Numerical modeling on eu-
tectic growth with convection has also long been contentious.
Wang et al. [9] and Siquieri et al. [10] found that the eutectic
growth direction would tilt towards the downstream side of
the fluid flow by Monte Carlo and phase-field investigations,
respectively. But Chen et al. [11] predicted that the eutectic
lamellae would tilt towards the upstream side. Accordingly, a
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more sophisticated study is required to establish how the fluid
flow interacts with the eutectic microstructure.

As a powerful numerical approach for simulating
mesoscale microstructure, the phase-field model (PFM) has
been successfully applied to simulate the eutectic phase tran-
sition [12–16]. By introducing so-called order parameters
(i.e., the phase-field variables) to denote different phases,
the evolution of the system can be described by a set of
partial differential equations [17–19]. In comparison with
other numerical models such as the cellular automaton, the
interfacial Gibbs-Thomson effect can be recovered with high
accuracy, and the explicit tracking of the phase interface is
avoided [20], which makes the computations involving the in-
terface evolution much easier to perform than sharp-interface
models.

When incorporating the fluid flow in the PFM, a conven-
tional method is to solve the Navier-Stokes (NS) equations.
But the solving process is computationally expensive and
easily becomes diverged when handling cases with high solid
fraction (e.g., >30%) [21,22]. To solve the coupled phase-
field NS equations, Beckermann et al. [23] adopted a so-
called SIMPLER algorithm, Tong et al. [24] used a multigrid
SIMPLE method, Lan et al. [25] employed an adaptive finite
volume method, and the current authors [26] previously used a
parallel-multigrid approach. The principal difficulty for these
attempts stems from the fact that the Poisson term in the NS
equations needs to be implicitly and iteratively solved during
each advancing step, which remarkably lowers the computing
efficiency [22].

As an alternative, the lattice-Boltzmann model (LBM) is
rooted in the mesoscopic kinetic theory [27], and has favor-
able advantages over the continuum NS solvers in phase-
change problems, because the phase interfaces are inher-
ently mesoscopic in nature [28]. In the LBM, a population
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of pseudoparticles represented by a distribution function is
introduced to describe the macroscopic transport [29–32].
With its attractive advantages including essentially paralleliz-
able computing property, easy boundary setting, and higher
stability, the LBM has been combined with dendritic PFM
to simulate the dendritic growth with convection [33–36],
and is first combined with the multiPFM to investigate the
effect of natural convection on eutectic growth by the current
authors [37].

From the computational viewpoint, however, the numerical
solution on the phase transition involving interface evolution
is a challenging subject. To resolve the solid-liquid (S-L)
interface during solidification, the discretized mesh size must
be as small as a nanometer, which induces gigantic com-
puting overhead [38]. The solving process of the coupled
phase-field equations also requires a high-fidelity numerical
scheme. To this end, different methods have been developed
to improve the computing efficiency, such as employing sim-
plified models or material parameters [39,40], focusing on
the interface by setting a cutoff in the bulk phases [41,42]
or adopting a moving window technique [43,44]. However,
using a uniform grid to discretize the governing equations
in the whole computational domain is still inefficient and
unnecessary [28]. Accordingly, a so-called adaptive mesh
refinement (AMR) is developed. During simulation, the phase
interface is the position where the high resolution is required,
and thus the grids need to be refined, while the bulk phases
can be demonstrated by the coarser grids. Based on the block-
structured AMR mesh architecture, the current authors [22]
developed a high performance computing scheme (named
para-AMR in abbreviation) to solve the phase-field lattice-
Boltzmann (PFLB) equations. The kernel of the scheme
comprises a massive-parallel computing scheme and mul-
tilevel dynamic grid partitioning. Numerical tests confirm
that this approach can improve the computing efficiency by
two to three orders of magnitude without compromising any
accuracy [22].

In this work, we couple the eutectic PFLB equations
and the state-of-the-art para-AMR algorithm to investigate
the effect of forced convection on eutectic growth. Under
the consideration that the eutectic lamellar growth direction
will be adjusted under convection, we revisit the JH the-
ory by considering the lamellar asymmetrical tilting pattern.
The curvature effect on the undercooling, which was sim-
plified in most existing work [2,7,8], is also emphasized
and reevaluated. Through detailed comparisons between the
PFLB simulation results and the theoretical predictions, the
effect of forced convection is explored, and several key
mechanisms of eutectic growth under forced convection are
highlighted.

The work is organized as follows. In Sec. II, the nu-
merical method is briefly introduced, including the PFM,
the LBM, and the AMR algorithm. In Sec. III, a modi-
fied JH theory is derived by considering the asymmetrical
tilting pattern and interfacial curvature effect. In Sec. IV,
the PFLB simulation results are presented and discussed.
The comparisons between the PFLB simulation results and
the theoretical predictions using the modified JH theory are
presented in Sec. V. Concluding remarks are provided in
Sec. VI.

II. METHODOLOGY

The simulation configuration in this work is similar to
our recent work [37], and only main features are provided
as follows. Further details including the modeling equations
and discretization methods in the PFM, the discrete velocity
model in the LBM, the validation of the PFLB model, and
the detailed para-AMR algorithm structure can be found in
[15,22,37,38].

A. Phase-field model

The eutectic phase-field model proposed by Kim et al.
[13] is extended to simulate two-phase growth in the presence
of convection. The eutectic model was developed based on
an interface-field concept [45] and equal chemical potential
among the coexisting phases. Three phase-field variables
φi (i = 1, 2, 3) with a sum of 1 are introduced to denote
different phases, e.g., φ3 = 1 and φ1 = φ2 = 0 denote the
liquid phase. To incorporate the convective flux in the model,
the diffusion equation is modified by considering the melt
convection [24,26], i.e.,

∂tC + φ3�v · ∇C = ∇ ·
(

D
∑

i

φi∇Ci

)
, (1)

where C(x, t ) = ∑
i φi∇Ci is the average concentration of

coexisting phases and determined by a weighted average. The
phase-field variable φ3 represents the liquid fraction, �v is the
intrinsic flow velocity induced by an external force, which
is expanded as �v = (u, v) in the two-dimensional (2D) case
and calculated using the LBM. D = φ3Dl + (1 − φ3)Ds is
the diffusivity dependent on the phase field, where Dl and
Ds are the solute diffusivity in the liquid and solid phases,
respectively.

It is noted that the phase field is not convective [10,24]
and thus the governing equation remains unchanged. The
temperature is set to be isothermal, i.e., ignoring the thermal
diffusion because the thermal diffusivity is normally four
orders of magnitude larger than the solute diffusivity [37].

B. Lattice-Boltzmann model

As a mesoscopic kinetic-based scheme, the LBM describes
the flow evolution through a relaxation of momentum to a
local equilibrium, and characterizes the macroscopic transport
process by repeated streaming and collision of a series of
pseudoparticles [29].

A widely used two-dimensional nine-velocity (named
D2Q9) model [46] is employed to determine the incompress-
ible fluid flow,

fi (�r + �ciδt, t + δt ) = fi (�r, t ) − [
fi (�r, t ) − f

eq
i (�r, t )

]
/τ

+Gi (�r, t )δt (2a)

with f
eq
i = ρwi

(
1+3�ci · �v

c2
+9(�ci · �v)2

2c4
−3�v · �v

2c2

)
,

(2b)

where �ci is the discrete velocity along the ith direction, δt

is the time step, τ is the relaxation time during the collision
process, c is the lattice speed, and wi is the weight coefficient
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to guarantee the mass and momentum conservation. fi (�r, t )
is the particle distribution function along the ith direction at
the position �r and time t , and f

eq
i (�r, t ) is the corresponding

equilibrium distribution function. The discrete force Gi (�r, t )
with second-order accuracy can be given by [37,47]

Gi =
(

1 − 1

2τ

)
wi

(
3(�ci − �v)

c2
+ 9(�ci · �v)�ci

c4

)
·(GD + GF ), (3a)

GD (�r, t ) = −2ρυhφ3(1 − φ3)2�v/
W 2

0 , (3b)

GF (�r, t ) = Aρφ3�e, (3c)

where ρ = ∑
i fi , �v = ∑

i fi �ci/ρ + (GD + GF )δt/(2ρ) is
the flow velocity, and GD is the dissipative drag force to
satisfy the no-slip boundary condition near the S-L interface,
which behaves as a distributed momentum sink that vanishes
the velocity as the liquid fraction (i.e., φ3) approaches 0 [24].
h = 2.757 is a dimensionless constant [23], W0 is the interface
thickness, and υ = c2δt (2τ − 1)/6 is the kinematic viscosity.
GF is the horizontal external force controlling the fluid flow,
A is the amplitude of the external force, and �e is the unit vector
along the x+. It is noted that the flow in this work is induced
by imposing an external force inside the melt, i.e., like that
in practical scenarios such as electromagnetic or mechanical
stirring.

