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Mach number effect on the instability of a planar interface subjected to a rippled shock
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The Richtmyer-Meshkov (RM) instability of a planar interface (N2-SF6) subjected to a sinusoidal rippled
shock, as the variant of a sinusoidal interface impinged by a planar shock, is investigated through high-order
compressible multicomponent hydrodynamic simulations. The rippled shock is generated by a planar shock
penetrating through a single-mode interface (He-N2), and its propagation characteristic agrees reasonably with
Bates’ analytical solution. Evolution of the flat contact surface impacted by the rippled shock is found to be
heavily dependent on the rippled shock phase, and it can be well explained by the impulsive perturbation and
continuous perturbation regimes. Various rippled shocks with different Mach numbers ranging from 1.15 to 1.80
are considered. It is found that the influence of the shock strength on the instability growth behaves differently for
rippled shocks at different phases. In the case that the shock-interface collision happens when the rippled shock
amplitude vanishes for the first time, as the shock strength increases, the impulsive perturbation (i.e., amplitude
growth caused by the impulsive shock impact) plays an increasingly more important role in the instability growth
than the continuous perturbation (i.e., amplitude growth induced by the disturbed postshock pressure field).
In contrast, in the case that the impingement occurs when the rippled shock amplitude becomes zero for the
second time, the instability development contributed by the impulsive perturbation is a certain percentage of the
total instability growth regardless of the shock strength. The role of the impulsive perturbation in the present
nonstandard RM instability within the single-mode framework can be reasonably predicted by an empirical
formula combined with the model of Ishizaki et al. [Phys. Rev. E 53, R5592 (1996)].
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I. INTRODUCTION

The development of a corrugated interface separating two
different fluids subjected to a shock wave is often referred to
as the Richtmyer-Meshkov (RM) instability, which was first
theoretically analyzed by Richtmyer [1] and later experimen-
tally confirmed by Meshkov [2]. After the shock passage, the
interface deforms continually along with the growth of its
perturbation amplitude. As time proceeds, secondary insta-
bilities become pronounced and massive small-scale vortices
are generated along the interface, which later induce the
turbulent mixing. Over the past decades, this hydrodynamic
instability has been extensively studied through experiments
[3–6], simulations [7–9], and theoretical analyses [10–12] due
to its important role in academic research, e.g., compressible
turbulence [13] and engineering applications such as inertial
confinement fusion (ICF) [14].

In the study of the RM instability, much attention has been
devoted to the problem of a uniform shock interacting with
a perturbed interface [15,16]. However, this is not the case
for many scenarios where the incident shock is a rippled one.
For example, in ICF, the nonuniform laser irradiation and the
target surface roughness may produce considerable pertur-
bations on the generated imploding shock [14,17]. Also, in
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supernovae, the radially expanding shock is always perturbed
as it passes through the corrugated layers between different
materials [18]. As an analog of the standard RM instability (a
uniform shock accelerating a perturbed interface), the insta-
bility of a uniform interface impacted by a rippled shock has
seldom been investigated.

Ishizaki et al. [17] first performed a numerical simulation
of this instability where the rippled shock was produced by a
constantly moving rippled piston. It was found that the impul-
sive nonuniform and continuous pressure perturbations are the
main regimes leading to the instability growth. The instability
development at an initially flat interface by a rippled shock
impact was also observed in a laser experiment [19], and the
growth rate was in reasonable agreement with the simulation
result. This hydrodynamic instability has also been examined
by our recent shock-tube experiments in both planar and
cylindrical geometries [20–22], in which the rippled shock is
produced by a uniform shock diffracting over single or mul-
tiple cylinders. It was found that the interface evolution was
significantly influenced by the number, spacing, and relative
position of the cylinders, and a much smaller growth rate
compared to the standard counterpart was observed. Recently,
Zhou has specially discussed this nonstandard RM instability
in his review paper [15].

In our previous experiments, the rippled shock can be
conveniently produced by the diffraction of a uniform incident
shock around a cylinder [20–22], but the resulting wave
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patterns as well as the rippled shock characteristics are quite
complex. As a result, the interfacial evolution is continually
influenced by the complex pressure field caused by the shock-
shock interaction, and the analysis of the main physical mech-
anism of this instability becomes very difficult. As a follow-up
study, in this work, a rippled shock with a simple sinusoidal
shape impacting a flat N2-SF6 interface is studied by two-
dimensional (2D) high-resolution numerical simulations. The
rippled shock is created by a planar shock transmitting a
single-mode He-N2 interface. The simpler shock configura-
tion as well as the cleaner flow field produced here facilitates
a deeper analysis of this nonstandard RM instability. The
influences of the rippled shock phase and strength on the
instability development are specially discussed.

