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The passive attributes of skeletal muscle “material” often have origins in nanoscale architecture and function-
ality where geometric frustrations directly influence macroscale mechanical properties. Drawing from concepts
of the actomyosin network, this study investigates a modular, architected material system that leverages spatial
constraints to generate multiple stable material topologies and to yield large adaptability of material mechanical
properties. By exploiting the shearing actions induced on an actomyosin-inspired assembly of modular material
constituents, intriguing material behaviors are cultivated, including strong metastability and energy-releasing
state transitions. Experimental, numerical, and analytical studies reveal that such passive attributes can be
tailored by geometric constraints imposed on the modular material system. The geometric parameters can also
introduce a bias to the deformations, enabling a programmable response. By invoking the spatial constraints
and oblique, shearlike motions inherent to skeletal muscle architecture, this research uncovers potential for
architected material systems that exploit locally tunable properties to achieve targeted macroscopic behaviors.
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I. INTRODUCTION AND BACKGROUND

Skeletal muscle exhibits remarkable robustness, versatility,
and adaptability. These attributes offer motivation to develop
material systems that may emulate such characteristics. Many
efforts in this spirit have sought to mimic whole-muscle
morphology and behaviors, leading to significant progress in
fields such as soft actuators [1–5], legged robotics [6–8], and
electroactive polymers and hydrogels [9–12]. On the other
hand, various advantageous characteristics of skeletal mus-
cle have origins in the nanoscale constituents that comprise
the actomyosin network [13]. The geometry, architecture,
and functionality of these networks regulate the fundamen-
tal force-generating processes, robust and passive tension
recovery, and a significant proportion of the strain energy
storage in muscle [14–16]. Myocytes, the striated cells com-
monly called muscle fibers, consist of bundles of myofibrils
that are sectioned into units called sarcomeres as shown in
Figs. 1(a)–1(c). The length-tension responses of sarcom-
eres, the basic force-generating unit of muscle, are strongly
governed by the spacing between their adjacent thin and
thick filaments [17]. Changes to this lattice spacing and
overlap between adjacent filaments influence the ability of
myosin heads to bind to sites along the actin filament, form-
ing cross bridges as depicted in Fig. 1(d) [18]. For bound
cross bridges, the geometric constraints imposed by sarcom-
ere length and lattice spacing affect the mechanics of the
cross-bridge power stroke [17,19,20], in which the myosin
head undergoes a rotation and conformational change due to
adenosine triphosphate (ATP) hydrolysis. These constraints
also influence the conformation changes that enable rapid

*Present address: Narayanan Kidambi, 2350 Hayward St., 2223 GG
Brown Building, Ann Arbor, MI 48109, USA; kidambi@umich.edu

passive tension recovery in consequence to sudden fiber
length changes [21]. Furthermore, there is a strong interac-
tion between axial contractile motions, transverse or radial
forces, and elastic energy storage in skeletal muscle cross
bridges [15].

Drawing from characteristics of the actomyosin networks
in an effort to cultivate similar mechanical properties in mate-
rial systems, the goal of this research is to explore and harness
architected materials that are inspired by skeletal muscle
architecture. This is achieved by incorporating geometries
that constrain the elastic energy storage elements in a man-
ner functionally comparable to the confinement imposed on
cross bridges within the sarcomere sections. A schematic is
presented in Figs. 1(e)–1(h) to illustrate the concept studied
here. The architected material is composed of unit modules
that each consist of four circular voids. The modules may
buckle under sufficient transverse compression and undergo
discrete state switches when subjected to shear loads. The
modules are separated by larger, rectangular voids that allow
adjacent modules to express unique deformed topologies,
reflecting the fact that within a sarcomere, adjacent cross-
bridges may exhibit different conformations despite common
lengths of the network [14,22]. In a simplified representa-
tion of the force-generating cross-bridge cycle [13,23], each
attached cross bridge exists in either a pre- or post-power
stroke conformation. Thus, sarcomere contractile units may
exhibit metastability, the coexistence of multiple combina-
tions of cross-bridge conformations for a given sarcomere
length where only one conformation is realized at a given
time [14,24,25]. Transitions between these metastable config-
urations at different energy levels represent the fundamental
active force-generating actions in skeletal muscle, and have
also been proposed as the origin for the remarkable ability of
sarcomeres to rapidly and passively recover tension in con-
sequence to sudden changes in length [14,26]. Such unique
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FIG. 1. (a) Muscle fibers are composed of bundles of rodlike myofibrils (b), which consist of actin and myosin proteins arranged in a lattice
and sectioned into units called sarcomeres (c). These filaments are connected by cross bridges (d), with power stroke mechanics influenced by
lattice geometry. (e) A section of the proposed architected modular material system subject to compression (f), resulting in local buckling of
constituent modules (g). Application of a shear load causes a state switch (h) in the void pattern.