C. Numerical algorithm

The para-AMR algorithm comprises three ingredients, i.e.,
hierarchical mesh architecture with adaptivity, data commu-
nication between different patchboxes and grid levels, and
the parallel partitioning of the computing data. Detail of the
para-AMR algorithm has been presented in our earlier work
[15,16,19,22,36–38,48–51], and in this study, only a brief
introduction is given here.

The essence of the AMR is tagging the potential grids
according to a gradient criterion [38],

max
1�i�3

(|∇φi |) + Ec|∇C| + Ev (
√

|∇u|2 + |∇v|2) � ξ, (4)

where Ec and Ev are the weight coefficients for the solute
and velocity respectively, ξ is a threshold value determined
via numerical tests, and u and v are the two axial velocity
components. A cluster algorithm developed by Berger and
Rigoutsos [52] is adopted to separate the tagged points into
patchboxes. After constructing a hierarchical architecture with
different sets of patchboxes on each grid level, the local
data are broadcast to all processors to realize the parallel
computation.

In the AMR, grids with higher resolution are preferred
where a more accurate solution is anticipated. During the
eutectic growth, the phase interface is the position where the
grids need to be refined, and a much coarser grid can be used
away from the interface. Figure 1 shows a typical three-level
hierarchical data structure superimposed on the cloud picture
of the solute field, in which the arrows denote the velocity
vector of the flow field. The layout of the patchboxes is
depicted using the thicker solid lines, in which the meshes
with same size are filled. The adjustment of the patchbox
density and mesh distribution clearly illustrates that the mesh

FIG. 1. Typical three-level hierarchical data structure superim-
posed on the cloud picture of the solute field.

refinement can perfectly characterize the phase interface, as
shown in the local enlarged image in Fig. 1(b). It is noted
that because of the introduced diffuse interface in the PFM, a
remarkable transition layer exhibits between the bulk phases,
i.e., at the α-L, β-L, and α-β interfaces.

After each iteration, the calculated velocity using the LBM
must be scaled back by multiplying dxmax/dt to match the
unit of the phase-field variables, where dxmax and dt are the
maximum grid size in the multilevel architecture and the time
step during simulation, respectively [22].

III. MODIFIED JACKSON-HUNT THEORY

Since the classical steady-state eutectic growth theory was
established by Jackson and Hunt [1], several authors have pro-
posed different modifications to incorporate the effect of fluid
flow [2,7,8,53]. In those theoretical analyses, assumptions
were made to simplify the model, which however ignored
certain important physics during solidification. For example,
Quenisset et al. [7] and Baskaran et al. [2] assumed that
the curvature undercooling was inversely proportional to the
lamellar spacing, i.e., ignoring the adjustment of the interfa-
cial curvature. Ma et al. [8] discussed the effect of convection
without considering the change of lamellar growth direction,
which was inappropriate because eutectic lamellae can adjust
or tilt their directions under forced convection.

Similar to Ma et al. [8], in this work, an asymptotic
expansion method is used to obtain the approximate solution
of the convection-diffusion equation governing the eutectic
growth. The S-L interface is assumed to be planar and the
flow parallel to the lamellae is ignored [2,8]. The steady-state
solute field C(x, y ) near the interface satisfies [7]

Dl∇2C + V
∂C

∂y
− u

∂C

∂x
= 0, (5a)

where V is the longitudinal growth velocity, and u is the trans-
verse flow velocity at a distance y away from the interface and
expressed as u = yGu = y∂u/∂y, where Gu is the velocity
gradient and is assumed constant as suggested by Baskaran
et al. [2] and Caram et al. [54]. The coordinate system (x, y ) is
defined as follows: y denotes the distance away from the S-L
interface, and x starts from the midpoint of the α-L interface
(see Fig. 2). Accordingly, the α phase ranges from −SαL to
SαL while the β phase ranges from SαL to SαL + 2SβL, where
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FIG. 2. Schematic diagram of lamellar eutectic growth under
forced convection.

SαL and SβL are the interfacial half width of the α and β

phases respectively.
To reduce the number of unknowns in Eq. (5a), a nondi-

mensional treatment is taken by defining the dimensionless
length X = x/λL and Y = y/λL [2],

∂2C

∂X2
+ ∂2C

∂Y 2
+ �

∂C

∂Y
− Y�

∂C

∂X
= 0, (5b)

where λL is the interfacial lamellar width (not the lamellar
spacing λ), � = λLV/Dl is the dimensionless interfacial
lamellar width, and � = Guλ

2
L/Dl is the dimensionless flow

velocity and it measures the convection intensity.
It is noted that Eq. (5b) is a nonhomogeneous partial

differential equation, the solution of which can be designated
by summing its special solution C∗(X, Y ) and the general
solution C0(X, Y ) of the associated homogeneous equation
[i.e., omitting the convection term Y� · ∂C/∂X in Eq. (5b)],

C(X, Y ) = C∗(X, Y ) + C0(X, Y ), (6)

where C0(X, Y ) is actually the solution of the classical JH
theory [1], i.e.,

C0(X, Y ) = C ′
∞ +

∞∑
n=0

B ′
n cos (2nπX)

× exp

⎛
⎝−�Y

2
−

√(
�Y

2

)2

+ (2nπY )2

⎞
⎠, (7a)

which is reduced to the following equation in terms of � �
4nπ during the practical solidification process,

C0(X, Y ) = C ′
∞ + B ′

0 exp (−�Y )

+
∞∑

n=1

B ′
n cos (2nπX) exp(−2nπY ), (7b)

where C ′
∞, B ′

0, and B ′
n depend on the boundary conditions.

C ′
∞ will be determined later, and B ′

0 and B ′
n are determined by

using the orthogonality of trigonometric functions (detailed in
Appendix A), i.e.,

B ′
0 = SαLCα

L(1 − kα ) + SβLC
β

L(1 − kβ )

(1 + �)(SαL + SβL) cos ϕ
, (7c)

B ′
n = �

[
Cα

L(1 − kα ) − C
β

L(1 − kβ )
]

(1 + �)(nπ )2 cos ϕ
sin

(
nπSαL

SαL + SβL

)
, (7d)

where kα < 1 and kβ > 1 are the equilibrium partition co-
efficients of the α and β phases, respectively. Cα

L and C
β

L

are the liquid concentration in equilibrium with the α and β

phases at a given temperature respectively, both of which can
be assumed to be the eutectic concentration CE for a lower
undercooling.

If the convection intensity � is small, an approximation
solution of C∗(X, Y ) is presented by an asymptotic expansion
method based on the power series [55]

C∗(X, Y ) =
∞∑

k=1

�kCk (X, Y ). (8)

Inserting Eq. (8) into Eq. (6) and then replacing C(X, Y ) in
Eq. (5b) with the new Eq. (6) yield

∂2C0(X, Y )

∂X2
+ ∂2C0(X, Y )

∂Y 2
+ �

∂C0(X, Y )

∂Y

+
∞∑

k=1

�k

(
−Y

∂Ck−1(X, Y )

∂X
+ ∂2Ck (X, Y )

∂X2

+ ∂2Ck (X, Y )

∂Y 2
+ �

∂Ck (X, Y )

∂Y

)
= 0. (9a)

Typically, the larger the index k of �, the more precise the
solution. However, since � is small, the first order is sufficient
to obtain an exact solute field [8]. Considering C0(X, Y ) is the
general solution, Eq. (9a) is reduced to

∂2C1(X, Y )

∂X2
+ ∂2C1(X, Y )

∂Y 2

+�
∂C1(X, Y )

∂Y
− Y

∂C0(X, Y )

∂X
= 0 (9b)

Inserting Eq. (7b) into Eq. (9b) and solving the nonhomo-
geneous equation in the same way as discussed before, the
special solution becomes (detailed in the Appendix B)

