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Radiative and atomic properties of C and CH plasmas in the warm-dense-matter regime
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A theoretical model based on the method of super transition arrays (STA) is used to compute the emissivities,
opacities, and average ionization states of carbon (C) and polystyrene (CH) plasmas in the warm-dense matter
regime in which the coupling constant varies between 0.02 to 2.0. The accuracy of results of STA calculations
is assessed by benchmarking against the available experimental data and results obtained using other theoretical
methods, assuming that a state of local thermodynamic equilibrium exists in the plasma. In the case of a carbon
plasma, the STA method yields spectral features that are in reasonably good agreement with Dirac-Fock and
Hartree-Fock-Slater theories; in the case of CH, we find that STA-derived opacities are very similar to those
derived using quantum-molecular-dynamics density-functional theory and Hartree-Fock method down to plasma
temperature of about 20 eV. Our calculations also compare favorably with available experimental measurements
of Gamboa et al. [High Energy Density Phys. 11, 75 (2014)] of the plasma temperature and average ionization
state behind a blast wave in a pure carbon foam. Although the STA-computed average-ionization charge state in
the rarefaction region appears to be lower than the experimental data, it is within the experimental uncertainty
and the discrepancy is nevertheless consistent with results reported using an atomic kinetic model. In addition,
we further predict the temperature dependence of average ionization states of CH plasma in the same temperature
range as for the carbon plasma.
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I. INTRODUCTION

The development of intense and energetic lasers over the
last several decades has given rise to a variety of important
advances in the field of intense x-ray pulses [1], inertial
confinement fusion [2,3], and laser-driven nuclear phenomena
[4]. Such lasers are also capable of creating macroscopic
samples of warm-dense matter (WDM) [5], which is of great
interest and relevance to astrophysical research and poten-
tial industrial applications. The WDM regime lies between
condensed matter state and hot plasma and is characterized
by a temperature range within an order of 1 eV and by an
ionic density ρi of order unity in the coupling parameter
� = (4πρi/3)1/3(Z̄e)2/kBT and the electron degeneracy pa-
rameter η = kBT /EF (EF is the Fermi energies and kB is the
Boltzmann constant). For ions other than hydrogen, however,
actually characterizing the properties of plasma in the WDM
regime [6] is a formidable task.

Experimentally, intense and spectrally tunable x-ray light
sources such as the Linac Coherent Light Source facility at
SLAC and ORION provide a valuable diagnostics tool for
studying WDM [7–12]. These intense light sources can be
used to probe a WDM sample and provide information on
its underlying structure, charge states, and opacity. WDM
created by short laser pulses is, however, highly transient
with a timescale on the order of a nanosecond and likely
requires diagnostic resolution times that are on the order
of tens of picoseconds or shorter. This immediately sets
restrictive limitations for most present-day experiments. As
a result, accurate theoretical and computational models of the

atomic and radiative properties of WDM must be developed
concurrently with experimental efforts and play a central role
in helping to advance our understanding of the physics of this
WDM regime.

There are several theoretical and computational approaches
for evaluating the radiative and atomic properties of plasmas
in a state of either local thermodynamic equilibrium (LTE)
or nonlocal thermodynamic equilibrium (NLTE). For dense
plasmas composed of transition elements with high nuclear
charge, methods based on the detailed line accounting (DLA)
framework [13] (which computes a fully resolved spectral
lines of all configuration-to-configuration transition arrays)
are computationally prohibitive due to the complex interaction
among configurations containing several thousand of states
with billions of transitions. Atomic physics models based on
the unresolved transition arrays (UTA) framework [14] (which
assumes that all lines in the spectrum of each configuration-
to-configuration transition arrays merge into a single effective
line of a Gaussian shape) are somewhat more practical and are
often employed [13]. But in many of those cases, the number
that of relevant UTAs is still too large to be computed in a
short period of time. A more efficient approach based on the
methods of super transition arrays (STA) was introduced and
pioneered by Bar-Shalom et al. [15] provides a practical and
less time-consuming alternative.

The STA method [13,15–23] models electronic transi-
tions via a statistical partition function (PF) formulation by
gathering ordinary electronic shells into supershells, elec-
tronic configurations into superconfigurations (SCs), and
groups transition arrays into STAs. The supershells and
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superconfigurations can be dynamically defined and refined
iteratively. The averaged atomic quantities such as energies
and widths of the transition arrays, and occupation num-
bers are then determined through the computation of the
PF of the supershells, which are populated in all possible
ways according to the Pauli exclusion principle. However,
the model assumes the following [23]: (i) The plasma is
in local thermodynamic equilibrium. (ii) All configurations
forming a superconfiguration are subject to a common mean
central-potential (optimized for the superconfiguration) with
the same set of one-particle solutions. (iii) A high-temperature
approximation is valid, which in this study implies that the
plasma temperature must be approximately greater than the
spread of the energies of configurations within a superconfigu-
ration. In this limit, the population of each configuration in the
superconfiguration is proportional to the partition function.
(iv) The spectra of all UTAs which form an STA merge into a
single Gaussian function.