behavior has motivated recent study to consider muscle as
a metamaterial, operating around points of instability that
promote exceptional mechanical properties [14,25,27]. Past
research on materials systems with patterned circular voids
have revealed many intriguing behaviors, including the influ-
ence of void filling fraction and geometry on features such
as negative Poisson’s ratio and local buckling under tension
and compression [28–30]. On the other hand, the material
system proposed in this research learns from the cross-bridge
conformational changes and the oblique, shearing motions
between adjacent actin myosin filaments. This gives rise to
behaviors and properties previously unexplored, including
strong metastability, and sudden transitions between locally
stable configurations in consequence to oblique, shear mo-
tions.

The existence of multiple equilibrium configurations of the
modular constituents is noted in Fig. 2. The images show
undeformed and deformed topologies for material systems
composed of (a) a 2 × 2 arrangement of modules, and (b)
a 3 × 1 arrangement. A single four-void constituent module
is highlighted for reference, and all modules are nominally
identical. Details on material fabrication and testing are pro-
vided in Sec. II. The two examples in Fig. 2 illustrate how
the architected material design incorporating sufficiently large
rectangular voids between modules can lead to deformation
patterns that are localized to each module. Adjacent modules
can hence possess qualitatively distinct topologies. Further,
the 3 × 1 system clearly shows the existence of multiple
statically stable equilibrium topologies for the same level
of transverse compression. Hence, the architected material
proposed in this research clearly gives rise to local metasta-
bility [14,22]. To gain a deep understanding of the unique
mechanics afforded by the proposed material arrangement,
comprehensive investigations are carried out on the four-void
material module that may be assembled into more complex
material systems in future studies.

FIG. 2. Architected material systems highlighting a four-void
constituent module exhibiting local buckling under compression.
(a) Two serially connected sets of two modules in parallel. (b) Three-
module system under transverse confinement, where each of the
three modules exhibits a different deformation pattern despite being
subject to the same confinement.
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The remainder of the paper is organized as follows. First,
experimental and numerical analysis methods are introduced.
Experimental results are presented for the mechanical re-
sponse of a single four-void module under transverse confine-
ment and shear motions in several metastable configurations.
Numerical analysis reveals the origins of the sudden state-
switching phenomena observed between certain metastable
configurations and the influences of transverse confinement
level. Then, the central segment of a module is modeled
using elastica theory, offering insight into the effects of in-
troducing a natural bias by varying the void geometry. The
bias introduced by this nonuniform void geometry is stud-
ied experimentally and numerically, revealing the potential
for programmable state-transition behaviors in multimodule
sections of the proposed architected material system.

II. EXPERIMENTAL AND NUMERICAL
ANALYSIS METHODS

In this research, material specimens are fabricated from
a two-component silicone rubber mixture (Smooth-On Mold
Star 15 SLOW [31]). The mixture is poured into molds
fabricated using a stereolithographic 3D printer (Form
2, Formlabs Inc., USA), which employs a black pho-
topolymer resin (GPBK02, Formlabs Inc., USA) at a
50-μm print resolution. The molds are fabricated to reflect
the complete geometry of the material, allowing the rubber
to cure in the form of either a single module as in Fig. 3(a),
or as a system of multiple modules as in Fig. 2, without
the need for joints or adhesives between adjacent modules.
The material is cured for 4 h at 23 °C before being extracted
from the molds and allowed to dry for at least 24 h prior to
testing.