C1(X, Y ) = C0(X, Y ) +
(

Y

�
− 2

�2

) ∞∑
n=1

B ′
nsin(2nπX)

× exp(−2nπY ). (10)

Accordingly, we obtain the asymptotic expansion solution of
Eq. (5b) by combining Eqs. (6), (7b), (8), and (10),

C(X, Y ) = (1 + �)C ′∞ + (1 + �)B ′
0 exp (−�Y )

+ (1 + �)
∞∑

n=1

B ′
n

[
cos (2nπX) + �

1 + �

(
Y

�
− 2

�2

)
sin (2nπX)

]
exp(−2nπY ). (11)
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As discussed, when the forced convection is considered
into the eutectic growth, the lamellae change from the sym-
metrical pattern to the asymmetrical tilting state with re-
spect to the centerlines of the solid phases. Now that the
lamellar tilting angle ϕ is not equal to 0, the precipitating
process of the eutectic components will proceed along the
direction of the tilting angle (see the dashed red circles in
Fig. 2), and the transfer of the precipitated elements will com-
prise two parts, i.e., some diffusing to the interior of the liquid
phase and the others convected away by flow. Accordingly, the
flux balance of the steady-state eutectic growth is modified;
taking the α-L interface for instance, it should satisfy

−Dl

∂C

∂y

∣∣∣∣
y=0

+ u
(
Cα

L − Cy=0
) = V

cos ϕ
Cα

L(1 − kα ), (12)

where Cy=0 is the interfacial solute concentration.
The boundary conditions and the flux conditions near the

S-L interface satisfy

C|Y=∞ = C∞, (13a)

C|X=0 = C|X=1, (13b)

−SαL

λ
< X <

SαL

λ
,

∂C

∂Y

∣∣∣∣
Y=0

= −�Cα
L(1 − kα )

cos ϕ
, (13c)

SαL

λ
< X < 1 − SαL

λ
,

∂C

∂Y

∣∣∣∣
Y=0

= −�C
β

L

(
1 − kβ

)
cos ϕ

, (13d)

where C∞ is the dimensionless concentration far from the
interface, namely the initial concentration. Eq. (13b) de-
notes the periodic boundary condition, i.e., the solute field
repeats for each lamellar width. −SαL/λ < X < SαL/λ is
over the α phase while SαL/λ < X < 1 − SαL/λ is over the
β phase. It is noted that the second term on the left of
Eq. (12) is removed because the velocity at the S-L interface
is zero.

Based on the far-field boundary condition Eq. (13a), we
determine C(X,∞) = (1 + �)C ′

∞ = C∞. Inserting Eqs. (7c)
and (7d) into Eq. (11) and assuming Cα

L = C
β

L = CE for
a lower undercooling, we obtain the asymptotic expansion
solution of Eq. (5b),

C(X, Y ) = C∞ + B0

cos ϕ
exp(−�Y ) +

∞∑
n=1

Bn

cos ϕ

[
cos(2nπX)

+ �

1 + �

(
Y

�
− 2

�2

)
sin(2nπX)

]
exp(−2nπY ),

(14)

where

B0 = CE − SαLkα + SβLkβ

SαL + SβL

CE, (15a)

Bn = �CE (kβ − kα )

(nπ )2 sin

(
nπSαL

SαL + SβL

)
. (15b)

From Eq. (14), the solute concentration near the S-L
interface is obtained,

C(X, 0) = C∞ + B0

cos ϕ
+

∞∑
n=1

Bn

cos ϕ

×
(

cos (2nπX) − 2�

�2(1 + �)
sin (2nπX)

)
. (16)

The average interfacial solute concentration of the α and β

phases can be deduced as follows:

Cα = λL

2SαL

∫ SαL/λ

−SαL/λ
C(X, 0)dX

= C∞ + B0

cos ϕ
+ λL�CE (kβ − kα )

2SαL cos ϕ
P, (17a)

Cβ = λL

2SβL

∫ 1−SαL/λ

SαL/λ
C(X, 0)dX

= C∞ + B0

cos ϕ
− λL�CE (kβ − kα )

2SβL cos ϕ
P, (17b)

where

P =
∞∑

n=1

1

(nπ )3 sin2

(
nπSαL

SαL + SβL

)
. (17c)

It is noted that the presence of forced convection makes
the interface shape become asymmetrical about the centerline
of solid phases. Thus, when determining the average solute
concentration, the integrating range is a complete width of
solid phase (e.g., from −SαL to SαL for the α phase), rather
than only half in [8] (e.g., from 0 to SαL for the α phase).

In terms of the various factors contributing to the average
undercooling, the interfacial undercooling �T at any point
can be described as

�T = TE − T = �Tc + �Tr + �Tk, (18)

where TE is the eutectic temperature and T is the inter-
facial actual temperature. �Tc = m[CE − C(x)] is the con-
stitutional undercooling, which denotes the deviation of the
local composition from the eutectic composition, and m is the
liquidus slope. �Tr = �κ (x) is the curvature undercooling
reflecting the effect of the interfacial shape, where � is the
Gibbs-Thompson coefficient, and κ (x) is the local interfacial
curvature. �Tk is the kinetic undercooling and can be reason-
ably ignored for most regular eutectic systems solidifying at
low velocities when comparing with �Tc and �Tr [1,56].

Taking the α-L interface for instance, the interfacial aver-
age curvature can be described as

〈κα (x)〉 = 1

2SαL

∫ SαL

−SαL

κα (x)dx

= 1

2SαL

∫ SαL

−SαL

|d2I/dx2|
(1 + (dI/dx )2)

3/2
dx

= sin θα cos ϕ

SαL

, (19)
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where 〈·〉 denotes the average operation, and the function I (x)
is used to describe the interfacial shape. θα is the contact angle
between the α and liquid phase at the triple point. Detailed
derivation of the average curvature is provided in Appendix C.

By inserting Eqs. (17a), (17b), and (19) into Eq. (18), the
average undercooling near the S-L interface is determined as
follows:

�Tα = mα

[
C∞ − CE + B0

cos ϕ
+ λL�CE (kβ − kα )

2SαL cos ϕ
P

]

+�α

sin θα cos ϕ

SαL

, (20a)

�Tβ = mβ

[
CE − C∞ − B0

cos ϕ
+ λL�CE (kβ − kα )

2SβL cos ϕ
P

]

+�β

sin θβ cos ϕ

SβL

, (20b)

where mα and mβ are the liquidus slopes of the α and β

phases, and �α and �β are the Gibbs-Thompson coefficients
of the α-L and β-L interfaces, respectively. θβ is the contact
angle between the β and liquid phases at the triple point. Since
�Tα = �Tβ , Eqs. (20a) and (20b) can be simplified as

�T

m
= V λLQ

cos ϕ
+ a cos ϕ

λL

, (21)

where m, Q, a are constants given by

1

m
= 1

mα

+ 1

mβ

, (22a)

Q = P (1 + ζ )2CE (kβ − kα )

ζDl

, (22b)

a = 2(1 + ζ )

(
�α sin θα

mα

+ �β sin θβ

ζmβ

)
, (22c)

where ζ = SβL/SαL is the ratio of the interfacial lamellar
width. Clearly, Eqs. (22a)–(22c) are identical to those derived
by Jackson and Hunt [1].

The classical JH theory is modified by replacing the
lamellar spacing λ with the interfacial lamellar width λL and

introducing lamellar tilting angle ϕ to characterize the effect
of the single-direction forced convection. When ϕ = 0, we get
λL = λ, and the modified JH theory is actually restored to the
classical one.

IV. PHASE-FIELD LATTICE-BOLTZMANN
SIMULATION RESULTS

Two typical eutectic alloys including the Al-Cu and
CBr4-C2Cl6 alloys were simulated, the thermophysical pa-
rameters of which can be found in our recent work [37].
The initial solute concentration C0 was 0.173 mol frac for
the Al-Cu alloy, and 0.118 mol frac for the CBr4-C2Cl6 alloy,
respectively. The undercooling was 1.0 and 0.05 K for the
two alloys respectively unless stated otherwise. The minimum
mesh size was 0.2 μm, and four eutectic couples were initial-
ized at the bottom of the square computational domain filled
with undercooled melt. For all variables including the phase
field, solute, and velocity, a periodic boundary condition was
set along the direction parallel to the S-L interface. Along the
direction perpendicular to the S-L interface, a zero-Neumann
boundary condition was set at both sides for the phase field
and solute, while for the velocity, a no-slip condition was
applied at the bottom and a specular reflection boundary
condition was set at the top. In addition, a bounce-back
scheme [57] is implemented at the moving S-L interface, i.e.,
fi (�r, t, �ci ) = fi (�r, t,−�ci ).