These assumptions immediately pose the following ques-
tions: If STA is known to be a high-temperature model,
then how will it perform in the low-temperature regime?
Will it lead to a significant loss of accuracy? Although STA
was formulated specifically for simulating mid- to high-Z
plasmas, is it still valid for low-Z plasmas? Will it lead
to a significant loss of spectral features? Here we wish to
address these questions by examining the radiative and atomic
properties of carbon (C) and polystyrene (CH) plasmas in the
warm-dense regime. Plasma species containing carbon and
CH are not only a litmus test of the validity of the STA model
for the low-Z element, more importantly, the CH polystyrene
is a material of choice that features prominently in many
inertial-confinement-fusion (ICF) target designs.

In ICF, high-intensity laser light or x-rays are used to
implode a capsule of cryogenic deuterium and tritium by
illuminating a spherical “ablator” shell surrounding the fuel.
Polystyrene is a popular choice for the ablator material in
an ICF capsule because it is inexpensive, easy, and safe to
manufacture and has good laser-absorption properties, high
hydrodynamic efficiency, and low radiation preheat. In par-
ticular, to achieve high thermonuclear yield, a successful ICF
target design must not only maximize the ablation pressure
and mass ablation rate but also minimize the radiation emitted
by the ablator, which can preheat the DT fuel, reducing
compressibility and spoiling high yield. Because the former
two processes scale as the ratio of the atomic mass number
to nuclear charge, A/Z, whereas the latter scales simply as
Z, CH provides a reasonable balance of performance as an
ICF ablator [24]. Because of this application, theoretical and
computational efforts have been carried out at the University
of Rochester Laboratory for Laser Energetics to simulate the
equation of state (EOS) and optical properties of CH [25–28]
in a wide range of densities (0.1 to 100 g/cm3) and tempera-
tures (103 to 4 × 106 K) using quantum molecular dynamics
(QMD) simulations based on a finite-temperature Kohn-Sham
density functional theory. Numerical simulations based on the
QMD method are widely used to model WDM phenomena
and have been successfully applied to interpret experiments of
expanded metals [29] and ICF implosions [30–32]. The STA
method, on the other hand, based on solving the relativistic
Dirac equation, has its advantage as it enables statistical

completeness of atomic structure for arbitrarily complex ions
at a fractional computational cost of QMD simulations.

In this communication, we apply a STA self-consistent
model in LTE to study the emissivities, opacities, and average
ionization charge state Z̄ for carbon as well as for CH plasmas
under warm-dense conditions with values of the coupling con-
stant � varying from 0.02 to 2.0. By evaluating the accuracy
of the STA calculations in comparisons with other theoretical
calculations and experimental measurements, we attempt to
provide some answers to the above questions. In addition,
the present study will allow us to gauge the capabilities and
limitations of the present STA method so that improvements
might be made in the future.

The paper is organized as follows. In Sec. II, we describe
the computational method. In Sec. III, we present the STA
results in comparisons with other available theoretical calcu-
lations and experimental data for carbon and CH plasmas. Fi-
nally, in Sec. IV, we summarize our results. Unless otherwise
stated, all quantities are expressed in atomic units.

II. COMPUTATIONAL METHOD

A. STA formalism

In high-density plasmas composed of medium- to high-Z
elements, the number of populated electronic configurations
can proliferate rapidly owing to the collisional excitations
among various states. As a result, the corresponding number
of electronic transitions among the configurations in each
ionic stage can also grow prohibitively large, making the nu-
merical computations intractable. A practical solution to this
problem is to introduce a quantum statistical model of “super
transition arrays.” The model based on superconfiguration
accounting groups closely spaced electronic configurations
together to form superconfiguration. It also judiciously defines
these groups and serves as a bridge between the rather simple
average atom (AA) model and the computationally intensive
detailed configuration accounting (DCA). Since the theoreti-
cal details of the method have been given elsewhere [15], we
outline the essential concepts behind the STA model in the
remainder of the section.