II. NUMERICAL METHOD AND VALIDATION

A. Numerical method and physical model

In this study, we are mainly concerned with the instability
development at early to intermediate stages when the flow is
dominated by the large-scale structures, such that the influ-
ences of the viscosity, heat transfer, and molecular mixing
can be neglected. The compressible multicomponent Euler
equations augmented by the γ -model based on the ideal gas
assumption are adopted as the control system. The shock-
and interface-capturing algorithms are employed to track the
motion of the density discontinuities such as the shock wave,
the contact surface, and the fluid interface. In a quasiconser-
vative form, the governing equations can be written as
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Here i and j denote the ith and j th directions, respectively,
and ρ, uk , and p stand for the density, velocity, and pressure,
respectively. E is the total energy, and γ the specific heat ratio.

In the 2D Cartesian coordinate, the primitive variables
ρ, uk , p, and 1/(γ − 1) are reconstructed in the charac-
teristic space by a fifth-order weighed essential nonoscil-
latory (WENO) scheme, and the numerical fluxes at the
cell boundaries are calculated by the Harten-Lax-van Leer-
Contact (HLLC) approximate Riemann Solver. A third-order
total variation diminished (TVD) Runge-Kutta scheme is used
for the temporal advancement. More details about the present
algorithm can be found in previous studies [23–25]. Although
the two materials are assumed to be immiscible, artificial
mixing between them in the vicinity of the interface would be
inevitably introduced by the numerical dissipation. It should
be mentioned that the numerical treatment considering an
artificial mixture of gases as a single gas with an averaged
adiabatic index does not essentially influence the accuracy
of the numerical solution. The present physical model and
numerical algorithm have been widely used in the simulations
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FIG. 1. Schematic of the flow configurations at (a) the initial
state, (b) the time moment when the incident shock (IS) completely
passes across the contact interface (CI), and (c) the moment when the
transmitted shock (TS) encounters the planar interface (PI). RS is the
reflected shock.

of compressible multicomponent and multiphase flows and
showed a good performance [26–29].

Figure 1 depicts the computational flow configuration,
in which a planar incident shock (IS), a sinusoidal contact
interface (CI) between He and N2, and a planar interface (PI)
separating N2 and SF6 are initially set. The IS with a Mach
number of MIS is located upstream of the CI. The sinusoidal
interface can be expressed as z = a0sin(kx + π/2), where a0

and k are, respectively, the initial amplitude and wave number.
Note that k = π/50 mm−1 and a0 = 5.0 mm are adopted for
simulations throughout this work. Due to the symmetry of
the flow, only the upper half of the physical space is chosen
as the computational domain with an area of x × z = 50 ×
500 mm2, which is discretized by 250×2500 uniform grids.
The initial postshock quantities are calculated according to the
Rankine-Hugoniot relation. The left and right boundaries are
treated as inflow and outflow, respectively. The top boundary
is solid wall, and the bottom one is set as symmetric. The
simulations are conducted at an environmental pressure of
101.325 kPa and temperature of 293.15 K. The properties of
the test gases (He, N2, and SF6) are listed in Table I.

As the simulation starts, the incident shock moves down-
stream and then passes across the contact interface, bifurcat-
ing into a rippled reflected (RS) and transmitted shock (TS),
as shown in Fig. 1(b). During the shock-interface interaction,
the sinusoidal perturbation of the CI is gradually transferred
to the TS due to the acoustic impedance mismatch across the
interface. The generated TS possesses an initial amplitude of
aS0 = (1 − WTS/WIS)a0 and a Mach number of MS , where
WIS and WTS represent the velocities of the IS and TS, re-
spectively. Since the strength of a rippled shock is nonuniform
along its front, in this work, the TS strength is defined based
on the zero-order variable as the linear analysis of Bates [30].
The time duration for the IS traversing the perturbed CI is

TABLE I. Properties of the ambient He, N2, and SF6.

Gas Density (kg/m3) Specific heat ratio γ

He 0.166 1.667
N2 1.164 1.399
SF6 6.143 1.094
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TABLE II. Parameters of the flow conditions for different Mach
number cases.