A. Solute field and velocity field

Figure 3 shows typical simulation results including both
the solute and velocity fields. The imposed external force was
along the x+ [see Eq. (3c)], which induced a left-to-right flow.
Two solid phases (i.e., the α and β phases) simultaneously
grew into the undercooled melt at a certain angle ϕ with the
y+. Figure 3(b) shows the distribution of the velocity isolines
superimposed on the solute concentration isolines, in which
the corresponding cloud picture of the flow field is inserted at
the upper-right corner. The red arrows in Fig. 3(b) pointed to a
direction with increasing velocity. Influenced by the interface

FIG. 3. (a) Simulated cloud picture of the solute field. The arrows denote the velocity vector. (b) Simulated velocity isolines superimposed
on the solute concentration isolines. The cloud picture of the flow field is inserted at the upper-right corner. (c) Simulated fluid velocity versus
the distances along different directions, i.e., the directions I–VII as designated by the arrows in the inserted cloud picture of the flow field
superimposed on the solute field.
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FIG. 4. Evolution of solute field under (a) forced convection and (b) nonconvection conditions.

shape and the dissipative drag force, the velocity isolines at
the interfacial region were not strictly horizontal.

Figure 3(c) shows the fluid velocity versus the distance
along different directions, i.e., the directions I–VII as desig-
nated by the arrows in the inserted cloud picture. In particular,
the directions I–IV were perpendicular to the S-L interface
and started at a certain distance, i.e., 0.125λL, away from
the top of the α-L interface, the triple point, the top of the
β-L interface, and another adjacent triple point, respectively.
The maximum velocity was 1.36 × 103 μm/s, and the four
velocity-distance curves were overlapped, indicating that the
velocity magnitude was only dependent on the vertical dis-
tance away from the S-L interface. The other three velocity-
distance curves, as designated by V–VII, further validated
this behavior. The locations of V–VII were parallel to the
S-L interface with a distance of 0.125 λL, 0.5 λL, and λL

away from the S-L interface, respectively. As the distance
increased, the three velocity curves became flatter, and after
approaching λL, the velocity barely changed (see the curve
V). In this respect, the velocity changed slightly along the
horizontal direction, or in other words, the fluid flow in-
duced by the horizontal external force was close to a shear
flow.

Figure 4 shows the evolution of the solute field under
forced convection and nonconvection conditions from the
initial state presented at the upper-right corner of Figs. 4(a1)
and 4(b1), respectively. The lamellar couples circled by the
solid olive line were locally enlarged, and Figs. 4(a8) and 4(b8)
show the final entire morphologies. When the external force
was along the x+, i.e., from left to right, the eutectic lamellae
tilted towards the x+ in contrast with those under noncon-
vection condition, which agreed well with those simulated by
Siquieri et al. [10] and Wang et al. [9]. The forced convection
altered the interfacial morphology, and as time evolved, the
lamellae became tilting and reached a steady state at 0.5 s, or
after 200 000 steps in Fig. 4(a7).

Figure 5(a) shows the distribution of the solute concen-
tration near the interface, as designated by H1 and H2, for
conditions without and with convection, respectively. The
insets are the grayscale contour maps of the solute field, and
the dark promotes the growth of the α phase. The presence of
convection extended both maximum and minimum values of
the solute concentration, which agreed with the additional si-
nusoidal terms in Eqs. (14) and (16). The solute concentration
under convection became asymmetrical about the centerlines
of the solid phases. In particular, the concentration close
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FIG. 5. Distribution of solute concentration along the given directions, i.e., H1 and H2 for the horizontal direction, and V1 and V2 for the
longitudinal direction, respectively. The insets are the grayscale contour maps of the solute field with and without convection, in which the
dark color favors the growth of the α phase.

to the right triple point of the α phase decreased from the
equilibrium value (i.e., designated by A) to a lower value (i.e.,
designated by B). Accordingly, for the α phase, the solute
concentration on the right of the centerline was lower than
that on the left, promoting tilting eutectic growth mode. Figure
5(b) shows the solute concentration versus the distance along
two vertical lines, as designated by V1 and V2, respectively.
The solute concentration on the top of the triple point kept
constant for the condition without convection. The presence
of convection lowered the solute concentration near the right
triple point of the α phase, i.e., accumulating more solvent el-
ements which promoted the growth of the α phase. It is noted
that the equilibrium solute concentration was lower than the
initial eutectic concentration due to the solute redistribution
near the interface (detailed in Appendix D).

B. Effect of computational domain

As shown in Fig. 3(c), the magnitude of the fluid velocity
increased with the distance away from the S-L interface.
According to the simulation configuration, the larger the
vertical height of the computational domain, the greater the
maximum velocity. Figures 6(a)–6(e) show the cloud pictures

of the solute field in different computational domains, the
sizes of which were varied as 51.2 × 51.2, 102.4 × 51.2,
51.2 × 102.4, 102.4 × 102.4, and 51.2 × 153.6 μm2, respec-
tively. When the domain height was the same, e.g., Figs. 6(a)
and 6(b) [or Figs. 6(c) and 6(d)], the eutectic lamellae pre-
sented similar growth patterns. However, when the height was
increased, e.g., from Figs. 6(a) and 6(c) to 6(e), the lamellar
tilting angle increased from 28° and 45° to 52° under the same
external force, i.e., the same amplitude A in Eq. 3(c).

Figure 6(f) shows the velocity magnitude versus the dis-
tance away from the S-L interface. The velocity increased
from 0 at the S-L interface to the maximum at the top side.
For the domain with larger height [e.g., case III in Fig. 6(f)],
the flow velocity had larger value and exhibited wider vari-
ation range. Accordingly, the eutectic lamellae tilted more
significantly towards the flow direction. To avoid such effect,
the subsequent phase-field simulations were all performed in
domains with the same height.

C. Eutectic tilting growth

During lamellar eutectic growth, the coexisting solid
phases grow into the undercooled melt simultaneously,

FIG. 6. (a)–(e) Simulated solute field with different computational domain sizes. (f) Simulated fluid velocity vs the distance away from the
S-L interface. The insets are the corresponding flow fields.
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FIG. 7. (a),(b) Schematic diagrams of the eutectic growth and lamellar tilt. (c) Illustration for the effect of the forced convection on
concentration isolines.

forming a stable solute transition layer. Because of the dif-
ference of the solute concentration in the layer, a lateral solute
transfer exhibits between lamellae (i.e., the solute transport
couple I and II or the couple III and IV), which maintains the
cooperative growth of the coexisting solid phases, as shown in
Fig. 7(a).

Under a periodic boundary condition for all variables in-
cluding the phase field, solute, and velocity, the presence of
a left-to-right forced convection enhanced the solute trans-
port couple II and IV, but weakened I and III instead. In
other words, the solute transport couple moved towards the
downstream side, which made the lamellae tilt towards the
downstream side as well, as shown in Fig. 7(b). Figure 7(c)
shows an illustration diagram for the effect of the forced
convection on the concentration isolines. Comparing with the
case without flow [see the dashed lines in Fig. 7(c)], the
solute isolines shifted along the flow direction [see the solid
lines in Fig. 7(c)], indicating that the direction along which
the concentration varied the slowest changed. Furthermore,
with convection, the solute concentration at the triple point no
longer equaled the equilibrium concentration, as designated
by the solid red circles in Fig. 7(c).

