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Thermally induced interfacial instabilities and pattern formation in confined liquid nanofilms
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The dynamics, instability, and pattern formation of thermally triggered thin liquid films are investigated
numerically under a long-wave limit approximation. To determine the mechanisms responsible for instability
growth and pattern formation in confined heated nanofilms, acoustic phonon (AP) and thermocapillary (TC)
models are examined using both linear and nonlinear analyses. Under uniform heating conditions, both AP
and TC models predict the formation of raised columnar structures (pillars) and bicontinuous structures for
very low and high filling ratios defined as the ratio of the initial film thickness to the plate separation distance,
D−1. A transition threshold is observed when D ≈ 2.5. However, the TC model predicts smaller features for
larger D, whereas the opposite prediction applies for the AP model. Under spatially variable cooling conditions
involving a patterned top plate, both TC and AP models exhibit similar predictions: pillars form under the top
plate protrusions. When the heating is spatially variable, the lower plate is patterned; the AP model predicts pillar
formation above ridges, whereas the TC model predicts pillar formation above the valleys.
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I. INTRODUCTION

Over the past decades there has been a tremendous effort
to fabricate micron- and nano-sized features by forming,
reforming, and fixing soft matters [1–4]. Surface patterning
of semiconducting and conducting polymers (organic or in-
organic) and metamaterials is in high demand for various
applications in nanoelectronics and nanophotonics. Novel and
versatile approaches, with low cost and high throughput that
overcome limitations inherent in conventional lithographic
techniques, have been developed [4]. Lithographically in-
duced self-assembly is a recent alternative approach that relies
on the self-organization and surface instabilities triggered
by external forces such as thermal [5,6], mechanical [7],
electrical [8–10], intermolecular [11], or their combination
[12]. Polymer melt deformation results in three-dimensional
(3D) micro- and nano-structures with ultrasmooth surfaces
after solidification which are highly desired for optical
applications [13].

Thermally induced instabilities in thick films (thickness
in the range of hundreds of micrometers to millimeters) are
governed by short-wavelength Bénard-Marangoni (SW-BM)
instabilities and have been studied over the past century [14].
By contrast, investigations into nanofilms are more recent
and started with the initial observation of one-dimensional
(1D) ridge and two-dimensional (2D) pillar (raised columnar
structure) microarray formation in a molten polymer film
which is heated from below and cooled from above [8]. A
schematic view of a thin film sandwiched between two plates
is presented in Fig. 1.

A surface charge (SC) model provided the first predic-
tions concerning the formation of periodic nanopillar arrays
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including descriptions their lateral distributions. In this model,
the SC present in the molten polymer and the resulting
imaged charge on the plates generates an electrostatic force
leading to interfacial deformation. Based on a linear stability
(LS) analysis, the characteristic wavelength, λ, associated
with the maximum growth rate depends on the initial film
thickness, plate separation distance, interfacial tension, and
electrical properties of the polymer melt such as permittivity
and interfacial charge density [8]. Further studies showed that
changing the thermal properties of the system and the imposed
thermal gradient affects the resulting feature size or λ.

Subsequent theoretical and experimental studies suggested
acoustic phonon (AP) as the main mechanism for inducing in-
stabilities. The AP model is based on an internal film pressure
induction of low-frequency acoustic phonons in molten poly-
mers [7] and considers the thermal properties of the melted
polymer. The role of the imposed temperature gradient in the
prediction of the dominant wavelength of the instabilities is
considered in the AP model but was not taken into account in
the SC model. Hence, the AP model predictions were found
to be in better agreement with the experimental results as
compared to the SC model. In the AP model, the LS predicted
λ depends on the temperature difference, thermal conductivity
of molten polymer and bounding layer, speed of sound in
the molten polymer, acoustic phonon coefficient, initial film
thickness, plate separation distance, and interfacial tension.

More recently, a model developed based on the Bénard-
Marangoni (BM) instability in the long-wave (LW) limit
and called the thermocapillary (TC) model has been derived
[15,16]. The temperature gradient along the air-liquid in-
terface leads to an interfacial tension gradient that exerts a
tangential TC stress at the interface. The TC stress disturbs
the interface, whereas the Laplace and viscous stresses tend to
depress such out-of-plane deformations. In the LW-BM insta-
bility, the film deforms due to a growth of the instabilities over
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time. As the thermally induced pattern formation is a transient
process, similar to other self-organized pattern formation phe-
nomena [11], the size and shape of the resulting structures
highly depend on the time when the system is cooled down
to solidify the structures. Controlling the shape and size of
the generated features by a self-assembly patterning process
is important for practical applications. Different techniques
have therefore been applied for this purpose, like using a
patterned mask in electrically induced patterning [9,17] and
chemically heterogeneous substrates in dewetting induced
patterning [11,18].

Complementing the predictions of LS analyses, experi-
mental studies have been performed to try to determine the
principal mechanism driving instability growth [19]. Early
time measurements showed good agreement between the TC
model predictions and laboratory data when the out-of-plane
thermal conductivity of the molten polymer was several times
larger than that of the bulk, which could, in turn, be attributed
to polymer chain alignment [20]. Feature extraction tech-
niques and thermal gradient assessment were later improved
[21] to capture the fastest growing wavelength at earlier times
and to accurately predict the temperature gradient in the
thin film. In spite of these expanded laboratory capabilities,
the discrepancy between the theory and experimental results
was attributed to experimental challenges such as accurately
measuring the temperature difference that the molten polymer
film is exposed to.