Case 1 2 3 4

MIS 1.10 1.22 1.30 1.50
MS 1.15 1.34 1.47 1.80
aS0 (mm) 3.18 3.09 3.04 2.92
WIS (ms−1) 1108.20 1229.09 1309.69 1511.18
WTS (ms−1) 402.72 469.23 514.42 629.30
uI (ms−1) 53.43 112.53 149.60 236.67

�t = 2a0/WIS. As the TS propagates forward, its amplitude
(aS) oscillates and decays gradually. Later, as the distorted TS
hits the PI, the PI is immediately accelerated to a velocity of
uI [Fig. 1(c)], and then the instability develops evidently on it.

B. Dynamics of the sinusoidal rippled shock

Before exploring the rippled shock-induced instability,
the dynamics of the rippled shock generated is first exam-
ined (remove the PI in Fig. 1). Four rippled shocks with

different Mach numbers ranging from 1.15 to 1.80 are gen-
erated by changing the incident shock strength from 1.10 to
1.50. The detailed parameters are listed in Table II, where
the variables WIS, WTS, and MS are calculated based on
the one-dimensional gas dynamics. It is seen that although
the amplitude of the CI remains invariable, there is still a
slight discrepancy in the generated rippled shock amplitude
among different cases. Considering that the deviation of shock
amplitude in each case from the averaged value is within 5%,
the influence of the initial shock amplitude on the instability
growth can be neglected in this study.

Temporal variation of the rippled shock amplitude (aS),
which is defined as half of the distance between the shock
crest and trough [Fig. 1(c)], is displayed in Fig. 2 where the
theoretical prediction of Bates [30] is given for comparison.
Generally, reasonable agreement between the simulation and
the prediction is obtained. As for the MS = 1.80 case, there
is a visible difference in the shock propagation between the
simulation and theory at the early stage. A possible reason is
that in Bates’ theory [30] the nonuniform pressure field behind
the initial rippled shock has not been taken into account.
This simplification produces only a negligible influence on
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FIG. 2. Evolution of the ratio between the generated shock amplitude and its initial value as well as dimensionless variations of the
amplitude growth rate of a rippled shock versus time under a Mach number of (a) MS = 1.15, (b) MS = 1.34, (c) MS = 1.47, and (d) MS =
1.80. The time is scaled as τ = tWTS/λ where λ is the wavelength of the perturbation. The dash-dot and dash lines denote, respectively, the
variations of the shock amplitude and growth rate predicted by Bates [30], and the open circle represents the present numerical result. The blue
and red horizontal lines indicate a zero value of aS and daS/dτ , respectively.
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the propagation of weak shocks but becomes quite influential
for relatively stronger shocks. As the rippled shock travels
a certain distance, the discrepancy diminishes gradually, and
a good agreement is obtained again. Note that the “kink”
in the MS = 1.80 case shortly after τ = 0 is independent
of the grid size and mainly caused by the compressibility
effect. For all cases, the perturbation amplitude of the rippled
shock oscillates and decays gradually, leading to a periodic
variation of the shock phase. The good agreement between the
simulation and Bates’ prediction demonstrates that the present
method of a planar shock transmitting a single-mode density
interface can produce a perfectly single-mode rippled shock.
Dimensionless variation of the amplitude growth rate versus
time is also given in Fig. 2. As can be seen, during the first
reduction of the shock amplitude from its initial value to zero
(phase 1), the corresponding amplitude growth rate drops con-
tinually from zero to nearly a negative extreme value. As the
amplitude increases from a negative to zero again (phase 3),
the growth rate reaches a positive extreme point. Nevertheless,
as a minimum (phase 2) or maximum shock amplitude (phase
4) is reached, the growth rate becomes zero. The correlation
between the shock amplitude and the growth rate would be
useful to explain the dependence of the rippled shock-induced
interfacial instability on the shock phase discussed hereinafter.
It is also found that both the local extreme values and the
oscillation frequency of the amplitude growth rate rise as
the Mach number increases, implying that a stronger rippled
shock experiences a more prominent oscillation.