To further investigate the effect of forced convection,
the amplitude A in Eq. (3c) was changed to induce flow
with different intensities. A/A0 was employed to denote the
intensity of the flow, where A0, determined via numerical
tests, corresponded to the external force which only tilted
the lamellae 0.5°, i.e., had a negligible effect on the eutectic
growth. Figure 8(a) shows the interface morphologies under
different flow intensities. Those morphological curves were

extracted according to φ3 = 0.5 and t = 2.6 s (i.e., 1 000 000
time steps). The larger the flow intensity, the more significant
the asymmetry of the interface morphology. In particular,
as the flow intensity increased, the distance between the
highest point of the shape curve and the triple point became
increasingly small [see the distances d0–d5 in Fig. 8(a)],
indicating that the offset of the concentration isolines in-
creased with convection intensity. The asymmetrical interface
shape demonstrated the existence of a transverse drift of
eutectic lamellae, which could be characterized by a drift
velocity Vd , i.e., Vd = V tan ϕ. Figure 8(b) shows the growth
velocity including V and Vd and the maximum flow velocity
|�v|max versus the convection intensity. As the flow intensity
increased, the longitudinal growth velocity V decreased, but
both the maximum flow velocity and the drift velocity Vd

increased, indicating the lamellar tilting angle was enlarged.
When the intensity was magnified by 4000 times, Vd ex-
ceeded V , indicating that the lamellar tilting angle was larger
than 45°.

It is noted that the flow direction is dependent on the
boundary condition. Figure 9 shows the evolution of the eutec-
tic lamellae under a zero-Neumann boundary condition for the
solute and phase fields, and a no-slip boundary condition for
the flow field. The initial state was the same as that in Fig. 4,
as shown at the upper-right corner of Fig. 9(a). Different from
the transverse flow under the periodic side boundary con-
dition, the convection induced by the external force formed
a semicircular vortices in the remaining liquid region. The
moving direction of the solute transport couple exhibited no
regularity [i.e., not single-direction move in Fig. 4(a)], and

FIG. 8. (a) Illustration for the effect of the forced convection on interface morphology. (b) Growth velocity including V and Vd and the
maximum fluid velocity vs the convection intensity.
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FIG. 9. Evolution of the eutectic lamellae under forced convection. The boundary conditions are zero-Neumann boundary condition for
the solute and phase fields, and no-slip boundary condition for the flow field, respectively.

thus the lamellar tilting direction was not necessarily along
the x+, especially for the lamellae near the left side boundary.

Influenced by the forced flow, the rejected elements could
be convected away in a timely manner, which enlarged the
constitutional undercooling �Tc. To maintain a local thermo-
dynamic equilibrium, the curvature undercooling, i.e., �Tr ,
must be decreased according to Eq. (18).Taking the α-L
interface for instance, according to Eq. (19), the interfacial
curvature was dependent on the contact angle θα , lamellar
tilting angle ϕ, and interfacial half-width SαL. At the triple
point (see Fig. 2), maintaining a local mechanical equilibrium
requires

σαL sin θα + σβL sin θβ = σαβ, (23a)

σβL cos θβ = σαL cos θα, (23b)

where σij represents the isotropic surface tension between
the i and j phases. Equation (23) indicated that the con-
tact angle was fixed during simulation. Considering that SαL

kept constant for the eutectic alloys during simulation, the
adjustment of the average curvature was largely dependent
on ϕ from Eq. (19). In detail, the decrease of �Tr was
realized by increasing ϕ, and a larger convection intensity
corresponded to a larger lamellar tilting angle before the
lamellae lost its regular pattern [i.e., not satisfying Eqs. (19)
or (23)].

As the convection intensity increased, the interfacial lamel-
lar width λL maintained constant, but the lamellar spacing
λ(λ = λL · cos ϕ) decreased [see the definition of λ and λL

in Figs. 4(a8) and 4(b8)]. In [2,7,8], however, the eutectic
lamellar spacing increased with flow intensity. It is noted
that in those studies, neither the asymmetric lamellar pattern
nor the curvature undercooling closely connected with the
phase width was considered, and λL and λ were not strictly
distinguished either. Based on the Al-Cu alloy experiments,
the examined width using a line scan by Lee et al. [3] was
actually the interfacial lamellar width λL rather than the
lamellar spacing λ, and they found that the flow effect on the
interfacial lamellar width was rather small for the alloys with
eutectic concentration. In this respect, our PFLB simulations
for the eutectic growth agreed quite well with those observed
in experiments [3].

V. COMPARISONS

In Sec. III, the JH theory was modified based on a weak
convection assumption. To check the rationality of the mod-
ified JH theory, further PFLB simulations were performed
to compare with the theoretical predictions by changing the
undercooling and the initial lamellar spacing. To illustrate
the difference between simulation results and theoretical
predictions, the determined tilting angle and the interfacial
lamellar spacing via the PFLB simulation were used as inputs
for the modified JH theory to calculate the growth velocity
[see Eq. (24)]. It is noted that the modified JH theory only

FIG. 10. Eutectic lamellar growth under different undercoolings. (a) Typical solute fields under four different undercoolings (i.e., 0.8, 1.2,
1.4, and 1.8 K, respectively). (b) Interfacial lamellar width and lamellar tilting angle vs the undercooling.
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FIG. 11. Comparisons between the simulation results using the phase-field lattice-Boltzmann model (PFLBM) and those predicted by the
modified JH theory (mJHt) under (a) different undercoolings and (b) different initial lamellar spacings. The numbers in the legend denote the
magnification of the convection intensity.

considered a single-direction flow, i.e., the influence of the
convection on the growth pattern was simplified.

The initial lamellar spacing was set to be 12.8 μm, and
the undercooling was changed from 0.6 to 2.0 K. Figure 10(a)
shows the solute fields according to four typical undercoolings
(i.e., 0.8, 1.2, 1.4, and 1.8 K), and Fig. 10(b) shows the
interfacial lamellar width and lamellar tilting angle versus the
undercooling. As shown in Fig. 10(a), the stronger the flow,
the larger the lamellar tilting angle. When the undercooling
increased, the lamellar tilting angle tended to decrease, be-
cause increasing undercooling led to a larger driving force
for the eutectic to grow, which compromised the effect of the
forced flow. It is noted that if the undercooling was too small,
e.g., 0.8 K for the force A/A0 = 4000 [see Fig. 10(a31)], the
eutectic couples did not have enough driving force to capture
the precipitated elements, and further growth was inhibited.
Besides, as a result of the spacing being approximately halved,
the lamellae creation occurred when the undercooling reached
a critical value, e.g., 1.5 and 1.8 K for the force A/A0 =
100 and 2000 respectively [see Figs. 10(a14) and 10(a24)].
Similar behavior has been observed in experiments in which
the lamellae creation was induced by increasing the growth
velocity [4]. For other cases, the interfacial lamellar width
equaled the initial lamellar spacing, i.e., 12.8 μm.

Derived from the modified JH theory, the eutectic growth
velocity can be described as

V = −acos2ϕ

Q

1

λ2
L

+ �T cos ϕ

mQ

1

λL

, (24)

which indicates that the eutectic growth velocity is largely
dependent on the lamellar tilting angle ϕ, the undercooling
�T , and the interfacial lamellar width λL. Figure 11(a) shows
the difference of the growth velocity between the PFLB simu-
lation results and the ones predicted by the modified JH theory
under different undercoolings. When the magnification of the
convection intensity was 0 (i.e., nonconvection condition)
or 100 times, the two velocity-undercooling curves almost
overlapped. When the intensity was magnified 2000 times,
the difference was still small, indicating that the modified JH
theory agreed well with the simulations. But when the mag-
nification reached 4000, the difference became remarkable,
especially for the lower undercooling.

As shown in Fig. 11(a), when the interfacial lamellar width
remained unchanged, the growth velocity increased linearly
with the undercooling. The symbols I and II denoted the
two linear segments separated by a transition stage where the
interfacial lamellar width was halved during lamellae creation.
As the flow intensity increased, the largest variation range
of the lamellar tilting angle was less than 11°. The corre-
sponding cos ϕ could be approximately unchanged because
the maximum of [cos(ϕ + 11◦) − cos ϕ] was less than 0.1
for the interested ϕ in Fig. 10(b). According to Eq. (24), the
growth velocity will increase linearly with the undercooling
if cos ϕ is constant. Therefore, in terms of variation trend,
the simulations agreed well with the modified JH theory.
Besides, both the slope [i.e., cos ϕ/(mQλL)] and intercept
[i.e., −acos2ϕ/(Qλ2

L)] decreased with flow intensity except

TABLE I. Parameters of the linear fitting functions for simulated growth velocity vs the undercooling.