Starting with superconfigurations, we shall follow the
notations used in Ref. [15]. A superconfiguration (SC) is
constructed through collecting together neighboring (in en-
ergy) ordinary subshells into “supershells.” For instance, by
assigning supershell occupation number Qσ to each of the
two supershells (1s2s2p1/22p3/2)(3s3p1/23p3/2), we define a
superconfiguration

� =
∏
σ

(1s2s2p1/22p3/2)Qσ (3s3p1/23p3/2)Qσ+1 . . . , (1)

where σ denotes the supershells and Q = ∑
σ Qσ is the total

electron occupation number. This implies that all the possible
partitions of the Qσ electrons among the ordinary subshells
s ≡ {n, l, j} are considered. An ordinary configuration C, on
the other hand, is a special case of SC in which each supershell
contains only one shell. Moreover, a reasonable number of
SCs (typically a few hundred for medium-Z elements) can
contain a tremendous number of ordinary configurations.
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Although these SCs are loosely defined at the very beginning
of the calculation, the precision for the spectrum can be im-
proved by iteratively refinement of the SCs (i.e., subdivision
of the supershells) until the resultant spectrum converges to
the DCA spectrum, and it is possible to calculate macroscopic
thermodynamic variables such as pressure, internal energy,
Helmholtz free energy, by averaging over a reduced number
of SCs made up of large number supershells. To be clear, note
that the thermodynamics is not fully defined by the electronic
configurations; only the electronic part of the macroscopic
thermodynamics quantities can be defined this way.

To evaluate the STA moments (i.e., the total intensity, the
average energy, and variance) and SC average rates, one needs
expressions for the populations of the configurations and
superconfigurations. Assuming local thermodynamic equilib-
rium, all the configurations described by a SC �, the popu-
lation of any array of levels i can be expressed through the
Saha-Boltzmann’s law, U/Ui = Ni/N , where N is the total
ionic number density, and Ui and U are the corresponding
partition function. For example, for an ion with Q number of
electrons, the partition function of the SC � can be expressed
in terms of a summation over all levels i of all configurations
C is

U� =
∑
C∈�

∑
i∈C

gie
−(E(0)

i +δE
(1)
� −Qμ)/kT , (2)

where the sum of configuration statistical weight is given by
the sum of product of binomials

∑
i∈C

gi =
∑

p

∏
s∈C

(
gs

qs

)
, (3)

and gs = 2j + 1, qs is the number of electrons in a sub-
shell. We also have the relations

∑
s∈σ qs = Qσ and E

(0)
i =∑

s∈σ qsεs , where the latter quantity is the zeroth-order en-
ergy. The SC energies are given by the expression

E� = δE
(1)
� +

∑
σ

∑
p

∑
s∈σ

qsεs, (4)

where δE
(1)
� is the SC first-order average energy correction

(see Eq. (86) in Ref. [19]) and εs are the monoelectronic
energy and

∑
p means a summation over all the partition

functions of the supershell occupation number, Qσ . It should
be noted that it has been demonstrated in Refs. [15,19] that
with a modified set of statistical weights and supershell occu-
pation numbers, the STA moments and the non-LTE average
transition rates can be expressed in terms of generalized
partition functions.

The STA computer code is based on an ion sphere (IS)
model in a chemical picture [33]. In this picture, the plasma is
considered to consist of partially stripped ions of each element
and free electrons shared among all ions. For a given atom
with a set of the temperature and the density of interest, the al-
gorithm first solves a finite-temperature Thomas-Fermi-Dirac
equation [34,35] and using the solutions in terms of relativistic
wave functions to obtain the average ionization charge state
Z̄ self-consistently with the free electrons in the ion sphere.
A parametric potential has been used to describe the bound
electrons as it simplifies and yet captures the changes of
the electronic potential for each ion stage [36,37]. The STA

algorithm, in the first iteration, starts by loosely defining
very broad supershells, similarly to that of the average atom
model approach [13]. The SCs are then constructed with these
supershells. The moments of the STA transitions are then
computed and the resulting spectra are obtained by adding
up all the STA contributions. Then, in the next iteration, the
supershells are split to optimize the corresponding SCs and
this procedure repeats itself until the converged spectra are
achieved. The potential for each SC is also progressively
refined, the STA recomputed, and, finally, the UTA moments
are incorporated in the spectral-opacity calculation as part
of the obtaining accurate STAs’ widths and energies. The
bound-free and free-free transitions are also computed using
the same potential. Ultimately, the convergence criteria of the
STA-computed spectra using this iterative procedure is the
DCA spectra.

B. Mixture model

There are several ways to compute an opacity for a mix-
ture of chemical elements. Here, we use the word “mixture”
cautiously since our model is “mechanical” and not a product
of chemical reaction. Strictly speaking, we do not consider
any quasimolecular ion-ion intermingles or overlaps and/or
condensed solid-state effects and all the elements are in the
atomic or ionic state, as individually computed with the STA
code. The mix model used in the present work has been
described previously by Klapisch and Busquet [38].

The MIX algorithm requires an input file that describes
the desired relative components of the elements and takes
input data files generated by the STA computer program.
It also reads an additional set of data files containing the
desired photon groups (in bins) in order to create multigroup
Rosseland and Planck opacities. The MIX algorithm extracts
for each element a set of density values for each temperature
point. It then numerically evaluates the partial densities for
the chosen mix model in order to retrieve the corresponding
data from the opacity database within the same temperature
point. If necessary, it is capable of interpolating between two
density points on the spectrally resolved opacities and then
computes the group opacities. Once done, it moves on to the
next temperature and repeats the process.