To date, the majority of the work performed has focused
on finding the best theoretical model to describe the forma-
tion of micropillar array formation. However, there is still
a discrepancy between AP and TC model predictions and
complementary experimental observations. Moreover, the AP
and TC models exhibit important differences, e.g., the force
direction at the interface. In the TC model, the force acts
in a tangential direction to the interface whereas in the AP
model it acts normal to the interface. This study will employ
linear and nonlinear analyses to investigate the similarities
dissimilarities between the TC and AP model predictions vis-
à-vis dynamics, the spatiotemporal evolution of the nanofilms,
and the size and shape of the resulting features. In most
previous studies, the polymer film is exposed to a uniform
temperature gradient. In this work, we also extend the ther-
mally induced patterning to nonuniform heating and cooling
conditions using patterned top and bottom plates.

II. MATHEMATICAL MODEL

A. Governing equations

A schematic of the ultrathin liquid film confined between
two parallel palates is shown in Fig. 1. The liquid film is
heated from below (TH ) to above the glass transition tem-
perature of the polymer (Tg) and cooled from above (TC) so
that TH − TC > Tg . A transverse thermal gradient induces an
interfacial thermal pressure (either a tangential TC stress or a
normal AP stress). The TC pressure is due to the temperature
gradient along the interface and leads to nonuniformity in
the interfacial tension. A local increase in the interfacial
temperature leads to a lower interfacial tension compared to
neighboring cold areas. The hot interface region is thereby

FIG. 1. A 2D schematic of the ultrathin liquid film sandwiched
between top (cold) and bottom (hot) plates.

pulled toward colder area leading to the BM instabilities.
However, the internal film pressure in the AP model is due
to the induction of low-frequency acoustic phonons in the
polymer film.

To describe the spatiotemporal evolution of the film under
TC stress, we employ mass conservation and momentum and
energy balances for an incompressible Newtonian film, which
are respectively written as

∇ · �ui = 0, (1)

ρi

[
∂ �ui

∂t
+ (�ui · ∇�ui )

]
= −∇Pi + ∇ · {μi[∇�ui + (∇�ui )

T ]},

(2)

ρicpi

(
∂Ti

∂t
+ �ui · ∇Ti

)
= ki∇2T . (3)

Subscript i differentiates between the following fluid phases:
molten polymer film and air as a bounding layer. In the energy
balance equation, energy dissipation due to viscous forces
is assumed to be negligible. The film viscosity μ = μ(TH )
and density ρ = ρ(TH ) are assumed constant, i.e., the effect
of variable viscosity due to thermal gradients and variations
in the film thickness [22] is not considered. The thermal
conductivity is ki , heat capacity is cpi

, and fluid velocity is
�ui . The hydrodynamic and thermal boundary conditions are

�u1 = 0; T1 = TH at z = 0, (4)

�u2 = 0; T2 = TC at z = d. (5)

At the interface [z = h(x, y, t )] the boundary conditions are

�urel = 0 and T1 = T2, (6)

thermal conduction: �n · (k1∇T1 − k2∇T2) = 0. (7)

Finally, the normal and tangential stress balances are

�n · [σ̄1 · �n − σ̄2 · �n] = κγ, (8)

�tj · [σ̄1 · �n − σ̄2 · �n] = ∇sγ · �tj , (9)

respectively.
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The stress tensor σ̄ = −P Ī + μi[∇�ui + (∇�ui )T ] is de-
fined as the summation of hydrostatic and viscous stresses.
For the normal stress balance, the capillary pressure is κγ

with κ = ( 1
R1

+ 1
R2

) the mean interfacial curvature of the film
interface [23] defined as

1

R1
+ 1

R2

=
∂2h
∂x2 [1 + (∂h/∂y)2] + ∂2h

∂y2 [1 + (∂h/∂x)2] − ∂2h
∂x∂y

∂h
∂x

∂h
∂y

[1 + (∂h/∂x)2 + (∂h/∂y)2]
3
2

.

(10)

The term ∇sγ = (dγ /dT )∇sT |z=h is the interfacial ten-
sion gradient along the interface, which represents the TC
pressure in the tangential stress balance at the interface.
The surface tension is assumed to decrease linearly with
the interfacial temperature [14], i.e., γ = γ0 − α(T − T0),
where α (>0), γ0, and T0 are the surface tension gradient, the
reference interfacial tension, and the reference temperature,
respectively.

The normal �n and tangential vectors �tj (j = 1, 2) of the
interface [23] are

�n = 1

Cn

(
∂h

∂x
,
∂h

∂x
,−1

)
and

Cn = [1 + (∂h/∂x)2 + (∂h/∂y )2]
1
2 , (11)

�t1 = 1

Ct1

(
−∂h

∂y
,
∂h

∂x
, 0

)
and Ct1 = [

(∂h/∂x)2+(∂h/∂y)2
] 1

2 ,

(12)

�t2 = 1

Ct2

[
∂h

∂x
,
∂h

∂y
,

(
∂h

∂x

)2

+
(

∂h

∂y

)2
]
, and

Ct1 =
⎧⎨
⎩(∂h/∂x)2 + (∂h/∂y )2 +

[(
∂h

∂x

)2

+
(

∂h

∂y

)2
]2

⎫⎬
⎭

1
2

.

(13)

Finally, to relate the interface height to the interfacial ve-
locity components, a kinematic boundary condition [24] is
imposed:

w = ∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
at z = h(x, y, t ). (14)

B. Dynamics of the film: The long-wave approximation

The governing equations [Eqs. (1)–(3)] and boundary con-
ditions [Eqs. (4)–(9)] are normalized using the initial film
thickness, h0, for the vertical coordinate, interface height, and
electrodes distance (Z = z/h0, H = h/h0, and D = d/h0)
and characteristic wavelength for the growth of instabilities,
L, for the lateral coordinates (X, Y = x/L, y/L). The nor-
malized velocity and time are defined, respectively, as �U =
(u/uc, v/uc, w/εuc ) and τ = (uc/L)t . Here ε = h0/L is the
slender gap ratio defined as the ratio of initial film thickness
to the lateral length scale and uc is the characteristic lateral

velocity due to the TC-induced flow. The normalized pressure
is defined as P = (p + φ)/(μuc/εh0) in which p accounts
for capillary pressure, and φ = −ρgz + φLW incorporates the
hydrostatic pressure and intermolecular interactions. Lifshitz-
van der Waals interactions, φLW = −A/(6πh3), are consid-
ered here as the film thickness is in the submicron range [25].
The effective Hamaker constant, A, is found for the three-
layer system (substrate-film-air). The normalized temperature
is defined as � = (T − TC )/�T where �T = TH − TC is the
maximum temperature difference.