III. RESULTS AND DISCUSSION

A. Influence of rippled shock phase

The instability of a planar N2-SF6 interface impacted by
a rippled shock of MS = 1.34 at four different phases is
first considered. As indicated in Fig. 2(b), phases 1 and 3
correspond to the instants when aS = 0, and phases 2 and 4 to
the moments when aS reaches, respectively, a maximum and
a minimum. By moving the location of the PI (i.e., changing
the distance between the PI and CI), four rippled shocks with
respectively phases 1–4 just before their interaction with the
PI are obtained. Time origin in this work is defined as the
moment when the sinusoidal rippled shock contacts the PI.

Figure 3 displays the density contours at τ = 10 for the
flat N2-SF6 interface subjected to a rippled shock at four
different phases. As we can see, for rippled shocks at phases
1 and 3 when the perturbation amplitude is nearly zero, the
PI distorts evidently after the shock impact, and the signs of
the perturbation amplitudes for the two cases are opposite.
Nevertheless, no visible perturbation growth can be found at
the PI for the phase-2 and -4 cases where the rippled shock
possesses a considerable initial distortion. The dynamics of
rippled shock-induced instability exhibits a great distinction
from the standard counterpart, and its physical mechanism
will be illustrated later. The perturbation amplitude and the
corresponding growth rate for the distorted interface are,
respectively, defined as

aI = 1

2
(zBP − zMP), (2)

daI

dt
= 1

2
(uzBP − uzMP). (3)
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FIG. 3. Density contour images at τ = 10 for a rippled shock at
(a) phase 1, (b) phase 2, (c) phase 3, and (d) phase 4. BP and MP are,
respectively, the boundary and middle points of the deformed planar
interface (PI). The dash and solid lines denote the initial locations of
the planar interface and contact interface (CI), respectively.

Here zBP and zMP are the z-component positions of the
boundary (BP) and middle points (MP), respectively, and uzBP

and uzMP are the corresponding z-component velocities. Tem-
poral variations of the perturbation amplitude and the growth
rate for the four cases are depicted in Fig. 4. The rippled shock
at phase 1 is found to induce the fastest instability growth at
the PI among all the cases, and the phase-3 shock causes a
relatively slower instability growth. For the phase-2 and -4
cases, no evident instability development can be found, and
thus the perturbation amplitude remains zero with time. For
all cases, the perturbation growth rate oscillates at early stages
and then approaches an asymptotic value. The asymptotic
growth rate is negative for the phase-1 case, positive for phase
3, and approximately zero for phases 2 and 4. This finding is
consistent with the interfacial evolution as shown in Fig. 3.
As we know, for the standard RM instability, no perturbation
growth appears after a planar shock strikes a flat density
interface. Nevertheless, this is not the case for the present
nonstandard counterpart where although the shock is initially
planar (phases 1 and 3), the interface suffers a considerable
instability growth after the shock impact. This indicates a
great difference in the physical regimes between the two types
of RM instabilities.

B. Influence of shock strength

Next we investigate the dependence of the instability
growth on the shock strength under a fixed shock phase. Four
rippled shocks with different Mach numbers ranging from
1.15 to 1.80 are employed, as listed in Table II. First, these rip-
pled shocks are set to be in phase 1 (aS = 0) at the time when
they meet the PI, and hence induce a considerable instability
growth. The density contours at τ = 10 for a uniform interface
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FIG. 4. Dimensionless variations of the amplitude (a) and the
amplitude growth rate (b) of the PI versus time for different shock
phase cases. The dimensionless time follows the same normalization
method as that in Fig. 2.

subjected to a rippled shock with different strengths are shown
in Fig. 5. It is seen that as the incident shock becomes stronger,
the CI and PI move faster and the N2 region suffers a greater
degree of compression. More importantly, a stronger rippled
shock is able to induce a much quicker instability growth. For
the MS = 1.80 case, some small-scale structures emerge at the
PI, which is mainly ascribed to the coupling effect between the
deformed PI and CI (close to each other this case). We have
also considered higher Mach number cases, including MS =
2.0, 2.2, and 2.5. It is found that the two interfaces are closer
to each other as the Mach number increases, and consequently,
the coupling effect between the interfaces is more evident,
producing numerous small-scale structures. Since the ampli-
tude of the small-scale structures with higher modes becomes
comparable to the amplitude of the initial long-wavelength
interface, the single-mode assumption breaks down. Hence,
the rippled shock strength considered in this work is limited
to weak to moderate range (MS � 1.80). Figure 6 shows
the temporal variations of the perturbation amplitude and
growth rate in a dimensionless form. For each shock strength,

(b)
CI

PI

(c)
CI

PI

(d)
CI

PI

(a)
CI

PI

FIG. 5. Density contour images at τ = 10 for the phase-1 rippled
shocks with different Mach numbers: (a) MS = 1.15, (b) MS = 1.34,
(c) MS = 1.47, and (d) MS = 1.80. The dash and solid lines are the
initial positions of the PI and CI, respectively.

the perturbation amplitude grows approximately linearly with
time, and no evident saturation of the linear growth is ob-
served. Also, the growth rate oscillates at the early stage and
then asymptotically approaches a constant value, which rises
greatly as the shock Mach number increases.