A single module of the architected material system and its
key geometric parameters are presented in Figs. 3(a) and 3(b).
The four voids have alternating diameters d1 and d2. All mod-
ules have height h = 15 mm, width w = 15 mm, wall thick-
ness t = 0.88 mm, and average void diameter 1

2 (d1 + d2) =
4.12 mm. The center-to-center distance between adjacent
voids is 5 mm. These parameters are selected such that a
unit module may buckle and the voids may collapse under
a transverse compression [32]. A transverse compression δx ,
as shown in Fig. 3(c), is enforced by rigid aluminum plates
clamped to the upper and lower fixtures of an Instron 5965
universal testing machine. Initial configurations are manually
set by adjusting the module after it is placed in the test fixture.
This is necessary to fully explore the range of displacements
in which the various configurations are observed. Multiple
tests are conducted for each initial configuration at a rate
of 1 mm/min. Since only elastic deformations occur, the
material properties do not change with successive loading
cycles and the material response is repeatable.

To supplement and guide experimental efforts, and provide
a deeper understanding of state-switching behaviors in the
architected material, numerical simulations are conducted us-
ing the ABAQUS software package (Dassault Systèmes Simulia
Corp., USA). The Mold Star 15 SLOW silicone rubber mate-
rial is modeled using a neo-Hookean approximation. Young’s
modulus is obtained from a fit to experimental data for bulk
material specimens, as shown in Fig. 4. The compression

FIG. 3. (a) Photo and (b) schematic of a unit module considered
in this research, indicating important dimensions. (c) Transverse
compression δx applied by aluminum plates. The plate on the left
side is clamped to the base of a tensile testing machine, while the
plate on the right side is clamped to the upper fixture and load cell.

puck and dumbbell test specimens are dimensioned according
to published ISO standards for determination of stress-strain
properties [33,34]. The uniaxial neo-Hookean stress-strain

FIG. 4. Stress-strain relationship of Mold Star 15 Slow silicone
rubber from tension and compression tests. Linear-elastic and neo-
Hookean approximations are also presented. Inset: Bulk material
specimens used in (left) compression and (right) tension tests.
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relationship for an incompressible material [35] is

σ = 2C1

[
ε + 1 − 1

(ε + 1)2

]
, (1)

where C1 is a material constant equal to E/6 for the incom-
pressible case, and σ and ε are the engineering stress and
strain, respectively. The finite element model employs a nearly
incompressible Poisson’s ratio to avoid numerical stability
issues that would arise from a purely incompressible mate-
rial with infinite bulk modulus [36]. The two-dimensional
domain is meshed with plane-strain six-node modified hybrid
quadratic elements (element type CPE6MH). Under large
transverse compression, complete collapse of the voids may
cause the two surfaces of the material to contact each other.
This behavior is incorporated in the finite element model by
including a self-contact property, avoiding material interfer-
ence.

Numerical analyses are conducted using the implicit
ABAQUS/STANDARD solver. The leftmost edge of the mod-
ule is fixed in space while the rightmost edge is vertically
displaced as shown in Fig. 3(c). Several combinations of
transverse compression and vertical displacement paths are
employed to reach the various configurations of a unit module.
A small damping factor and slow displacement rates help
enforce quasistatic conditions while capturing sudden state
transitions. The force responses of interest are obtained by a
summation of the vertical reaction forces (RF2) of the nodes at
the boundaries of the domain, while strain energy is extracted
from the ALLSE variable.