Source Fitting function Symbol a b Pearson’s ra Adj. R squareb

Fig. 11(b): PFLBM_0 I 17.116 −6.6485 0.999 71 0.999 22
II 31.573 −21.977 0.998 12 0.994 37

Fig. 11(b): PFLBM_100 I 17.028 −7.0285 0.999 60 0.998 94
II 30.592 −20.62 0.998 97 0.996 91

y = a × x + b
Fig. 11(b): PFLBM_2000 I 14.823 −4.894 0.969 97 0.979 34

II 20.747 −1.6231 0.984 46 0.938 32
Fig. 11(b): PFLBM_4000 I 18.585 −13.321 0.997 36 0.992 97

aPearson’s r: reflect the linear correlation between two variables, and the closer to one the absolute value, the stronger the correlation [58].
bAdj. R square: an adjusted version of R square, which satisfies that the closer to one, the more accurate the fitting function [58].
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FIG. 12. Eutectic lamellar growth under different initial lamellar spacings. (a) Typical solute fields under four different initial lamellar
spacings (i.e., 6.4, 12.8, 19.2, and 25.6 μm, respectively). (b) Interfacial lamellar width and lamellar tilting angle vs the initial lamellar
spacing.

at A/A0 = 4000. This is because both terms were monotonic
decreasing functions of lamellar tilting angle, and the larger
the flow intensity, the larger the tilting angle. But when the
flow intensity was too large, e.g., A/A0 = 4000, the weak
convection assumption was no longer satisfied. Accordingly,
the eutectic growth could not be described by the modified
JH theory. Related linear fitting parameters are provided in
Table I.

Figures 12(a) shows the simulated solute fields according
to 12 different cases. The undercoolings were all 1.0 K, and
the chosen initial lamellar spacings were 6.4, 12.8, 19.2,
and 25.6 μm, respectively. Both the initial lamellar spacing
and flow intensity had significant effects on the eutectic
growth including the lamellar tilting angle and morphological
shape. As the initial lamellar spacing increased, the eutectic
pattern changed from being parallel to oscillating, as show
in Figs. 12(a11)–12(a14). The pattern transition was also ob-
served by changing the flow intensity. Taking λ0 = 25.6 μm
for instance, the lamellar pattern changed from the oscillating
to parallel pattern when the flow intensity was increased from
100 to 2000 times [see Figs. 12(a14) and 12(a24)].

The eutectic growth was controlled by the interaction
between solute transport and curvature effect. As the lamellar
spacing increased, the curvature effect became more signif-
icant, leading to an oscillating growth pattern [59–61]. But
as the flow intensity increased, the solute transport capac-
ity was strengthened, and accordingly the eutectic lamel-
lae tended to grow in a parallel mode again. It is noted
that if the lamellar spacing was too small, the precipi-
tated elements would be entirely flushed away by the flow,
which reduced the number of the elements supplying the

eutectic growth, and thus inhibited further growth of the
eutectic.

Figure 12(b) shows the interfacial lamellar width and
lamellar tilting angle versus the initial lamellar spacing λ0.
The interfacial lamellar width λL was almost the same as the
initial lamellar spacing λ0, while the lamellar tilting angle
exhibited a significant decrease when λ0 was relatively large,
e.g., from 31° at λ0 = 19.2 μm to 24.2° at λ0 = 22.4 μm
for A/A0 = 2000. As the initial lamellar spacing became
larger, the interface length of one eutectic couple increased
and thus more interfacial solute exchange happened, which
compromised the effect of forced convection and led to a
decrease of the lamellar tilting angle.

Figure 11(b) shows the comparison of the PFLB simula-
tion results with those predicted by the modified JH theory
under different lamellar spacings. Similar to Fig. 11(a), when
the flow intensity was small (e.g., A/A0 � 100), the PFLB
simulation results agreed with those predicted by the modified
JH theory. However, a larger difference exhibited as the flow
intensity became larger. A separation point was introduced to
illustrate that the relative deviation between the two results
(theoretical predictions minus PFLB simulated ones divided
by theoretical predictions) approached 5%. Taking A/A0 =
2000 for instance, if the initial lamellar spacing was smaller
than 11.2 μm [i.e., 1/λ0 � 0.089 29 μm−1; see the right of the
separation point in Fig. 11(b)], the simulation results deviated
significantly from those predicted by the modified JH theory,
and the smaller the spacing, the larger the deviation. Because
when the flow intensity was constant, decreasing the lamellar
spacing would lead to an increasing effect of the convection
on the solute movement in front of the S-L interface. If the

TABLE II. Parameters of the quadratic fitting functions for simulated growth velocity vs the inverse of the lamellar spacing.

Source Fitting function a b c Reduced chi squarea Adj. R squareb

Fig. 13(b): PFLBM_0 −1258.7 250.46 −1.352 25 0.043 98 0.983 60
Fig. 13(b): PFLBM_100 y = a × x2 + b × x + c −1243.1 245.12 −0.925 58 0.010 63 0.994 46
Fig. 13(b): PFLBM_2000 −1174.8 225.49 −0.8820 0.039 72 0.9822

aReduced chi square: equivalent to residual mean square in the analysis of variance and the smaller the value, i.e., closer to zero, the higher the
fitting degree [58].
bAdj. R square: an adjusted version of R square, which satisfies that the closer to one, the more accurate the fitting function [58].
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FIG. 13. Comparisons between the simulation results using the phase-field lattice-Boltzmann model (PFLBM) and those predicted by the
modified JH theory (mJHt) under (a) different undercoolings and (b) different initial lamellar spacings for the CBr4-C2Cl6 alloy. The numbers
in the legend denote the magnification of the convection intensity.

flow intensity was increased 4000 times, the initial lamellar
spacing at the separation point became 19.2 μm, indicating
that λ0 at the separation point would increase with the flow
intensity. The variation of the longitudinal growth velocity
versus the inverse of the lamellar spacing could be best
described by a quadratic fitting function for A/A0 � 2000,
which was consistent with Eq. (24) if the slight change of cos
ϕ was reasonably ignored. Detailed parameters are provided
in Table II.

To further investigate the influence of the forced con-
vection, simulations were performed on another commonly
used transparent alloy, i.e., the CBr4-C2Cl6 alloy. The largest
difference between this alloy and the Al-Cu alloy was the
interfacial width ratio of coexisting solid phases (i.e., ζ =
SβL/SαL). This value is approximately 1:2 for the CBr4-C2Cl6
alloy and 1:1 for the Al-Cu alloy. Figure 13 shows the com-
parison of the PFLB simulation results with those predicted
by the modified JH theory. As the undercooling increased, the
growth velocity increased linearly and the curves overlapped
for weaker flow intensity scenarios, e.g., A/A0 � 500. When
the flow intensity was relatively large, e.g., A/A0 � 1500, the
difference between the simulation results and those predicted
using the modified JH theory would increase with decreasing
undercooling, as shown in Fig. 13(a). When the initial lamellar
spacing was changed, a larger flow intensity led to a larger
difference between the simulation and theory. The modified
JH theory agreed well with the simulation results only at the
larger spacing for stronger convection, i.e., at the left of the
separation points in Fig. 13(b).

VI. CONCLUSIONS

A modified Jackson-Hunt theory was proposed to inves-
tigate the eutectic growth under a single-direction flow. The
presence of the convection altered the solute distribution and
tilted the eutectic lamellae. The eutectic growth under forced
convection was reproduced by incorporating an external force
inside the phase-field lattice-Boltzmann model. Comparisons
between the PFLB simulation results and the theoretical pre-
dictions were performed, and the following conclusions can
be drawn:

(1) A modified JH theory, i.e., �T
m

= V λLQ

cos ϕ
+ a cos ϕ

λL
, is de-

veloped to predict the tilting lamellar eutectic growth, where ϕ

is the lamellar tilting angle measuring the flow intensity. �T

is the undercooling, V is the longitudinal growth velocity, λL

is the interfacial lamellar width, and m, Q, and a are constants
identical to those in the classical JH theory. The modified JH
theory can be restored to the classical JH theory by taking
ϕ = 0.

(2) The forced convection changes the solute distribu-
tion at the solid-liquid interface and shifts the concentration
isolines along the flow direction. The change of the solute
transport capacity induced by the flow leads to asymmetrical
growth patterns about the centerlines of the solid phases. To
maintain local thermodynamic equilibrium, a tilting pattern is
exhibited by adjusting the interfacial curvature, and a stronger
flow intensity causes a larger tilting angle.