According to the analysis of Ishizaki et al. [17], the devel-
opment of this nonstandard RM instability is mainly attributed
to the impulsive perturbation by the rippled shock impact and
the continual pressure perturbation behind the rippled shock.
The impulsive perturbation at the contact surface is found
to be closely related to the growth rate of the rippled shock
amplitude, as described by(

daI

dt

)
t=0

= uI

WTS

(
daS

dt

)
t=0

. (4)

Assuming the pressure perturbation behind the rippled shock
is a damped oscillation, the perturbation growth contributed
by the pressure perturbation can be approximately calculated
by g(t ) = �ge−�tsin(ωt + φ), where φ is the shock phase at
t = 0, �g is the acceleration, and ω and � (� � ω) are the
frequency and acceleration damping rate, respectively. Then
a theoretical model to estimate the asymptotic growth rate is
developed, which is expressed as(

daI

dt

)
t→∞

= uI

WTS

(
daS

dt

)
t=0

−
∫ ∞

0
g(t ) dt

= uI

WTS

(
daS

dt

)
t=0

− �g

ω
cosφ. (5)

Here (daS/dt )t=0 denotes the growth rate of the shock ampli-
tude at the impacting moment, and it can be readily obtained
from the simulation result as shown in Fig. 2.

Figure 7 depicts the pressure distributions along the sym-
metry axis at different time instants (τ = 0.1, 0.2, and 0.3)
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FIG. 6. Dimensionless variations of the amplitude (a) and the
amplitude growth rate (b) of the PI versus time for a rippled shock at
phase 1 with different strengths.

for the PI subjected to a rippled shock at phases 1, 2, and 3.
After the TS-PI interaction, a second transmitted (STS) and

a reflected shock (SRS) are formed, and both present a
sinusoidal-like shape. As the distorted STS and SRS move,
respectively, downstream and upstream, the pressure profile
between them varies continually with time. At the beginning
(τ = 0.1), the pressure gradient at the PI is positive for
the phase-1 and -2 cases but negative for the phase 3. As
indicated in Fig. 2(b), (d2aS/dt2)t=0 is also positive for the
phase-1 and -2 circumstances and negative for the phase 3.
This detailed flow field information confirms the previous
theoretical analysis that (d2aS/dt2)t=0 has the same phase
with (∂p/∂z)z=zI ∼ g(t = 0) ∼ �gsinφ [17], where zI is the
z-component position of the interface. Based on this, it can
be easily deduced that (daS/dt )t=0 is always in phase with
(�g/ω)cosφ. This clearly explains the fact that the whole
perturbation growth caused by the impulsive perturbation and
oscillatory-damped pressure perturbation is heavily dependent
on the phase of the rippled shock at the time when it hits the
interface, as observed in Fig. 3.

Figure 8 shows the distributions of the pressure and pres-
sure gradient along the symmetry axis at τ = 0.1 for different
Mach number cases. As we can see, the pressure gradient
at the PI rises as the shock is intensified. Based on the
fact that (∂p/∂z)z=zI ∼ g(t = 0) ∼ �gsinφ is in phase with
the incident rippled shock, we can get (∂p/∂z)z=zI ∼ �g. It
means that the pressure perturbation acceleration �g grows as
the shock Mach number increases. As found from Fig. 2, the
Mach number increment also leads to a rise in (d2aS/dt2)t=0,
which indicates that the impulsive perturbation increases with
the Mach number as well. These findings well explain the
growth rate dependence on the shock strength shown in Fig. 5.