In this study, because the bounding layer is considered to
be air (μ2/μ1 � 1 and ρ2/ρ1 � 1), the hydrodynamics of
the polymer film are unaffected by this overlying air layer.
Nonetheless, the two sets of governing equations (polymer
film and air) are coupled at the interface by stress balances.
The flow induced by TC tangential stresses is considered a
creeping flow since the Reynolds number, Re = ρuch0/μ, is
less than unity. Using the scaling factors and employing the
long-wave approximation (ε, ε2 � 1), the simplified govern-
ing equations are

∂U

∂X
+ ∂V

∂Y
+ ∂W

∂Z
= 0, (15)

∂2U

∂Z2
= ∂P

∂X
,

∂2V

∂Z2
= ∂P

∂Y
,

∂P

∂Z
= 0, (16)

∂2�

∂Z2
= 0. (17)

The corresponding boundary conditions, on the walls are

�U1 = 0; � = 1 at Z = 0, (18)

� = 0 at Z = D, (19)

and at the interface [Z = H (X, Y, τ )] are

�Urel = �0 and �1 = �2, (20)

thermal conduction: k1d�1/dZ − k2d�2/dZ = 0. (21)

The stress balances are

P = −Ca−1∇2H + Ca−1BoH + AH−3, (22)

∂U

∂Z
= ∂�

∂X
,

∂V

∂Z
= ∂�

∂Y
, (23)

where Ca = μuc/(ε3γ ) is the capillary number and Bo =
ρgL2/γ is the Bond number. The last term on the right-hand
side of Eq. (22) accounts for Lifshitz-van der Waals pressures
in which A is a dimensionless Hamaker constant defined as
A = A/(6π )

(μuc/εh0 ) . The term � = γ /(μuc/ε) is the dimensionless
interfacial tension and, its gradient at the interface is related
to the temperature gradient as

∇s� = −Ma∇�|Z=H , (24)

where Ma = εα�T/(μuc ) is the Marangoni number. The
temperature distribution along the interface is given by
�|Z=H = kr (D − H )/[(1 − kr )H + krD)] in which kr =
k1/k2 is the relative thermal conductivity of the lower and
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upper layers. Substituting the temperature distribution into
Eq. (24) yields

∇s� = Ma krD

[(1 − kr )H + krD]2
∇H. (25)

The characteristic lateral velocity, uc = εαkrD�T/

{μ[kr (D − 1) + 1]2} and Marangoni number, Ma =
[(1 − kr ) + krD]2/(krD), are found when the film thickness
H , interfacial slope ∇H , and TC stress ∂�/∂X = ∂U/∂Z in
Eq. (25) are on the order of unity and are set to one.

Finding the in-plane velocity components using Eqs. (15)–
(23) and then substituting into the kinematic boundary condi-
tion relation

W = ∂H

∂τ
+ U

∂H

∂X
+ V

∂H

∂Y
(26)

results in the following dimensionless equation, which de-
scribes the spatiotemporal evolution of thin liquid film sub-
jected to the transverse thermal gradient. The contribution
of gravity is neglected as it is negligible because the film
thickness is on the order of submicrons:

∂H

∂τ
+ ∇ ·

{
H 3

3
[Ca−1∇(∇2H ) + AH−2∇H ]

+ H 2

2

Ma krD

[(1 − kr )H + krD]2
∇H

}
= 0. (27)

In the AP model [26–28], an acoustic radiation pressure
acts on the interface due to the different acoustic impedances
of air and molten polymer. The radiation pressure, φAP, de-
pends on the thermal energy flux (Jq), reflectivity coefficient
(Q), and speed of sound in the polymer (up):

φAP = −2QJq

up

. (28)

The reflectivity coefficient is a material property incorporating
all three phases in the system (air, polymer melt, and the solid
bounding plates). Here the value Q = 6.2 is adopted, which
is appropriate to the case of an air-polystyrene double layer
sandwiched between silicon wafers. More details about the
calculation of Q are available in the literature [26–28]. The
direction of the energy flux Jq is from high to low tempera-
tures; the magnitude depends on the thermal conductivity of
each layer in the system. More precisely,

Jq = k1�T

(1 − kr )h + krd
. (29)

To find the spatiotemporal evolution of interface using the
AP model, the thin film equation is rederived starting from
the governing equations and boundary conditions presented
above [Eqs. (1)–(14)]. The TC tangential stress (∇�) is set
to zero. To keep the Laplace pressure in the long-wave limit
(ε � 1), Ca is set to unity, which results in the characteristic
velocity being defined as uc = γ ε3/μ. The radiation pressure
defined in Eq. (28) is normalized as �AP = φAP/(μuc/εh0).
This term is added to the pressure defined by Eq. (22).

The resulting nondimensional thin film equation for the AP
case reads

∂H

∂τ
+ ∇ ·

{
H 3

3

[
Ca−1∇(∇2H ) + AH−2∇H

+ 8π2 Ma krD

[(1 − kr )H + krD]2
∇H

]}
= 0. (30)

Interestingly, in the normalized form presented above, the AP
force is similar to the TC force shown in Eq. (25) with an extra
coefficient of 8π2. However, the AP force acts normal to the
interface whereas the TC force acts tangentially.