The following describes the basic concept of our mix
model. Let us first consider a volume V containing the mixture
of elements as depicted in the Fig. 1 and suppose Nk is
the total number of atoms of an element k in that volume.
Assuming the volume V can be divided into a collection of

FIG. 1. Schematic representation of a mixture in a volume V .
Red (light gray) and blue (dark gray) represent two different compo-
nents in the mixture.
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ion spheres, vk , such that the spheres are the same size for all
ions of the same element. Now vk is the quantity we wish to
determine in the mixture.

To begin, one must define the total number of atoms, total
mass, and total number densities according to

Ntot =
∑

k

Nk, (5)

Mtot =
∑

k

Mk =
∑

k

NkAk, (6)

ntot = Ntot

V
=

∑
k

Nk

V
=

∑
k

nk, (7)

respectively, where Ak is the atomic weight of element k, one
can express the total mass density as

ρtot =
∑

k

NkAk

V
=

∑
k

ρk =
∑

k

nkAk

= ntot

∑
k

xkAk = ntotĀ, (8)

where xk can be considered as the concentration of element k.
The quantity ρk in Eq. (8) is the mass density for element

k in the mixture. Clearly, the ρk of an element k is not the
same as if the whole volume V contained only that element (it
must be less). The effective density for element k is defined
by ρ∗

k ≡ Ak/vk . Using the additive volume rule (i.e., the
volume of a gas mixture is expressed as the sum of volumes
occupied by the individual components with consideration the
respective components to be at the pressure and temperature
of the mixture) [39], one can obtain the relation between ρ∗

k

and ρtot as

1

ρtot
=

∑
k

(
xkAk

Ā

)
1

ρ∗
k

. (9)

Here the additive volume rule is a constraint. It applies
to all components in the mixture using an ion-sphere radius
for each element. The set {ρ∗

k } must satisfy this relation, but
this constraint alone is insufficient to specify the individual
values of ρ∗

k . To proceed further, one must impose a phys-
ical condition connecting the atomic properties among the
elements of the mixture. For example, we assume that the
electronic pressure for each element in the mixture must be
in equilibrium [40], that is,

Pe = Pe,k (ρ∗
k , T ) (10)

for each element k. This is the same assumption made in
Thomas Fermi theory and requires that the set {ρ∗

k } be de-
termined iteratively based on the condition of pressure equi-
librium (e.g., PC = PH ) and the constraint of additive volume
rule. This procedure has also been demonstrated for nonideal
gas equation of state [41].

The MIX algorithm uses the chemical potential equi-
librium constraint instead of the pressure equilibrium, and
Eq. (9) is solved iteratively using the Brent algorithm [42]. In
addition to the chemical potential equilibrium condition, there
are other physical conditions like the electrical equilibrium
obtained by treating the plasma as consisting of ions of
different elements embedded in a sea of uniform free electrons

within each ion-sphere. Similarly, one requires the electron
density ne to be the equal for each element. Hence the average
charge state of each element k is

ne = Z̄k (ρ∗
k , T )

vs

= Z̄k (ρ∗
k , T )ρ∗

k

Ak

. (11)

This simple modification to Eq. (9) is useful as it allows for
the estimate of the non-LTE effects from the LTE calculation
through the use of the RADIOM model [43]. After the partial
mass densities for each element of the mixture are found, they
can be used to get the spectral opacity. It can be shown that the
resulting opacity κmix (in cm2/g) of a mixture can be expressed
as [38]

κmix(ρtot, T ) = 1

ρtot

∑
k

ρ∗
k κk (ρ∗

k , T ). (12)

III. RESULTS AND DISCUSSION

A. Comparison of theories and experiments for carbon plasma

Spectrally-resolved x-ray scattering has been used to in-
vestigate the carbon average ionization in a multicompo-
nent plasma in the high-temperature regime [44–46]. Let us
first discuss the STA results for a carbon plasma. A good
way to determine the quality of the STA calculations is by
directly checking against experimental measurements rather
than through the thermodynamic equation-of-state calcula-
tions or radiation-hydrodynamic simulations. This, however,
is not always possible. Figure 2 shows the experimentally
determined average ionization of carbon at 0.2 g/cm3 as
a function of plasma temperature from 20 eV to 200 eV
[44–46]. The STA results are compared to the benchmarked
average ionization and temperature data obtained using spec-
trally and time-resolved x-ray scattering experiment at the
University of Rochester’s OMEGA laser facility [46]. It is
shown that the STA calculated Z̄ values agree with the exper-
imental data especially above plasma temperature of 70 eV
but underestimate them by about 30% at 40 eV. In addition
to the experimental data, we also consider theoretical results
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FIG. 2. The carbon average ionization Z̄ as a function of temper-
ature at 0.2 g/cm3 are compared to SCAALP [47], Purgatorio [48],
FLYCHK [49], Thomas-Fermi (TF) model, and experimental data
[46].
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FIG. 3. The carbon average ionization Z̄ as a function of plasma
temperature. The solid circles and squares are the measured Z̄ data
from the shocked foam [52]. The data are divided into the shocked
layer and rarefaction groups. The solid and dashed lines are the STA
and FLYCHK results, respectively, evaluated at 2/5, 1, and 3.5 times
the initial or uncompressed carbon foam density of 0.34 g/cm3.