III. EXPERIMENTAL RESULTS

As illustrated by the image shown in Fig. 2, each module
may exhibit one of many possible configurations for a given
transverse confinement. Thus, to characterize these confor-
mations in detail, cyclic loading is applied from the zero-
displacement position under a variety of initial conditions.
Figure 5 presents measurements of vertical reaction force, Fy ,
for a module with d1 = d2 = 4.12 mm under cyclic loading
up to vertical displacements of ±6 mm. Initial and final points
are indicated by the hollow and filled circles, respectively,
while arrows show the loading directions. In Fig. 5(a), the

initial, final, and intermediate deformed shapes of the module
are characterized by the voids that point downward, resulting
in a downward translation of the central vertical segment
of the module with respect to the left and right edges. In
Fig. 5(b), the deformations are characterized by a symmetric
configuration in which the voids are pointed in the upward
direction. There is a large region of negative stiffness or nega-
tive slope around the zero-displacement position. Two positive
stiffness regions are noted near the upper and lower limits of
vertical displacement considered in these experiments. Due
to symmetry of the module, mechanical responses of both
configurations are similar.

When the initial configuration is characterized by voids
that alternate between horizontally and vertically dominant
shapes, half-cycle loading and unloading tests generate the
responses presented in Figs. 6(a)–6(d). Half cycles are con-
sidered here since these response curves include a transition
to the configurations shown in Fig. 5, and hence completion
of the full cycle would simply replicate a portion of the
prior results. In Figs. 6(a) and 6(b) the initial states are
prescribed such that the upper left void has a primarily vertical
alignment. On the other hand, Figs. 6(c) and 6(d) present
results from tests where the initial state is characterized a
horizontal alignment of the upper left void. To probe the full
extent of these configurations, loading cycles are initiated in
both directions from the initial displacement. The segments
of these tests highlighted by thick dotted and dash-dotted
curves represent the portions in which the module retains the
starting configuration. These segments are later aggregated (in
Figs. 7 and 12) to show comprehensive force response results
under all observed configurations. Portions of the responses
indicated by the thin black curves thus correspond to segments
where the configurations are the same as in Fig. 5, and are
excluded from aggregated results. Rapid state transitions from
the initial configuration are indicated by vertical segments of
the force response.

The final configurations of the half-cycle experiments
presented in Figs. 6(a)–6(d) all have voids oriented either
downward or upward. To understand how load-displacement
responses may evolve following a state transition, two exam-
ples are presented. Figure 6(e) presents one and a half cycles
with the same initial configuration and displacement direction

FIG. 5. Force displacement results from a full loading cycle when the module has an initial deformed configuration characterized by (a)
voids pointed downward and (b) voids pointed upward.
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FIG. 6. Responses from compression and extension tests where the initial configuration is characterized by (a), (b) vertical and (c), (d)
horizontal deformations of the upper left void. The thick curve segments represent the portions in which the module retains the starting
configuration, while the thin segments denote portions following a transition to one of the states shown in Fig. 5. (e) A half cycle with the
same starting conditions as in (c) followed immediately by a full cycle. This indicates that following a transition to one of the states in Fig. 5,
subsequent loading cycles remain in that configuration. (f) A half cycle repeated from the end condition of (d).

as depicted in Fig. 6(c). Following a transition to the configu-
ration characterized by voids that are pointed downward, the
subsequent full cycle follows the trajectory of the complete
cycle shown in Fig. 5(a). On the other hand, Fig. 6(f) presents
a half cycle initiated from the end condition of the response
shown in Fig. 6(d), and follows a portion of the trajectory
depicted in Fig. 5(b) for the configuration with voids pointed
upward.

IV. INFLUENCE OF TRANSVERSE CONFINEMENT
ON MATERIAL RESPONSE

A. Aggregated experimental results

In skeletal muscle, interfilament lattice spacing affects the
forces and energy storage of myofilaments and cross bridges.
Similarly, the geometric confinements imposed by transverse
compression in the architected material studied here have
a strong influence on its mechanical response. Aggregated
measurements of vertical reaction force, Fy , for a module
with void diameters d1 = d2 = 4.12 mm are presented in
Figs. 7(a)–7(d) for four different levels of transverse compres-
sion δx/w. In order to capture the full extent of the observed
topologies, responses from several loading cycles with various
starting configurations are combined in each plot.