C. Linear stability analysis

To find the lateral scaling factors of L, a linear stability
(LS) analysis is used to predict the maximum and character-
istic wavelength of the TC instabilities. The uniform interface
height, H in Eq. (27), is superposed with a periodic pertur-
bation such that H = 1 + ξ exp [κ (X + Y )i + S(κ )τ ] + c.c.
where i = √−1 and c.c. denotes the complex conjugate. To
satisfy the linear deformation, the perturbation amplitude is
set to be small, ξ � 1. The wave number κ corresponds to the
wavelength (λ = 2πL/κ) and the growth rate [S(κ )]. After
expanding Eq. (27) for this small perturbation and neglecting
all resulting nonlinear terms, the following dispersion relation
is obtained (see the Appendix for more details):

S(κ ) = −κ2

{
κ2

Ca
− 3Ma krD

2[(1 − kr ) + krD]2

}
. (31)

Zeros of this dispersion relation S(κ0) = 0 indicate the distur-
bances, which remain unchanged over time. The film remains
stable if S(κ ) < 0 such that the disturbances are damped over
time. In the absence of any hydrostatic stabilizing force, the
TC-induced instabilities in confined nanofilms always lead to
pattern formation as there is always a wave number band, 0 <

κ < κ0 =
√

3Ca Ma krD/2[(1 − kr ) + krD]2, where S(κ ) >

0. This is in contrast with the TC instabilities in thicker
films where disturbances in the system are amplified only if
a certain criterion given by critical Ma is met [29]. The fastest
growing wave corresponding to the dominant wave number
corresponds to the positive root of ∂S/∂κ = 0. Evaluating the
derivative in question yields

λmax = 2πL

√
4[1 + kr (D − 1)]2

3Ca Ma krD
. (32)

By substituting Ca and Ma in Eq. (32), λmax can be rewritten
as

λmax = 2π [h0(1 − kr ) + kr d]

√
4γ h0

3dαkr�T
. (33)

By contrast, λmax for the AP model is given by

λmax = 2π [h0(1 − kr ) + krd]
√

γ up

Qk1(kr − 1)�T
. (34)

The above result was obtained using a similar kind of LS
analysis as outlined above [27,28]. A list of all dimensionless
parameters and their values for the cases considered in this
study is presented in Table I.
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TABLE I. List of dimensionless numbers and their values.

Dimensionless number Definition Value

Interface height (H ) h(x, y, t )/h0 0.02–8.00
Marangoni number (Ma) [(1 − kr ) + krD]2/krD 1.56–14.54
Capillary number (Ca) μuc/(ε3γ ) 1.00–52.67
Bond number (Bo) ρgL2/γ 10−8–10−6

Inverse of filling ratio (D) d/h0 1.5–4.0
Slender gap ratio (ε) h0/λmax 0.1–0.01

D. Numerical modeling

To derive insights into the dynamics, instability, and mor-
phological evolution of the nanofilm over and above what
can be realized from an LS analysis, we solve the nonlinear
thin film equation, which is a fourth-order nonlinear partial
differential equation (PDE). Applying the finite difference
(FD) discretization and using a second-order central finite
difference scheme to the spatial derivatives (∂/∂X and ∂/∂Y )
results in a system of ordinary differential equations (ODEs)
in time:

F (τ,H, ∂H/∂τ ) = 0, (35)

where F , H , and ∂H/∂τ are vectors whose lengths are related
to the dimension of the spatial grid.

In order to solve the resulting sets of ODEs, an adaptive
time step ODE solver of DASSL (in the SLATEC library
[30]) is employed [31–34]. In the DASSL algorithm, the time
derivative is replaced by a higher order (i.e., kth-order with k

ranging from one to five) backward difference formula (BDF).
DASSL accepts the fixed time steps as an input whereas
it chooses the interval time step size and order of k based
on the behavior of the solution. In this way, the scheme
is called an adaptive time step solver. In the current study,
and to improve the efficiency and reduce the computation
time, the input time intervals are also set as adaptive; these
are updated based on the last successful time interval of
DASSL. Because the thin film equation is a nonlinear PDE
that requires different time steps depending on the stage of
thin film evolution, using an adaptive time step significantly
reduces computational demands. Further details about the
numerical scheme are available in Ref. [35]. Numerical runs
are performed in a square domain having periodic boundary
conditions and a length of 9λmax or 10λmax. This domain is
large enough to enable instabilities to grow and saturate [18].
The film thickness is initialized using random perturbations
about the predetermined mean value.

The majority of laboratory experiments to date have either
used polymers like polystyrene (PS) [7,15,16,19,21,27,28]
with a smaller number of investigations employing
poly(methyl methacrylate) (PMMA) [8]. As such, we
consider in this study constants and parameters derived from
the reported properties of PS polymer [21]; see Tables I and
II. Meanwhile, the temperature difference applied across the
liquid polymer film is 46◦C, which falls within the range
(10◦C to 55◦C) considered in complementary investigations
[7,15,16,19,21,27,28].

TABLE II. Constants and parameters used in simulations.