from the SCAALP [47], Purgatorio [48], FLYCHK [49], and
Thomas-Fermi models. The SCAALP is based on neutral-
pseudo-atom concept [50,51] in which the model accounts for
the effective ion-ion interaction for any set of density and tem-
perature parameters, starting from the self-consistent electron
charge density previously calculated using density-functional
theory for a single neutral pseudoatom. The general idea of the
Purgatorio model, on the other hand, is based on a spherically
averaged ion embedded in jellium in a Dirac-Fock formulation
[48]. Here, we display two sets of Purgatorio calculations,
namely, the Purgatorio-R and Purgatorio. The Purgatorio-R is
the result of the model with the continuum electrons in quasi-
bound resonance states, whereas the Purgatorio is the results
of the model without the continuum electrons in quasibound
resonance states. Above the plasma temperature of 80 eV, we
see that Z̄ coincides with the values predicted by Purgatorio-
R, but deviates from it below 80 eV to match up with the
values predicted by SCAALP. Note that, like Purgatorio-R, the
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FIG. 4. Emission spectrum of carbon plasma at a temperature
of 50 eV and density of 4.3 × 10−3 g/cm3. The locations of 1s
ionization thresholds of C III, C IV, and C V are indicated by arrows.
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FIG. 5. (a) A comparison of the radiative opacity (Planckian) of
carbon at a density of 2.24 g/cm3 and a temperature of 100 eV;
(b) the breakdown of different contributions from the bound-bound,
bound-free, and free-free transitions of the total opacity.

SCAALP model takes into account the continuum electrons
in quasibound resonance states. This is unexpected since the
STA model does not include the quasibound resonance effects.
Another puzzling feature is that the Z̄ from Purgatorio is in
favorable agreement with results from the SCAALP model.
We speculate that this kind of deviation could come from
differences in the atomic orbital wave functions since they
are rather sensitive to the particular central-field potential
used to model the many-body interactions among electrons
and ions in the atomic structure calculations. In any case, in
agreement with SCAALP we find that the maximal principal
quantum number is n = 3 between around 40 and 160 eV.
In addition, it is surprising the results from the simple TF
model appeared to agree more closely with the experimental
data. The present finding of the TF model also confirms the
earlier TF result reported in Ref. [47]. Finally, the results of
the FLYCHK code [49] closely agrees with the experimental
data below a plasma temperature of 80 eV but overestimate
the experimental results at higher temperatures.

In Fig. 3, we consider the low-temperature range of 20–
60 eV and compute Z̄ for carbon. At such temperatures,
the carbon ion is only moderately ionized. The STA result
is compared with more recent data from the University of
Michigan and also with spatially resolved x-ray scattering
from the OMEGA facility [52]. It is obvious that, in the
shocked region, Z̄ from STA at plasma density of 1.19 g/cm3

agrees fairly well with the experimental data. However, in
the rarefaction region, the STA predicts lower values of Z̄

than those suggested by the experiment. In comparison to
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FIG. 6. The density dependence of the radiative opacity (Planckian) for carbon at a plasma temperature of (a) 50 eV and (b) 100 eV.

the results from FLYCHK code [49], in general, the STA
and FLYCHK results do show a similar behavior of Z̄ as a
function of temperature for all the densities except at tem-
perature below 20 eV. Close examination in the region of
shock layer on average shows that the discrepancy between
the two calculations is about 10%. In the region of rarefac-
tion, on the other hand, both theoretical results agree more
closely.