Reaction force magnitudes are greater as δx is increased,
which is intuitive based on larger local stresses associated with
greater transverse compressions. Further, increased transverse
compression results in larger hysteresis. The hysteresis is
likely due to the onset of self-contact and friction as the
voids collapse when subjected to the increased confinement,
as suggested by the figure insets. The four curves (solid,
dashed, dotted, and dash-dotted) denote different deformed

shapes, corresponding to the segments of the same line styles
shown in Figs. 5 and 6. The shaded regions around the zero-
displacement positions highlight the range of displacements
for which all four configurations are observed. This region is
termed the highly metastable range, and the polygon labels
in Fig. 7(c) correspond to the distinct metastable states shown
Figs. 7(e) and 7(f) for δx/w = 0.13. Configurations are classi-
fied in two types according to the nature of the deformations.
Aligned topologies are shown by solid and dashed curves,
and denote deformations of the voids that are all aligned in
the same direction. Polarized topologies, indicated by dotted
and dash-dotted curves, are characterized by a rotation of
the central segment, causing void deformations to alternate
between horizontally and vertically dominant shapes. The
highly metastable range is absent from the lowest level of
transverse compression δx/w = 0.10, shown in Fig. 7(a),
since no polarized topologies are observed.

The highly metastable ranges provide an opportunity to
dramatically adapt stiffness and reaction force by switching
between topologies while boundary conditions remain un-
changed. Reaction force responses of the aligned configura-
tions are characteristic of a bistable element, with a locally
negative slope (i.e., negative stiffness) for a region surround-
ing vertical displacement y = 0, and positive slope or stiffness
outside this region. On the other hand, the polarized states
exhibit near-zero stiffness in the highly metastable range for
δx/w = 0.13 and greater stiffness as transverse compression
is increased. The shaded metastable regions in Figs. 7(a)–7(c)
are bounded by vertical dotted lines marked with arrows indi-
cating observed polarized-to-aligned state transitions, which
cross the horizontal axis and result in sudden changes to stiff-
ness and reaction force magnitude and direction (see Video S1
in the Supplemental Material [37]).
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FIG. 7. (a)–(d) Experimentally measured vertical reaction force-displacement responses for four levels of transverse compression δx/w for
a module with d1 = d2 = 4.12 mm. Thin vertical dotted lines marked with arrows at the boundaries of the shaded strongly metastable range
indicate discrete state transitions. Line styles correspond to the aligned and polarized topologies presented in (e), (f). The polarized topologies
are not observed for the lowest level of transverse compression.

B. Numerical analysis results

Finite element analyses establish a deeper understanding
of these state-switching behaviors. In a procedure similar to
the one pursued for the experimental investigations, cyclic
simulations with slowly varying boundary conditions are
undertaken from various starting positions. The aggregated
results of reaction force are presented in Figs. 8(a)–8(d)
showing trends that are comparable with the experimental
results in Fig. 7. A minimum transverse compression level is
required before the shaded highly metastable range appears,
and increased compression levels lead to larger reaction force
magnitudes. The points highlighted in Figs. 8(c) and 8(i) cor-
respond to the aligned and polarized topologies in Figs. 8(e)
and 8(f), which are equivalent to the experimental topologies
presented in Figs. 7(e)and 7(f). Crucially, finite element sim-
ulations facilitate an examination of system energies, which
is not possible directly from the experimental force response
results in the presence of sudden, dissipative state transitions
[38]. Figures 8(g)–8(j) present strain energies plotted on the
same scale, revealing that strain energy levels increase with
transverse compression. Such a relationship between trans-
verse confinement and strain energy level may be anticipated
since greater transverse compressions must be accommodated
by larger deformations and increased local stresses. For a
transverse compression of δx/w = 0.21, the maximum prin-
cipal stresses in the aligned topologies depicted in Fig. 8(e)
are 2.6 times greater than for δx/w = 0.10. Further, numerical
results reveal that the polarized configurations are at a higher
energy level than the aligned topologies, and that polarized-
to-aligned transitions are enabled by rapid releases of strain
energy. The quantity of energy released in consequence to
these transitions also increases with transverse compression.