Parameter Value

Interfacial tension (γ ) 0.045 N/m
Interfacial tension gradient (α) 88.5 × 10−5 N/m ◦C
Viscosity of liquid film (μ) 1 Pa s
Thermal conductivity of liquid film (k1) 0.13 W/m ◦C
Thermal conductivity of air (k2) 0.036 W/m ◦C
Effective Hamaker constant (A) −1.5 × 10−21 J
Mean initial film thickness (h0) 20–70 nm
Plate separation distance (d) 80–100 nm
Equilibrium distance (l0) 1 nm
Temperature difference (�T ) 46 ◦C
Speed of sound in the polymer [28] (up) 1850 m/s
Grid points (nx, ny) 121–171

III. RESULTS AND DISCUSSION

A. Uniformly heated nanofilms: TC model

As a baseline, first the spatiotemporal evolution of a uni-
formly heated nanofilm examined. The interface height profile
and corresponding 3D snapshots for a 25 nm thick film are
presented in Fig. 2. Initial random perturbations redistributed
at the early stages of pattern formation and the resulting
bicontinuous structures including sets of ridges and valleys
are shown in Fig. 2(a). Based on the TC pressure relation
[Eq. (25)], a higher TC force is applied to the thicker regions
compared to the thinner regions. Hence, peaks get pushed
upwards toward the top cold plate, which has the effect of de-
pleting fluid from adjoining valley, which are, in turn, pushed
downwards. This fluid flow from thinner to thicker regions in
a film is called negative diffusion [18]. Next, fragmentation
occurred on the ridges and separate islands form. The inward
fluid flow from the surroundings into the thicker regions
leads to the formation of raised columnar structures, called
pillars, which bridge the two confining plates [Fig. 2(b) and
Fig. 2(c)]. The so-formed pillars are randomly distributed over
the domain area, and their number increases as a function of
time.

FIG. 2. TC model, interface height profile versus time, and the
3D snapshots of the interface. Initial film thickness, h0 = 25 nm,
plate separation distance, d = 100 nm, temperature difference,
�T = 46 ◦C, and nondimensional times, τ = (a) 0.225, (b) 0.306,
and (c) 0.528.
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FIG. 3. TC mode, interface height profile versus time, and the 3D
snapshots of the interface. Initial film thickness, h0 = 55 nm, plate
separation distance, d = 100 nm, temperature difference, �T =
46 ◦C and nondimensional times, τ = (a) 0.17, (b) 0.252 and (c) 0.49.

The LS analysis showed that the characteristic wavelength
decreases in both the TC and AP models when we con-
sider thicker polymer films or, equivalently, larger values for
D−1 = h0/d. Thicker films therefore lead to the formation
of structures with smaller lateral dimensions (higher spatial
resolution), which is of interest for many practical applica-
tions like semiconductor fabrication. Hence, the initial film
thickness of film was increased from 25 nm to 65 nm while
the plate separation distance was kept constant at 100 nm.
The spatiotemporal evolution of the interface in this latter
numerical simulation is investigated in Fig. 3, and here

qualitatively different behavior is noted as compared to that
exhibited in Fig. 2. At the initial stages, the random distur-
bances form bicontinuous structures in a manner similar to
the case involving thinner films [shown in Fig. 2(a)]. However,
the film interface at the ridges reached the top cold plate early
on, which inhibits a complete fragmentation of the ridges and
gives rise to the cellular pattern exhibited in Fig. 3(c) at later
times.

A further difference between Figs. 2 and 3 is that the
coarsening mechanism in the latter case, i.e., the collision
of neighboring pillars and the Oswalt ripening happened
simultaneously during the early stages of pattern formation.
This blending of pillar collision and Oswalt ripening leads to
the formation of bicontinuous structures as shown in Fig. 3(c).
In thinner films structure coarsening proceeds through two
sequential stages. At the early stages of coarsening, neigh-
boring pillars of approximately equal size collide and merge
to form larger structures (called the collision stage). At later
times, the smaller pillars merge to bigger ones (those formed
from earlier collisions) to form more stable structures with
less surface area [36]. This stage of coarsening is similar
to the Ostwald ripening mechanism for the coalescence of
neighboring drops or the merging of smaller particles into a
larger one. Pillar merger leads to a coarse structure, which is
undesirable for the formation of well-ordered structures.

The prediction of pattern type, in particular anticipating
whether ridges or pillars will form, was already established in
the literature based on the ratio of the plate separation distance
to the initial film thickness [28]. The fill ratio threshold for
the transition from ridges (bicontinuous structure) to pillars

FIG. 4. TC model, (i–v) 3D snapshots of the interface profile. Initial film thickness, h0 = (i) 65 nm, (ii) 55 nm, (iii) 45 nm, (iv) 35 nm, and
(v) 25 nm. Ma = (i) 1.56, (ii) 2.31, (iii) 3.64, (iv) 5.73, and (v) 9.69. Plates distance, d = 100 nm, temperature difference, �T = 46 ◦C, and
nondimensional times, τ = (i) 0.49, (ii) 0.30, (iii) 0.26, (iv) 0.41, and (v) 0.53.
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FIG. 5. AP model, (i–vi) 3D snapshots of the interface profile. Initial film thickness, h0 =, (i) 65 nm, (ii) 55 nm, (iii) 45 nm, (iv) 35 nm,
(v) 25 nm, and (vi) 25 nm. Plates distance, d = 100 nm, temperature difference, �T = 46 ◦C and nondimensional times, τ = (i) 0.10, (ii)
0.10, (iii) 0.07, (iv) 0.10, and (v) 0.10.

was found to be D ≡ d/h0 = 3.66. However, as shown in
Figs. 2 and 3, pattern formation is a transient process and
shape and size of patterns changes with t . The time required
for a particular pattern to form depends on the viscosity of the
polymer melt. This transient nature of the patterning process is
not considered in the proposed threshold value [28]. Therefore
to find the transition threshold from pillar to bicontinuous
structure, a nonlinear analysis of pattern formation was per-
formed for different sets of D using both the TC and AP
models.