Next we examine the emission spectrum of carbon plasma
at a temperature of 50 eV and the plasma density of 4.3
× 10−3 g/cm3. A comparison of STA emission spectrum
with those obtained using the non-LTE DLAYZ code [53]
and REODP code [54] is displayed in Fig. 4. The spectrum
obtained using the DLAYZ code displays much finer details
of the spectral lines. This is expected since the DLAYZ
calculation is based on the Dirac-Fock-Slater DLA frame-
work. The spectrum obtained using REODP code, on the
other hand, is based on a less detailed Hartree-Fock-Slater
approach. Nevertheless, the STA method reproduces many
spectral features and their corresponding line locations dis-
played in the synthetic spectra obtained using the DLAYZ
and REODP codes. From the STA calculations, we also find
that, below the photon energy of ∼100 eV, the transition lines
are attributed to the outer-shell electrons. For those localized
in the energy range of 250 to 500 eV, they are from the
inner-shell transitions. Following Refs. [53,54], we also have
the locations of the 1s ionization thresholds of C III, C IV,
and C V ions, and the He-α, He-β, Lyman-α, and Lyman-β
emission lines marked in the figure. And from these markers,
we notice that the STA calculated somewhat lower ionization
edges for C IV and C V ions. These ionization edges appear
to be shifted to lower thresholds by approximately 25 eV. A
comparison of Fig. 4 with Fig. 5(a) and Fig. 6(b) suggests
this shift may be caused by a continuum lowering, which is
also known as an ionization potential depression (see p. 322
of Ref. [13]). Indeed, the ionization threshold given by the
STA model, as shown in Fig. 6(b), seems to converge with
decreasing density to 480 eV given by the alternative DLAYZ
and REODP models. Moreover, in the case of a higher density,
displayed in Fig. 5(a), the threshold shift predicted by the
STA model has increased relative to Fig. 4, which is expected

since the position of the threshold in the alternative models
suspiciously has not changed.

Figure 5(a) shows the opacity of carbon plasmas at the
density of 2.24 g/cm3 and a temperature of 100 eV. The STA
result is compared with the spectra calculated using another
variant of Dirac-Fock-Slater DLA model (DF-DLA) by Gao
et al. [55] and the REODP code [54]. The STA-computed
absorption spectra and line positions are reasonably consistent
with respect to the results of the other two calculations, except
below the photon energy of 280 eV where the STA-obtained
opacities are much lower. The absorption structures found in
the region of 0–120 eV result from transitions in the excited
levels of carbon ions with the principal quantum number n �
2. The absorption peaks near 300 and 380 eV, however, are the
results of the 1s-2p transitions in C V and C VI, respectively,
while other peaks at higher photon energy arise from the
1s-np (n � 3) transitions of C VI. The breakdown of different
contributions from the bound-bound, bound-free, and free-
free transitions which dictate the photon energy profile of the
opacity is shown in Fig. 5(b). Below the photon energy of
280 eV, the bound-free and free-free transitions are dominant,
and we see that STA predicts lower values of bound-free
and free-free contributions in comparison to the DF-DLA and
REODP calculations. Between 280 and 400 eV, the bound-
bound contribution becomes more important compared to the
bound-free contribution. For the rest of the photon energy
range, the opacity is dominated by the bound-free component.
The opacity near the K edge for different carbon ion stages is
also noted on the bound-free curve.

The dependence of the opacity on the plasma density of
carbon at 50 and 100 eV is shown in Fig. 6. Let us first
discuss the plasma density effects. In this work, we restrict
our attention to the ion-sphere model on which the STA
method is based. Let us suppose that we have a plasma in
an ion-sphere (IS) and the N th ionization potential (IP) of
an atomic system is the difference in binding energy (�EB)
of the ground state of the atom ionized N times and the
ground state of that atom ionized (N − 1) times. Classic
atomic structure models, like Hartree-Fock methods, for ex-
ample, treat the atomic system as isolated such that no plasma
effects are considered; consequently, a model such as the
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FIG. 7. STA results for CH. The diamond is the experimental
datum of CH foils from Fig. 8 in Ref. [44].

Stewart-Pyatt [56] or Ecker-Kröll [57] had to be introduced
in order to account for the experimental fact that the �EB

depends strongly on the plasma density and temperature. Now,
when considering an isolated atomic N th ion, each bound
electron is moving in the nuclear potential screened by the
other electrons, the Coulombic potential as r → +∞ limit
behaves like VC (r ) ∼ −(N − 1)/r . In the STA model, and
other methods (such as INFERNO [33]), the perturbation of
the atom by the plasma (i.e., mostly by free electrons) is
described by the IS model, the potential VIS(r ) vanishes at
the boundary of the IS radius RIS = (4πρi/3)−1/3 with ρi is
the ionic density. This is the “charge neutrality condition”
used to obtain the balance between bound and free electrons
within the ion sphere. As a consequence of this difference
in potentials, the bound electrons in VIS(r ) are less bound
than in VC (r ). Therefore, the �EB is smaller in a plasma
than it is in an isolated atom. The phenomenon is termed the
“ionization potential depression” (IPD). In the STA method,
the IPD arises naturally for plasma conditions due to the com-
bination of the IS model and the neutrality condition. Note
that, in principle, the IS model should predict an IP lowering
comparable to the high-density limit of the SP model, but
often the screening of the nucleus by bound electrons is model
dependent. Figure 6 shows the dependence of the opacity on
the plasma density. Because of the depression of the IP as
density rises, the Inglis-Teller limit [58] where spectral lines
merge together and show a quasi-edge appears to shift to
lower and lower photon energies and gradually disappears into
the continuum. Further increasing the density to hundred of
times the solid density of carbon will gradually smear out the
Inglis-Teller limits, resulting in an exponentially attenuated
function in photon energy for opacities at high-densities. A
comparison of various IPD models, namely, the Stewart-Pyatt
[56], Ecker-Kröll [57], modified Ion-Sphere [59], Crowley
[60], ATOMIC code [61] with Hummer-Mihalas microfield
ionization approach [62], QMD and “single mixture in a box”
(SMIAB) models [27], has been discussed in the recent work
of Hu [63] for the cases of temperatures near 10 eV. It is shown
that the advanced ATOMIC, QMD, and SMIAB codes predict
an upward shift (in energy) of the carbon K edge as the plasma