Then four rippled shocks of different Mach numbers at
phase 3 are considered. Temporal variations of the pertur-
bation amplitude and the growth rate for a uniform N2-SF6

interface subjected to four such rippled shocks are shown in
Fig. 9. For all cases, the instability growth follows a linear
regime but with a growth rate much smaller than the phase-1
case. It is found that as the incident shock strength is var-
ied from 1.15 to 1.47 the growth rate increases continually,
whereas when MS is increased from 1.47 to 1.80 the growth
rate even suffers a little decrease. The main reason is that
in the present simulations when the initial shock becomes

z a/ S0

p
p/

0

(
p/

p
z

(/)
0/

a
0

S
)

z a/ S0

p
p /

0

(
p/

p
z

(/)
0/

a
0

S
)

z a/ S0

p
p/

0

(
p/

p
z

(/)
0/

a
0

S
)

)c()b()a(

SRS

STS

SRS

STS

SRS

STS

PI PI
PI

PI
PI PI

FIG. 7. Pressure distributions along the symmetry axis for the PI subjected to a rippled shock of MS = 1.34 at (a) phase 1, (b) phase 2, and
(c) phase 3. The inserted figures show the pressure gradients in the vicinity of the evolving PI at τ = 0.1.
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FIG. 8. The distributions of the pressure (a) and pressure gradient
(b) along the symmetry axis in the vicinity of the evolving PI for the
different Mach number cases at τ = 0.1.

stronger, the shocked CI and PI are closer to each other,
and, consequently, the coupling effect between them starts
to act. Especially, for phase-3 cases with a relatively slower
instability growth, such a coupling effect may significantly
influence the whole instability development. Thus, the data
for the MS = 1.80 case are contaminated and cannot be used
in the following analysis. For rippled shocks at phases 2 and
4, no visible perturbation growth on the shocked interface can
be observed, which is ascribed to the zero value of the impul-
sive and continuous pressure perturbations at the impacting
moment, and the corresponding results are not shown again.

Let 1 − ε represent the ratio of the continuous pressure
perturbation to the impulsive perturbation,

1 − ε =
(

�g

ω
cosφ

)/[
uI

WTS

(
daS

dt

)
t=0

]
, (6)

where ε is a dimensionless parameter. Then Eq. (5) can be
written as (

daI

dt

)
t→∞

= ε
uI

WTS

(
daS

dt

)
t=0

. (7)

(d
a I/d

)/
a S

0

MS=1.15
MS=1.34
MS=1.47
MS=1.80

a I
/a

0
S

MS=1.15
MS=1.34
MS=1.47
MS=1.80

(a)

(b)

FIG. 9. Dimensionless variations of the normalized amplitude
(a) and growth rate (b) versus the time for a rippled shock at phase 3
with different Mach numbers.

In the work of Ishizaki et al. [17], the parameter ε was
found to be a constant (0.66) for various cases with dif-
ferent Atwood numbers and rippled shock phases under a
fixed shock strength (MS = 2.0). Here the Atwood number
is defined as A = (ρ2 − ρ1)/(ρ2 + ρ1), with ρ1 and ρ2 being
the densities of the gases on the left- and right-hand sides
of the interface, respectively. It means that the instability
development contributed by the impulsive perturbation occu-
pies a certain percentage (0.34) of the total instability growth
regardless of the Atwood number and shock phase.

With a physical intuition that this rule may not be appli-
cable for cases of different shock strengths, here we conduct
a careful study on the dependence of ε on the rippled shock
intensity. With the known quantities including the asymptotic
growth rate (Figs. 6 and 9), the variables (Table II), and the
growth rate of the rippled shock amplitude (Fig. 2), ε can
be readily calculated for each case. The variation of the ε

versus the shock Mach number is shown in Fig. 10. Note
that in addition to the four different Mach numbers of the
rippled shock considered above, another two Mach number
cases (MS = 1.25 and 1.60) are also supplemented. It is found
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MS

Num-Phase 1
Num-Phase 3
Eq.(8)
ε=0.2

FIG. 10. Variation of the parameter ε versus the shock Mach
number. The dash-dot line denotes the empirical prediction of
Eq. (8), and the gradients and deltas refer to the present numerical
results under a rippled shock at phases 1 and 3, respectively.

that for rippled shocks at phase 1, ε increases continually with
the Mach number. This indicates that as the rippled shock
becomes stronger, the impulsive perturbation plays a more
and more important role in the instability growth. In all cases
the relation of 1 − ε < 1 is satisfied, which demonstrates that
the impulsive perturbation contributes more to the instability
growth than the continuous pressure perturbation. Also, ε < 1
is required to ensure a positive value of 1 − ε. Since it has
been found that ε is not sensitive to the Atwood number [17],
we can assume ε as a power series of MS :