Three-dimensional snapshots of the interface at the qua-
sisteady stage of pattern formation using the TC model for
different filling ratios are compared in Figs. 4(i)–4(v). The
pattern morphology changes from bicontinuous structures
[Fig. 4(i)] to pillars [Fig. 4(v)] as the thickness of the film
decreases. For the initially thicker films (small D), the pillars
are tightly packed, which increases the collision frequency
and the merging of neighboring pillars. Thus, using relatively
thinner films is recommended regardless of the size of formed
structures. The 2D plot shows the variation of Ma, which
represents the relative strength of the TC force to the viscous
force for different initial film thicknesses. A linear variation
of Ma with D was observed. The characteristic wavelength
associated with the most unstable mode from the LS analysis
(λmax) increased sharply for small D then reached a maximum
at D 	 2.25. Thereafter λmax decreases as the plate separation
distance increases. Based on the λmax values predicted by
the LS analysis, either using very thick (small D) or very
thin (large D) films leads to patterns having finer features.
However, the nonlinear simulations showed that only when

starting with thinner films do the desired columnar structures
materialize. The final (blue) curve from the 2D plot of Fig. 4
shows the pillar density factor, ρpillar, defined as the number
of pillars formed in a 1 μm2 area and estimated from the
numerical simulation output at the quasisteady stage. Thus
ρpillar is a proxy for the compactness of the structures formed
as a result of the saturation of the interfacial instability. When
D is small [cases (i) and (ii)], only bicontinuous structures
formed; ρpillar cannot then be defined. Although increasing
D results in (well-defined) pillars that are more stable and
for which λmax is comparatively small, the change of ρpillar

is insignificant. In patterning, both the size and stability (less
coarsening effect) of the formed features are vital. Based on
the nonlinear simulation results and using the TC model,
systems with D > 2.5 [cases (iv) and (v)] have a greater
likelihood of producing stable and smaller features (green col-
ored area). Next, comparable sets of film thickness and plate
separation distances were used to investigate the nonlinear
AP model predictions vis-à-vis film dynamics and interface
morphology.

B. Uniformly heated nanofilms: AP model

Similar to the TC model, the AP model predicts the for-
mation of bicontinuous structures for thicker films and pillars
for smaller filling ratios [Figs. 5(i)–5(v)]. However, the LS
analysis for the AP model predicts different trends for λmax in
that λmax continuously increased with D. Although, lowering
the filling ratio results in stable hexagonally packed pillars
with uniform circular cross section, the size of these pillars
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FIG. 6. (a) 2D schematic view of patterned top plate (PTP) and patterned lower plate (PLP) setup. (b) Temperature distribution versus
interface height for flat, PTP and PLP configurations. (b) kr = 3.61, d = 100 nm, dp = lp = 20 nm.

increases. Tracking the number of pillars forming in a 1 μm2

square domain showed a decline from thicker to thinner films,
which is mainly due to a change in λmax as the number of
pillars does not changed considerably [cf. cases (iv) and (v)].

The pillars formed in thicker films [cases (i) and (ii)]
are highly unstable and merge at the early stages of pattern
formation. For thinner films [large D, i.e., cases (iv) and (v)],
however, stable pillars were formed. Case (iii) was considered
as intermediate: the pillars have oval cross section and are
highly unstable. The 3D snapshot images of Fig. 5 show that
the number of pillars did not change considerably for cases
(iii) to (v). However, the pillar density factor was nontrivially
decreased due to an increase in λmax. In the AP model, the
D spectrum has three ranges where (1) either bicontinuous
structures or pillars are unstable (red region), (2) pillars are
stable (green region), or (3) pillars are stable but are larger in
size and therefore smaller in pillar density (amber region).

Comparing the values for the pillar density in the TC model
(ρpillar � 1) and the AP model (ρpillar < 1) reveals formation
of more compact structures when TC nonlinear waves were
considered as the responsible mechanism for the growth of
instabilities in heated nanofilms. Regarding the morphology
of the interface, both AP and TC models predicted a transition
from pillar to bicontinuous structures. The threshold value for
this transition (D ≈ 2.5) should be considered in the context
of the time when system is cooled down to freeze the features.
Up to this point the TC and AP models have been evaluated
from the perspective of uniformly heated conditions. Next,
model predictions for nonuniform heated conditions using
patterned top plates were examined.

C. Nonuniformly heated nanofilms

In this study we used two methods to impose nonuniform
thermal gradients on the interface. The first method consists
of using a patterned top plate (PTP), and the second method
consists of using a patterned lower plate (PLP). The protrusion
height in the PTP configuration is dz 
= 0 and for PLP is
lp 
= 0. A 2D schematic view contrasting PTP and PLP is
shown in Fig. 6(a). The interfacial temperature versus the
interface height is compared between the uniformly heated

film and the PTP and PLP cases in Fig. 6(b). As the film is
heated from below and cooled from the top, an increase in the
film thickness leads to a lower temperature at the interface. In
PTP, addition of descending protrusions of height dp results
in a shift towards lower interfacial temperatures because the
cooling is brought in closer proximity to the film. For exactly
the same reason, addition of ascending protrusions in the
PLP scenario results in higher temperatures at the interface,
particularly in interfacial regions immediately above the pro-
truded areas. These two configurations, PTP and PLP, act
differently in terms of the temperature nonuniformity applied
to the interface.