Both experimental and numerical investigations illustrate
that as transverse confinements and vertical displacements
of a material module are changed, there is variation in the
number of available metastable configurations. This behavior

shares some similarities with the recruitment of cross bridges
in activated muscle. For sarcomeres extended far beyond the
natural length, there is reduced overlap between adjacent actin
and myosin filaments, which reduces the likelihood of cross-
bridge formation [18] and hence the number of metastable
configurations. The reduction in the number of cross bridges
available for recruitment also compromises the maximum
possible active forces that sarcomeres can generate. For sar-
comere lengths much less than the natural elongation, thin
filaments may overlap, and the radial distance between the
thick filament and thin filament increases [13,18]. This can
similarly compromise cross-bridge formation.

V. INFLUENCE OF MODULE GEOMETRY
ON MATERIAL RESPONSE

A. Analytical approximation using Euler’s elastica

Finite element numerical analysis demonstrates good
agreement with experimental results and offers deeper insight
into the strains and energies of the material module under
various conditions. However, this approach is computationally
expensive and requires careful tuning of initial conditions to
capture the various configurations. To overcome these obsta-
cles and shed light on the module mechanics, an analytical
model is developed. This model is then employed to facilitate
study on the influence of module geometry on the fundamental
mechanical response.

Examination of the central horizontal member of a sin-
gle module under transverse confinement, as shown in
Fig. 9(a), suggests that the deformation of this member may
be approximated by large-scale deformations of a flexible
beam clamped at both ends. Hence, elastic curve solutions
are developed for the parameters and boundary conditions
described in Fig. 9(b). A flexible beam with length L, Young’s
modulus E, and second moment of inertia I , is clamped
at both ends at an angle β with respect to the horizontal.
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FIG. 8. Numerical results of a module with uniform void geometry subject to oblique displacements under four different levels of transverse
compression. (a)–(d) Trends in reaction force responses show reasonable agreement with the experimental results shown in Figs. 7(a)–7(d).
(g)–(j) Strain energy curves reveal the large strain energies stored in the polarized states within the shaded highly metastable regions. (e), (f)
Images showing aligned and polarized topologies as predicted by the finite element model, with line styles corresponding to the curves in
(a)–(d), (g)–(j).

The two clamped ends are separated by a horizontal distance
of L-δx and a vertical distance of ye, respectively. Here,
the method developed by Shoup and McLarnan [39,40] is
adopted. Further details are presented in the Appendix. The
five equations that result from this formulation are solved us-
ing the built-in MATLAB function FSOLVE to yield solutions for
the five unknowns. Since multiple solutions are possible and
FSOLVE employs iterative methods, suitable initial estimates
must be provided. These initial guesses are selected based on
the desired number of inflection points and concavities at the
clamped ends [40] corresponding to the aligned and polarized
topologies presented in Fig. 9(a).

Nondimensionalized vertical reaction force and strain
energy plots of the elastica model are presented in
Figs. 10(a)–10(c) and 10(d)–10(f), respectively, showing solu-
tions with different numbers of inflection points. The assump-
tion of inextensibility in the elastica model and the absence of
intersecting vertical members leads to an overprediction of the
range in which polarized (three-inflection) states are observed.
Nevertheless, key features are captured. Force responses show
a clear negative stiffness region for the two-inflection solu-
tions that represent the aligned topologies. Further, elastic
curve solutions with three inflection points, which are an
analog to the polarized states of the module, are at a higher
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FIG. 9. (a) Module highlighting deformations of central hor-
izontal member in polarized and aligned deformed topologies.
(b) Schematic of a flexible beam with boundaries clamped at an
angle β.