(3) Under weak convection, the phase-field lattice-
Boltzmann simulation results agree well with those predicted
by the modified JH theory. The modified JH theory becomes
unsuitable if the undercooling or the initial lamellar spacing
is too small. In the latter case, the flow effect becomes too
significant to match the weak convection assumption during
the derivation of the modified JH theory.

(4) According to the PFLB simulation results, the growth
velocity increases linearly with the undercooling while it
changes quadratically with the inverse of the initial lamellar
spacing. A much stronger flow inhibits further lamellar eutec-
tic growth due to the lack of elements which are convected
away by the flow in a timely manner.
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APPENDIX A: DETERMINATION OF THE EXPRESSIONS B′
0 AND B′

n IN EQ. (7b)

To determine B ′
0 and B ′

n in Eq. (7b), the first derivative of the solute concentration C(X, Y ) with respect to Y is deduced as
follows:

∂C(X, Y )

∂Y

∣∣∣∣
Y=0

= −�(1 + �)B ′
0 + (1 + �)

∞∑
n=1

B ′
n

[
(−2nπ )

(
cos (2nπX) − 2

�2

�

1 + �
sin (2nπX)

)

+ �

(1 + �)�
sin (2nπX)

]
. (A1)

Integrating from 0 to 1 for X, we can obtain∫ 1

0

∂C(X, Y )

∂Y

∣∣∣∣
Y=0

dX = −�(1 + �)B ′
0. (A2)

Based on the flux conditions near the S-L interface (Y = 0), i.e., Eqs. (13c) and (13d), the following one is deduced:∫ 1

0

∂C(X, Y )

∂Y

∣∣∣∣
Y=0

dX =
∫ SαL/λL

0

−�Cα
L(1 − kα )

cos ϕ
dX +

∫ 1−(SαL/λL)

SαL/λL

−�C
β

L(1 − kβ )

cos ϕ
dX

+
∫ 1

1−(SαL/λL)

−�Cα
L(1 − kα )

cos ϕ
dX = −�

[
SαLCα

L(1 − kα ) + SβLC
β

L(1 − kβ )
]

(SαL + SβL) cos ϕ
. (A3)

Thus from Eqs. (A2) and (A3), B ′
0 is deduced as follows:

B ′
0 = SαLCα

L(1 − kα ) + SβLC
β

L(1 − kβ )

(1 + �)(SαL + SβL) cos ϕ
. (A4)

Similarly, after multiplying Eqs. (13c), (13d), and (A1) by cos(2kπx) (k is a positive integer staring from 1), respectively, we
can deduce the expression of B ′

n. For Eqs. (13c) and (13d), we can obtain∫ 1

0

(
∂C(X, Y )

∂Y

∣∣∣∣
Y=0

)
cos (2kπX)dX = �

[
C

β

L(1 − kβ ) − Cα
L(1 − kα )

]
kπ cos ϕ

sin

(
kπSαL

SαL + SβL

)
. (A5)

For Eq. (A1), after multiplication and integration from 0 to 1, we can obtain∫ 1

0

(
∂C(X, Y )

∂Y

∣∣∣∣
Y=0

)
cos (2kπX)dX = (1 + �)

×
∫ 1

0

∞∑
n=1

B ′
n

[
(−2nπ )

(
cos(2nπX) − 2

�2

�

1 + �
sin(2nπX)

)
+ �

(1 + �)�
sin(2nπX)

]
cos(2kπX)dX

= −kπB ′
k (1 + �) (A6)

in which the simplification process takes advantage of the orthogonality of trigonometric functions, i.e.,∫ 1

0
cos (2nπX) cos (2kπX)dX = 1

2
δnk, (A7a)∫ 1

0
sin (2nπX) cos (2kπX)dX = 0, (A7b)

where δnk is a Kronecker delta, i.e., δnk is 1 when n equals k and 0 otherwise.
Thus from Eqs. (A5) and (A6), B ′

n can be deduced as follows:

B ′
n = �

[
Cα

L(1 − kα ) − C
β

L

(
1 − kβ

)]
(1 + �)(nπ )2 cos ϕ

sin

(
nπSαL

SαL + SβL

)
. (A8)

APPENDIX B: DERIVATION OF THE SPECIAL SOLUTION OF EQ. (9b)

Similar to Eq. (5b), Eq. (9b) is also a nonhomogeneous equation, whose solution is presented as

C1(X, Y ) = C∗
1 (X, Y ) + C0(X, Y ), (B1)
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where C∗
1 (X, Y ) is the special solution and C0(X, Y ) is the general solution of the associated homogeneous equation, i.e.,

Eq. (7b). Inserting Eqs. (7b) and (B1) into Eq. (9b), the following form is obtained:

∂2C∗
1 (X, Y )

∂X2
+ ∂2C∗

1 (X, Y )

∂Y 2
+ �

∂C∗
1 (X, Y )

∂Y
=

∞∑
n=1

B ′
n(−2nπY ) sin (2nπX) exp (−2nπY ). (B2)

Based on the superposition principle, Eq. (B2) is simplified as

∂2C∗
1n(X, Y )

∂X2
+ ∂2C∗

1n(X, Y )

∂Y 2
+ �

∂C∗
1n(X, Y )

∂Y
= −B ′

n(2nπY ) sin (2nπX) exp (−2nπY ), (B3)

where n is a positive integer staring from 1, and C∗
1n(X, Y ) is the eigensolution of C∗

1 (X, Y ). By integrating Eq. (B3) and
considering � � 4nπ , we can obtain

C∗
1n(X, Y ) = 1

�

(
Y + 1

2nπ
− 2

�

)
B ′

n sin (2nπX) exp (−2nπY ) ≈
(

Y

�
− 2

�2

)
B ′

n sin (2nπX) exp (−2nπY ). (B4)

Thus, by summing the eigensolutions Eq. (B4) for n = 1, 2, . . ., the special solution is deduced as follows:

C∗
1 (X, Y ) =

(
Y

�
− 2

�2

) ∞∑
n=1

B ′
n sin (2nπX) exp (−2nπY ). (B5)

APPENDIX C: COMPUTATION OF THE AVERAGE
CURVATURE

Taking the α-L interface for instance, as shown in Fig. 14,
the contact angles θαL and θαR are equal due to the mechanism
equilibrium at the triple points A and B, i.e., Eqs. (23a) and
(23b). Then the average curvature can be deduced as follows:

〈κα (x)〉 = 1

2SαL

∫ SαL

−SαL

κα (x)dx

= 1

2SαL

∫ SαL

−SαL

|d2I/dx2|
[1 + (dI/dx )2]

3/2
dx

= − 1

2SαL

{sin[π − (θαR + ϕ)] − sin(θαL − ϕ)}

= 1

SαL

(
sin

θαR + θαL

2
cos

θαR − θαL + 2ϕ

2

)

= sin θα cos ϕ

SαL

, (C1)

where θα = θαR = θαL denotes the contact angle at the α-L
interface.

FIG. 14. Schematic diagram of contact angles at the triple point
of tilted eutectic lamellae.

APPENDIX D: SOLUTE REDISTRIBUTION NEAR
THE INTERFACE

In the present phase-field lattice-Boltzmann model, the
overall mass balance is satisfied because no source terms
are present. But this does not necessarily mean that the
equilibrium concentration in the liquid should equal the initial
eutectic concentration. On the other hand, the equilibrium
concentration in the liquid is dependent on the average con-
centration in the solid phases.

For the Al-Cu eutectic alloy, the average concentration in
the solid phases is not equal to the concentration at the eutectic
point. During eutectic solidification, the deviation from the
eutectic concentration in the solid phases needs to be compen-
sated by adjusting the equilibrium concentration in front of the
S-L interface. In other words, if the liquid concentration keeps
at the initial concentration, the mass conservation will not be
maintained unless the average concentration in the solid phase
equals the eutectic concentration.

Accordingly, we assume an ideal alloy with a symmetrical
phase diagram according to the thermophysical parameters
of the α phase in the Al-Cu eutectic alloy. Table III lists
the parameters used during simulation, and the following two
points are highlighted:

(1) Letting kβ = 2 − kα for the ideal alloy is
to ensure that the eutectic point is located at the
middle point of the eutectic line, i.e., Cα + Cβ = 2CE ,
where Cα = kαCE and Cβ = kbCE are the solute
concentration of the α and β phases at the eutectic
temperature, respectively.