1. Nonuniform cooling, patterned top plate (PTP)

To investigate the effect of nonuniform heating on the spa-
tiotemporal evolution of thin films, the flat top plate replaced
with the patterned plate of Fig. 6(a). The plate separation
distance, d, and the protrusion depth, dp, are 100 nm and
10 nm, respectively. The protrusion width (or width of the
ridge) is set to (i) pw = λmax and (ii) pw = 0.5λmax where
λmax is the characteristic wavelength predicted by the LS
analysis for either the TC model [Eq. (33)] or the AP model
[Eq. (34)]. Two-dimensional interface height profiles at early
times and analog 3D snapshots at later times are presented for
the TC model in Fig. 7. Based on the temperature distribution
along the interface, the interfacial tension is higher under the
protrusions due to the reduced temperature. Hence, areas with
higher interfacial tensions pull areas with lower interfacial
tension leading to interfacial deformations. The growth of
instabilities at the interface and their subsequent amplification
under the protrusions is shown in Fig. 7(a)(i). For the case
of pw = λmax, two sets of undulations formed under each
protrusion reminiscent of a period doubling-type instability.
Over time, the undulations in question got larger and bridged
the upper and lower plates. At quasisteady state [Fig. 7(b)(i)],
a pair of pillars separated by a small gap formed under each
protrusion. Lowering (i) pw = λmax to (ii) 0.5λmax resulted
in only one undulation forming under each protrusion. The
instability pattern is here better organized and has a lower
likelihood of eventual pillar merger.
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FIG. 7. Patterned top plate (PTP) and TC model, interface height profile at (a) early stages of deformation and (b) quasisteady stage of
pattern formation. Protrusion height dp = 0.1d and protrusion width pw = (i) λmax and (ii) 0.5λmax, initial film thickness, h0 = 35 nm, and
plates distance, d = 100 nm.

Similarly the PTP was examined in the AP model to
investigate the dynamics and interface evolution at early and
late times (see Fig. 8). In the case with pw = λmax, and for
small t , the interface pulled toward the top cold plate with

two spikes near the edges, which coincided with the largest
thermal gradient [Fig. 8(a)(i)]. In later stages, the initially
formed peaks merged and exhibited only one undulation under
the ridge. At the quasisteady stage, arrays of pillars formed

FIG. 8. Patterned top plate (PTP) and AP model, interface height profile at (a) early stages of deformation and (b) quasisteady stage of
pattern formation. Protrusion height dp = 0.1d and protrusion width pw = (i) λmax and (ii) 0.5λmax, initial film thickness, h0 = 35 nm, and
plates distance, d = 100 nm.
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FIG. 9. Patterned lower plate (PLP) and TC model, interface height profile at (a) early stages of deformation and (b) quasisteady stage of
pattern formation. Protrusion height lp = 0.1d , and protrusion width pw = (i) λmax and (ii) 0.5λmax, initial film thickness, h0 = 35 nm, and
plates distance, d = 100 nm.

under each ridge as shown in Fig. 8(b)(i). Lowering the
protrusion width and the center-to-center distance to 0.5λmax

[Figs. 8(a)(ii) and 8(b)(ii)], resulted in similar stages of pattern
formation as with the pw = λmax case albeit with smaller
pillars in the end.

So far, both the TC and AP models have followed similar
trends in interfacial deformation using the PTP configuration,
i.e., the interface is pulled toward the top (cold) plate under
the protruded areas. However, in the TC model using the
predicted λmax for the width of ridges resulted in two arrays
of pillars under each ridge, whereas in the AP model only

one array of pillars formed. Next, the effect of using a PLP
in introducing temperature nonuniformity in both the TC and
AP models will be investigated.

2. Nonuniform heating, patterned lower plate (PLP)

In order to find the the spatiotemporal evolution of the
polymer film using a PLP, the thin film equation was rederived
by introducing the lower plate protrusion shape function lp =
f (x, y) into the thin film equation by defining h = h − lp.
With this modification, the governing Eq. (27) for the TC
model becomes

∂H

∂τ
+ ∇·

(
(H − Lp )3

3

{
Ca−1∇[∇2(H − Lp )] + A(H − Lp )−2∇(H − Lp )

})

+∇·
(

(H − Lp )2

2

{
Ma kr [(D − H )∇Lp + (Lp − D)∇H ]

[(1 − kr )H + krD − Lp]2

})
= 0. (36)

Meanwhile, the equation corresponding to (30) for the AP model is given by

∂H

∂τ
+ ∇·

(
(H − Lp )3

3

{
Ca−1∇[∇2(H − Lp )] + A(H − Lp )−2∇(H − Lp )

})

+∇·
(

(H − Lp )3

3

{
8π2 Ma kr [(D − H )∇Lp + (Lp − D)∇H ]

[(1 − kr )H + krD − Lp]2

})
= 0, (37)

where Lp = f (x,y)
h0

is the normalized protrusion height.
Equations (36) and (37) are valid for any shape functions
of f (x, y). To be consistent with our previous analysis con-
sisting of the nonuniform cooling using a PTP, the same
steplike ridge pattern was used for the nonuniform heating

condition using a PLP. The new sets of governing equations
were solved under the same geometrical conditions and results
for the TC model using a PLP are shown in Fig. 9. This figure
confirms that the interface temperature is higher above the
protrusions leading to lower interfacial tension compared to
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FIG. 10. Patterned lower plate (PLP) and AP model, interface height profile at (a) early stages of deformation and (b) quasisteady stage
of pattern formation. Protrusion height lp = 0.1d and protrusion width pw = (i) λmax and (ii) 0.5λmax, initial film thickness, h0 = 35 nm, and
plates distance, d = 100 nm.

neighboring areas. When pw = λmax and t is small, interfacial
deformations developed adjacent to both regions of heating
and cooling [see Fig. 9(a)(i)]. Over time, the TC force became
more dominant at valleys (areas with no protrusions, lp =
0) and the first set of pillars formed there. Later, a second
set of pillars formed above the ridges. These are smaller
compared to those pillars formed initially [see Fig. 9(b)(i)].
The secondary pattern formation can be avoided by using
smaller ridges and by lowering their periodicity to 0.5λmax

[see Figs. 9(a)(ii) and 9(b)(ii)]. In contrast to the pw = λmax

case, here only one set of pillars formed between adjacent
ridges. The pillars so formed are aligned parallel to the ridges
and have similar shape and size.