0 200 400 600 800103

104

105
STA
QMD
AOT

0 200 400 600 800103

104

105

0 200 400 600 800103

104

105

0 200 400 600 800103

104

105

0 200 400 600 800103

104

105

0 200 400 600 800103

104

105

(i) 4 g/cm3 (ii) 50 g/cm3

Photon energy (eV) 

R
os

se
la

nd
 o

pa
ci

ty
 (c

m
2 /g

)

(a) 11 eV

(b) 43 eV

(c) 86 eV

(a) 11 eV

(b) 43 eV

(c) 86 eV

FIG. 8. The Rosseland opacity of CH as a function of photon
energy for a plasma density of (i) 4.0 g/cm3 and (ii) 50.0 g/cm3 and
temperature (a) 11.0 eV, (b) 43.0 eV, and (c) 86.0 eV.

density increases, while the others shows a downward shift.
Note that, according to Hu [27], the upward shift of the carbon
K edge by high compressions can be attributed to the Fermi-
surface energy rises faster in comparison to the continuum
lowering process of the 1s electron of carbon. This finding
is somewhat surprising and warrants additional experimental
confirmation.

Figure 6 also depicts the sensitivity of the opacities to the
variation of the plasma temperature. At the lowest density
of 0.00224 g/cm3, comparing the opacities at temperatures
of 50 and 100 eV, the opacity at 100 eV displays slightly
fewer structures than those at 50 eV. This can be explained
by observing that as plasma temperature increases, atoms
become more ionized, and as a result, there are fewer bound
electrons and thus simpler electronic configurations.

B. Comparison of theories and experiments for CH plasma

It is informative to investigate how the average degree of
ionization varies for a polystyrene (CH) target instead of a
carbon foam. Figure 7 shows the STA-predicted ZC for CH.
In the STA calculation, our polystyrene CH is a 1:1 ratio of
C and H in mass density. It is shown that the calculated ZC

decreases to about 1.0 to 2.4 for CH, which is roughly 50%

043203-7



T.-G. LEE et al. PHYSICAL REVIEW E 98, 043203 (2018)

20 40 60 80 100 120 140 160 180 200102

103

104

105

STA
ATOMIC
QMD
AOT

20 40 60 80 100 120 140 160 180 200
Plasma temperature T (eV)

102

103

104

105

R
os

se
la

nd
 m

ea
n 

op
ac

ity
 (c

m
2 /g

)

(a) 0.5 g/cm3

(b) 4.0 g/cm3

20 40 60 80 100 120 140 160 180 200102

103

104

105

106 STA
ATOMIC
QMD
AOT

20 40 60 80 100 120 140 160 180 200
Plasma temperature T (eV)

102

103

104

105

106

107

R
os

se
la

nd
 m

ea
n 

op
ac

ity
 (c

m
2 /g

)

(c) 10 g/cm3

(d) 50 g/cm3

FIG. 9. The Rosseland mean opacity of CH as a function of plasma temperature for four different densities: (a) 0.5 g/cm3, (b) 4.0 g/cm3,
(c) 10.0 g/cm3, and (d) 50.0 g/cm3.

smaller than the value for a pure carbon foam (see Fig. 3 for
comparison) in the same temperature range. We also show the
experimental datum [44], which is close to the STA prediction.
We anticipate additional measurements of ZC for a broader
temperature range will be carried out in the near future as they
are essential for validating theoretical calculations.