ε =
∞∑

k=0

AkM
−k
S . (8)

Here the coefficients Ak can be estimated by the curve
fitting based on the numerical results, and we have A0 = 2.94,
A1 = −9.55, A2 = 12.69, and A3 = −6.20. The solution of
Eq. (8) is then compared with the numerical results of phase-1
cases, and a good agreement between them is achieved for
all Mach number cases considered. As for the phase-3 shock,
surprisingly, ε remains nearly a constant independent of the
shock Mach number. It indicates that for the rippled shocks
at phase 3, the instability growth contributed by the impulsive
perturbation is a certain percentage of the total perturbation
growth regardless of the shock strength. We stress that the
present findings are applicable only for weak rippled shock
cases (MS < 1.8).

To quantify the difference between the present nonstandard
RM instability and the standard counterpart, the amplitude
growth rate obtained in this work is compared with the im-
pulsive model of Richtmyer [1]:(

daI

dt

)
Richtmyer

= ka∗uIA
∗, (9)

where A∗ denotes the postshock Atwood number, and a∗ is the
postshock interfacial perturbation amplitude. Here the initial
amplitude of the rippled shock is adopted as the interfacial

MS

(d
a I/d

)/
a

0
S

1.1 1.3 1.5 1.7
0

0.4

0.8

1.2

1.6

0

0.02

0.04

0.06

0.08

0.1
(daI/ )dt Richtmyer

(daI/ )dt t , phase 3

MS

(d
a I/d

)/
a

0
S

(daI/ )dt Richtmyer

(daI/ )dt t , phase 1

(b)

(a)

FIG. 11. Comparison of the asymptotic growth rate between
the present numerical results and the impulsive model prediction
for the phase-1 (a) and phase-3 (b) cases. The delta denotes the
asymptotic growth rate obtained in Figs. 6 and 9. The gradient
stands for the theoretical results calculated based on the impulsive
model, and the square for the ratio of the above two growth rates
δ = [(daI /dt)t→∞]/[(daI /dt )Richtmyer].

amplitude required in Eq. (9). As can be seen in Fig. 11, both
(daI /dt )t→∞ and (daI /dt )Richtmyer rise as the shock intensity
is increased. For each case, the latter is much greater than the
former, and δ = [(daI /dt )t→∞]/[(daI /dt )Richtmyer] increases
continually with the Mach number. It indicates that the Mach
number effect on the present nonstandard instability is more
significant than the standard counterpart.

IV. CONCLUSION

In this work, the development of a planar N2-SF6 inter-
face subjected to a sinusoidal rippled shock has been stud-
ied through the high-resolution numerical simulation in the
single-mode framework. The sinusoidal shock is generated
by a planar incident shock penetrating through a sinusoidal
He-N2 interface. The characteristic of the rippled shock is
carefully examined and found to agree well with the Bates’
prediction, which demonstrates a good reliability of the
present rippled shock generation method. Special attention is
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paid to the development of the uniform interface subjected to
a rippled shock at four different phases. It is found that the
rippled shocks at phases 1 and 3 with a flat front cause a con-
siderable instability growth, whereas no evident perturbation
development can be observed for the phases-2 and -4 shocks
with a distorted front. These phenomena are different from the
standard RM instability. The high sensitivity of the instability
growth to the incident shock phase can be reasonably ex-
plained by the physical mechanisms including the impulsive
nonuniform and continuous pressure perturbations.

Various rippled shocks with different Mach numbers rang-
ing from 1.15 to 1.80 are also considered to carefully study
the shock strength influence on the instability growth. It is
found that the influence of the shock strength on the instability
growth behaves differently for rippled shocks at different
phases. Specifically, for the phase-1 cases, as the rippled
shock strength increases, the impulsive perturbation plays
a more and more important role in the instability growth.
Nevertheless, for the phase-3 cases, the instability growth

contributed by the impulsive perturbation is a certain percent-
age of the total growth regardless of the shock strength. The
role of the impulsive perturbation in the total perturbation
growth can be well predicted by an empirical formula com-
bined with the model of Ishizaki et al. [17]. Comparison of
the numerical growth rate with the impulsive model prediction
suggests that the nonstandard instability considered here is
more sensitive to the incident shock strength than the standard
counterpart. The present findings are useful for better under-
standing complicated RM instabilities where both the shock
and interface possess an initial perturbation.
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