strain energy level than the two-inflection solutions. A bias is
introduced to the model by prescribing a nonzero clamp angle
β at both ends, which predisposes the beam toward certain
elastic curve solutions. The influence of this bias is noted,
and the difference between the strain energies of the three-
inflection solutions grows as the clamp angle is increased.
The elastica approximation may thus be developed as part

FIG. 11. Illustration of a module with nonuniform void diame-
ters and approximation of this geometry with nonzero clamp angle β

of the flexible beam.

of a design tool for the development of architected material
systems composed of large numbers of modules with varying
geometry.

B. Introduction of bias through variation of void diameters

The elastica approximation of Fig. 10 reveals the effect of
introducing a bias by varying the boundary clamp angles. This
may be reflected in the architected material by considering
elements with nonuniform void geometry, as depicted in
Fig. 11. Void diameters d1 and d2 are varied, while the wall
thickness t separating the voids remains fixed at t = 0.88 mm.
To understand the influence of void geometry on material
response and to verify the predictions offered by the elastica
approximation, thorough experimental and numerical studies
are conducted.

Figures 12(a)–12(c) present vertical reaction force re-
sponses obtained from experiments on modules with (a)
d1 = d2, (b) d1 = 0.94d2, and (c) d1 = 0.89d2. Corresponding

FIG. 10. Nondimensionalized (a)–(c) reaction force and (d)–(f) strain energy for the clamped elastica, with bias reflected by introducing a
nonzero clamp angle β. Numerical results and the elastica model show that the polarized or three-inflection states are at higher strain energy
levels than the aligned or two-inflection states.
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FIG. 12. Force and energy responses of modules with nonuniform void diameters. (a)–(c) Experimental results showing vertical reaction
force-displacement responses and (d)–(f) numerical results showing strain energies as void diameters d1 and d2 are varied, demonstrating a
bias toward one of the polarized states as the difference between d1 and d2 increases.

strain energies calculated from finite element analyses are
shown in Figs. 12(d)–12(f). As the difference between diame-
ters d1 and d2 grows, polarized states marked by dotted curves
are observed for a larger range of vertical displacements, and
are generally at a lower strain energy than those marked by
dash-dotted curves. The polarized states are biased toward
topologies characterized by vertically dominated deformed
shapes of the smaller voids, just as the three-inflection elastica
curves are biased in presence of a nonzero clamp angle.
This asymmetry also influences the location and extent of
the shaded highly metastable range. As the level of bias is
increased, these metastable regions move toward more posi-
tive vertical displacements. As a result, the locations of the
sudden polarized-to-aligned state transitions are modulated.
This suggests an opportunity to tune the response of these
modular constituents by strategic selection of void geometries.

The arrangement of several modules with varying void ge-
ometry provides a means to program the mechanical response
by prescribing the order in which these transitions will occur.
The fabrication of specimens composed of multiple modules
follows the procedure described in Sec. II, with molds fabri-
cated using a 3D printer to reflect the complete geometry of
the specimen. Hence, larger, multimodule specimens such as
those presented in Figs. 2 and 13 cure as a uniform section
of the Mold Star 15 silicone rubber. This avoids the need
to employ fasteners or adhesives to join together individual
modules. Large, rectangular voids separating adjacent mod-
ules allow each to deform independently. Hence, the mechan-
ical response of a parallel arrangement of modules can be
described by the superposition of single-module responses.
Since one module exhibits up to four qualitatively distinct
topologies, a parallel arrangement of n modules will have
4n possible configurations. As an example, Fig. 13(a) depicts
the 16 metastable configurations of a two-module specimen.