Rosseland opacities have been calculated using the QMD
method of Hu et al. [27]. The QMD method is based on
the finite-temperature density-functional theory (DFT). The
many-body coupling and quantum degeneracy effects intrin-
sic to warm dense plasmas can be treated using the funda-
mental principles governing a quantum many-body system.
For each QMD step, a set of electronic wave functions is
self-consistently determined for a given ionic configuration.
Then, the ions are moved classically with a velocity Verlet
algorithm, according to the combined ionic and electronic
forces. The ion temperature is kept constant through simple
velocity scaling. Repeating these QMD steps results in a set
of self-consistent ion trajectories and electronic wave func-
tions. These trajectories provide a self-consistent set of static,
dynamical, and optical properties in warm dense plasmas. In
Fig. 8, we present the STA computed opacities and compare
them to the results obtained using the QMD method at three
plasma temperatures of 11, 43, and 86 eV and densities of
4.0 g/cm3 and 50.0 g/cm3. For ρ = 4.0 g/cm3, there are no-
table differences between the STA and the QMD calculations,
particularly in the low-photon energy and high-photon energy

regions. In the moderate photon energy range of 100–450 eV,
the agreement is reasonable. Nevertheless, the STA results
display a similar of photon energy dependence as the QMD
method. For ρ = 50.0 g/cm3, the STA computed opacities
agree with QMD predictions between photon energies of 100
and 450 eV. Deviations appear for photon energies of below
100 eV and above 450 eV, and a difference of almost a factor
of 2 is seen near 800 eV. Overall, the agreement between the
STA and QMD results is encouraging for CH, since the STA
method is known to be more accurate for high-Z material at
high temperatures. In addition to the QMD results, we also
consider the data from the AOT model [64], since these data
have been employed in the past to simulate ICF and HED
experiments [65–68].

Finally, we examine the variations of Rosseland mean
opacity for CH as a function of plasma temperature for four
different densities at 0.5 g/cm3, 4.0 g/cm3, 10.0 g/cm3, and
50.0 g/cm3. The results are shown in Fig. 9. Along with the
STA and QMD predictions, we also show the results from
the ATOMIC model developed at the Los Alamos National
Laboratory. The ATOMIC code is a suite of opacity-
generation and kinetics codes [61]. It is devised to gener-
ate opacities tables with very broad ranges of temperatures
and densities, and is usually used for astrophysical model-
ing at low and moderate densities as well as in radiation-
hydrodynamics codes for the modeling of ICF and of HED
experiments. The newer version of ATOMIC code also takes
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into account the IPD effects through plasma microfield ion-
ization and the rising of the Fermi surface energy.

It is also of interest to compare the STA results with those
from the ATOMIC code and to the QMD method at high
densities. As shown in Fig. 9, we see the STA computed
opacities are in reasonably good agreement with predictions
from the ATOMIC (and QMD) calculations. At temperatures
less than ∼20 eV, the STA calculated opacities for 10.0 and
50.0 g/cm3 deviate from the QMD and ATOMIC results.
In the low-temperature region, both the QMD and ATOMIC
calculations show a turning point near 10 eV, that approaches
a finite value. The STA calculation, on the other hand, keeps
rising and consequently overestimates the opacity in the sub-
eV region. This limitation perhaps not surprising since the
current STA model is not designed for low temperatures and
high densities. It may be possible to circumvent this limitation
by implementing the “pressure-ionized-effective-statistical”
method of Busquet in the STA’s PF algebra [69].

IV. SUMMARY

In summary, we have used a STA method at local thermo-
dynamics equilibrium to examine the emissivities, opacities,
and average ionization charge state for both carbon and CH
plasmas with coupling constant � varying from 0.02 to 2.0.
Our objective is not only to validate the STA model but also to
assess the accuracy of the model by benchmarking the results
of the STA calculations against the available experimental
data and results obtained using other theoretical methods. For
carbon plasma, we find that STA reproduces emissivities and
opacities with well-resolved spectral line features, including

their corresponding locations and are in good agreement with
the results from Dirac-Fock and Hartree-Fock-Slater calcu-
lations. For CH plasmas, above temperatures of 20 eV, we
find that STA-derived opacities agree reasonably well with the
quantum molecular dynamics and Hartree-Fock calculations.

Recently, x-ray scattering diagnostics of the blast wave
in a planar carbon foam driven by the OMEGA laser have
inferred the temperature of the carbon plasma is between
20 and 40 eV with Z̄ about 2.0 to 4.0 from the shock
to rarefaction regions, respectively. Comparing with these
experimental data, we find that the STA obtained Z̄C is in
agreement with the experiment in the shocked region, but is
lower in the rarefaction region. The discrepancy is consistent
with the results reported using the FLYCHK code. Finally,
we computed with STA the temperature dependence of ZC

for CH in the same temperature range as for the carbon
plasma. We find that these values vary from 1.0 to 2.0 from
the shock to rarefaction regions, respectively. The present
study shows the reliability of STA method for simulating
low-Z multicomponent WDM. Additional work based on the
Busquet’s ionization potential depression effective statistical
weight approach is also in progress in order to improve the
ionization potential depression model in the STA method.
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