(2) Letting mβ = −mα , and CE = 0.5 mol frac for the
ideal alloy is to ensure that the phase diagram is symmetrical
about the eutectic point.

Figure 15 shows the distribution of the solute concentration
at the initial time and steady state for the ideal alloy and Al-Cu
alloys without convection. The equilibrium solute concentra-
tion in both solid and liquid phases keeps the same as the
initial concentration for the ideal alloy [see Figs. 15(a) and
15(b)], i.e., 0.5 mol frac, indicating the eutectic solidification
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TABLE III. Thermophysical parameters of the Al-Cu and ideal alloys [35,37,62,63].

Parameters Al-Cu Ideal

DL (solute diffusivity in liquid, m2/s) 3 × 10−9

DS (solute diffusivity in solid, m2/s) 3 × 10−13

mα (liquidus slope of α phase at eutectic temperature, K/mol frac) −1050
mβ (liquidus slope of β phase at eutectic temperature, K/mol frac) 488 1050
kα (partition coefficient in α phase to the liquid phase) 0.1445
kβ (partition coefficient in β phase to the liquid phase) 1.85 1.8555
TE (eutectic temperature, K) 821.4
CE (eutectic concentration, mol frac) 0.173 0.5
σαL (α-L interface energy, J/m2) 160.01 × 10−3

σβL (β-L interface energy, J/m2) 88.363 × 10−3 160.01 × 10−3

σαβ (α-β interface energy, J/m2) 219.484 × 10−3

is globally equivalent to the growth of a single phase. But
for the Al-Cu eutectic alloy, kβ + kα < 2 and mβ �= −mα ,
the average concentration in the solid phases is smaller than
the eutectic concentration, and it keeps increasing as the so-
lidification proceeds. To maintain the mass conservation, the
increase of the solute concentration in the solid phases needs
to be balanced by decreasing the solute concentration in the
liquid, resulting in that the liquid equilibrium concentration is
smaller than the initial solute concentration [see Figs. 15(c)
and 15(d)].

Furthermore, if the domain height is high enough, only the
concentration near the interface will be adjusted, while the
far-field solute concentration can keep at the initial value. As
shown in Fig. 16, the domain height is eight times larger than

the domain width, and after undergoing a transition region
near the interface, the liquid concentration reaches the initial
value.

It is noted that whether the equilibrium solute concentra-
tion equals the initial value exhibits little influence on the
eutectic growth. Under the certain equilibrium concentration,
the solute concentration in front of the S-L interface exhibits
the opposite variation rule between the α and β phases,
which maintains the cooperative growth of two coexisting
solid phases and forms a stable solute transition layer. It is
accepted that the presence of convection affects the lamellar
growth pattern by changing the interfacial solute distribution.
In this work, we focus on the change due to convection by
comparing the results with and without flow, and obtain a

FIG. 15. Distribution of the solute concentration along the y axis (see V1 and V2) at the initial time and the steady state for the ideal alloy
(the first row) and Al-Cu alloy (the second row). Panels (b) and (d) are the local enlarged images of the solute concentration near the interface
for the ideal alloy and Al-Cu alloy, respectively.
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FIG. 16. Liquid solute concentration vs the distance along the direction perpendicular to the solid-liquid interface for the Al-Cu alloy. (b)
Local enlarged image of the solute concentration near the interface. The domain height is eight times larger than the domain width.

quantitative relation among the growth velocity, undercooling,
and lamellar spacing, which is independent of the specific

concentration value or the alloy systems (e.g., the Al-Cu,
CBr4-C2Cl6, and the ideal alloys).
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[62] N. Maraşli and J. D. Hunt., Acta Mater. 44, 1085 (1996).
[63] M. Gündüz and J. D. Hunt, Acta Mater. 33, 1651 (1985).

043301-18

https://doi.org/10.1209/0295-5075/90/26010
https://doi.org/10.1209/0295-5075/90/26010
https://doi.org/10.1209/0295-5075/90/26010
https://doi.org/10.1209/0295-5075/90/26010
https://doi.org/10.1016/j.actamat.2007.11.037
https://doi.org/10.1016/j.actamat.2007.11.037
https://doi.org/10.1016/j.actamat.2007.11.037
https://doi.org/10.1016/j.actamat.2007.11.037
https://doi.org/10.1016/j.actamat.2015.12.052
https://doi.org/10.1016/j.actamat.2015.12.052
https://doi.org/10.1016/j.actamat.2015.12.052
https://doi.org/10.1016/j.actamat.2015.12.052
https://doi.org/10.1016/j.actamat.2017.07.007
https://doi.org/10.1016/j.actamat.2017.07.007
https://doi.org/10.1016/j.actamat.2017.07.007
https://doi.org/10.1016/j.actamat.2017.07.007
https://doi.org/10.1016/S0167-2789(99)00129-3
https://doi.org/10.1016/S0167-2789(99)00129-3
https://doi.org/10.1016/S0167-2789(99)00129-3
https://doi.org/10.1016/S0167-2789(99)00129-3
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1021/acsomega.7b01174
https://doi.org/10.1021/acsomega.7b01174
https://doi.org/10.1021/acsomega.7b01174
https://doi.org/10.1021/acsomega.7b01174
https://doi.org/10.1038/s41598-017-12814-5
https://doi.org/10.1038/s41598-017-12814-5
https://doi.org/10.1038/s41598-017-12814-5
https://doi.org/10.1038/s41598-017-12814-5
https://doi.org/10.1016/j.intermet.2018.02.005
https://doi.org/10.1016/j.intermet.2018.02.005
https://doi.org/10.1016/j.intermet.2018.02.005
https://doi.org/10.1016/j.intermet.2018.02.005
https://doi.org/10.1103/PhysRevMaterials.2.083402
https://doi.org/10.1103/PhysRevMaterials.2.083402
https://doi.org/10.1103/PhysRevMaterials.2.083402
https://doi.org/10.1103/PhysRevMaterials.2.083402
https://doi.org/10.1109/21.120081
https://doi.org/10.1109/21.120081
https://doi.org/10.1109/21.120081
https://doi.org/10.1109/21.120081
https://doi.org/10.1016/S0022-0248(01)00724-2
https://doi.org/10.1016/S0022-0248(01)00724-2
https://doi.org/10.1016/S0022-0248(01)00724-2
https://doi.org/10.1016/S0022-0248(01)00724-2
https://doi.org/10.1016/0022-0248(90)90075-V
https://doi.org/10.1016/0022-0248(90)90075-V
https://doi.org/10.1016/0022-0248(90)90075-V
https://doi.org/10.1016/0022-0248(90)90075-V
https://doi.org/10.1016/0956-7151(91)90114-G
https://doi.org/10.1016/0956-7151(91)90114-G
https://doi.org/10.1016/0956-7151(91)90114-G
https://doi.org/10.1016/0956-7151(91)90114-G
https://doi.org/10.1063/1.868961
https://doi.org/10.1063/1.868961
https://doi.org/10.1063/1.868961
https://doi.org/10.1063/1.868961
https://doi.org/10.1103/PhysRevLett.59.71
https://doi.org/10.1103/PhysRevLett.59.71
https://doi.org/10.1103/PhysRevLett.59.71
https://doi.org/10.1103/PhysRevLett.59.71
https://doi.org/10.1007/BF02648952
https://doi.org/10.1007/BF02648952
https://doi.org/10.1007/BF02648952
https://doi.org/10.1007/BF02648952
https://doi.org/10.1103/PhysRevB.66.155428
https://doi.org/10.1103/PhysRevB.66.155428
https://doi.org/10.1103/PhysRevB.66.155428
https://doi.org/10.1103/PhysRevB.66.155428
https://doi.org/10.1016/1359-6454(95)00227-8
https://doi.org/10.1016/1359-6454(95)00227-8
https://doi.org/10.1016/1359-6454(95)00227-8
https://doi.org/10.1016/1359-6454(95)00227-8
https://doi.org/10.1016/0001-6160(85)90161-0
https://doi.org/10.1016/0001-6160(85)90161-0
https://doi.org/10.1016/0001-6160(85)90161-0
https://doi.org/10.1016/0001-6160(85)90161-0