The spatiotemporal evolution of the interface under
nonuniform heating conditions using a PLP and the AP model
is shown in Fig. 10. One main difference with Fig. 9 is that
the interface deformation is dominant above the ridges such
that pillars formed only at these ridges [see Figs. 10(a)(i)
and 10(b)(i)]. Lowering the ridge width from pw = λmax to
0.5λmax changed the dynamics as the initial deformations
(τ = 0.01) become distorted soon thereafter (τ = 0.05) lead-
ing to a pattern where the pillars are larger and unevenly
distributed [see Fig. 10(b)(ii)]. In this case, the introduction
of temperature nonuniformities failed to create a well-ordered
structures.

IV. CONCLUSIONS

Thermally induced interfacial instabilities and pattern for-
mation in confined thin liquid films has been investigated.
While the majority of previous efforts are limited to finding
the corresponding mechanism for the growth of instabilities

based on the initial stages of pattern formation, here we
consider the nonlinear stages by way of numerical simulation
of the relevant governing equations. Moreover, the commonly
used uniform applied thermal gradient is replaced with lat-
erally variable thermal gradient by introducing nonuniform
cooling using a patterned top plate (PTP) and nonuniform
heating using a patterned lower plate (PLP). Both linear and
nonlinear stages of film evolution are compared for the acous-
tic phonon (AP) and thermocapillary (TC) models. Through
this process, we estimate the threshold film thickness for
the transition from pillar shapes to bicontinuous structures.
Results are expressed in terms of the parameter D defined
as the ratio of the plate separation distance to the initial
(uniform) film thickness. A threshold value of D ≈ 2.5 was
obtained for both the TC and AP models. However, pattern
formation is a highly transient process suggesting that a rapid
quenching of the system to freeze structures in a particular
geometric configuration will be successful only if sufficient
time is allowed to elapse so that a quasisteady regime is
realized. The number of created pillars in a 1 μm2 domain
is used to define pillar density, ρpillar. Increasing D leads to
stable pillar formation and smaller features based on the TC
model predictions, but for the AP model larger pillars as D

increases is predicted.
In order to impose a nonuniform thermal gradient, pat-

terned plates were used either as the top bounding plate
(nonuniform cooling) or as the bottom bounding plate
(nonuniform heating). The pattern sizes were adjusted based
on the LS analysis predictions germane to each of the AP
and TC models. In case of a PTP, both the TC and AP
models showed that the deformation is dominant under the
ridges. Considering the TC model as a reasonable descriptor
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for interfacial deformations and using ridges with pw = λmax

leads to two arrays of pillars under each ridge, whereas the AP
model predicts only a single array of pillars. To achieve a well-
organized nanoscale pattern, the TC model predictions sug-
gest a ridge width of 0.5λmax, whereas the AP model suggests
that a ridge width of λmax is more appropriate. In case of using
a PLP, the mechanism of deformation is found to be different
between the TC and AP models. In the former, the primary
patterns form above the valleys, whereas in the latter they are
formed above the ridges. Adjusting the protrusion width from
λmax to 0.5λmax enhanced the patterning in the TC model by
inhibiting secondary pattern formation. However, in the AP
model it results in larger pillars that are unevenly distributed.

APPENDIX: DERIVATION FOR DISPERSION RELATION
IN LINEAR STABILITY ANALYSIS

In the linear stability analysis, the uniform interface height,
H in Eq. (27), is superposed with a periodic perturbation such
that H = 1 + ξ exp (κ (X)i + S(κ )τ ) + c.c. where i = √−1
and c.c. denotes the complex conjugate. Here we present the
derivation leading to the dispersion relation in Eq. (31).

For thermally induced instabilities, the main deriving force
leading to interface deformation is the TC (or AP) force.
Hence, the contribution of intermolecular forces vis-à-vis
instability growth and saturation is negligible, and Eq. (27)
can be written as

∂H

∂τ
+ ∇·

{
H 3

3
Ca−1∇(∇2H ) + H 2

2

Ma krD

[(1 − kr )H + krD]2
∇H

}
= 0. (A1)

Firstly spatial derivatives are expanded in the X direction (for the sake of simplicity, we here restrict attention to a purely 2D
flow). Thus it can be shown that

∂H

∂τ
+ Ca−1

3

(
3H 2 ∂H

∂X

∂3H

∂X3
+ H 3 ∂4H

∂X4

)
+ H

(
∂H

∂X

)2 Ma krD

[(1 − kr )H + krD]2

+H 2

2

Ma krD

[(1 − kr )H + krD]3

{
∂2H

∂X2
[(1 − kr )H + krD] − 2(1 − kr )

(
∂H

∂X

)2
}

= 0. (A2)

Nonlinear terms involving spatial derivatives (underlined) in Eq. (A2) are eliminated before considering a normal modes solution
for H . Next, time and spatial derivatives (which appear in orders one, two, three, and four) in Eq. (A2) and power terms (H 2 and
H 3) are substituted with the following expressions:

∂H

∂τ
= S(κ )ξE,

∂H

∂X
= iκξE,

∂2H

∂X2
= −κ2ξE,

∂3H

∂X3
= −iκ3ξE,

∂4H

∂X4
= κ̄4ξE,

H 2 = 1 + 2ξE + (ξE)2, H 3 = 1 + 3ξE + 3(ξE)2 + (ξE)3, (A3)

where E = exp [κXi + S(κ )τ ] has been introduced as a notational shorthand. After expanding all terms and neglecting further
nonlinear terms (ξ 2 and ξ 3 � 1), the following dispersion relation is obtained:

S(κ ) + κ4

Ca
− 3Ma krD

2[(1 − kr ) + krD]2
κ2 = 0. (A4)
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