The results of Fig. 13(b) illustrate how a system composed
of three modules with different void geometries can yield
programmable behavior under transverse compression. The
uppermost module has diameters d1 = d2, the central module
has d1 = 0.9d2, and the lower module has d1 = 0.8d2. All
three are initially in the polarized configuration characterized
by a vertical alignment of the upper left void. However, due
to the varying bias introduced by the void geometry, and
according to the trends described in Fig. 12, the polarized

FIG. 13. Multimodule specimens. (a) The 16 possible metastable
configurations for a material section composed of two modules.
(b) Programmable response in an arrangement of modules with
different void geometries. The upper module has d1 = d2, the central
module has d1 = 0.9d2, and the lower module has d1 = 0.8d2. If the
initial configuration is such that all three modules are the polarized
state characterized by a vertical shape of the upper left void, pre-
scribing shear motions will result in different thresholds for which
sudden polarized-to-aligned transitions occur. These transitions are
indicated by vertical jumps in reaction force. Results from three trials
are presented, indicating repeatability.
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states suddenly transition to aligned topologies at three dif-
ferent levels of shear displacement. First, the lower module,
which has the greatest bias or asymmetry, undergoes the state
switch. This is followed by the central module, then by the
symmetric module at the top of the material section. Results
from three experiments are presented, indicating repeatability
of the observed phenomena. Images show the combinations of
configurations that are observed in each shaded region.

Consideration of a section of the proposed architected ma-
terial composed of several modules in parallel would greatly
enhance the programmable behavior and force or stiffness
adaptivity, since their combined response would arise from
a superposition of the individual module responses [22]. The
availability of multiple coexistent metastable configurations,
and the programmable state transitions between them, may
be useful in applications that call for robust shape change and
properties adaptivity including soft robots and actuators. By
embedding the intelligence of the system within its structure
and geometry, the need for complex feedback controls is re-
duced [11,41]. Further investigation of ways in which discrete
configuration changes can be used to generate programmable
movements and motions of soft material systems could foster
the development of adaptable soft robotic systems. In order to
actively generate these configuration changes, several actua-
tion methods may be explored, including pneumatic or fluidic
methods [42,43] or incorporation of ferromagnetic elements
that may cause targeted portions of the material system to
react to changes in externally applied magnetic fields [44].

VI. CONCLUSIONS

Drawing from the architecture of skeletal muscle con-
stituents, this research investigates a unique architected ma-
terial offering intriguing behaviors not revealed by previous
work. Geometrically constrained local conformation changes
in sarcomeres and cross bridges, which are the origin for
macroscopic force generation and length change in muscle,
serve as motivation to investigate the mechanical response
of constrained modular material systems. Multiple metastable
configurations are uncovered for prescribed boundary condi-
tions, demonstrating means to drastically adapt mechanical
properties and stored strain energy in the material system.
Oblique, shearlike loads, representative of the sliding mo-
tions between adjacent actin and myosin filaments during
sarcomere length change, give rise to energy-releasing state
transitions that cause dramatic changes in reaction force
and stiffness. Comprehensive experimental, numerical, and
analytical studies are undertaken, revealing the influence of
transverse confinements on the material response. A model
of module deformations is developed using Euler’s elastica,
allowing for valuable insight to be obtained from a sim-
plified analog of the complex architected material behavior.
Asymmetry is introduced by varying the boundary condi-
tions in the elastica model, which corresponds to varying
the void diameters in the material system. This causes a
bias toward certain configurations and influences the range
in which the metastable configurations may be observed,
allowing for a programmable response of a system composed
of multiple modular constituents. By learning from the micro-
and nanoscale morphology of skeletal muscle, this research

introduces a material architecture with the potential to achieve
advanced mechanical properties and functionalities in systems
that call for greatly enhanced versatility and adaptability.
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APPENDIX

This section presents a solution to the elastica curves ap-
proximating the deformation of the central horizontal member
of a single module, and an expression for the bending strain
energy stored in the beam. The method developed by Shoup
and McLarnan [40] is adopted here.

The curvature of an Euler-Bernoulli beam at any arbitrary
point along the beam is described by [40,45]

EI
dθ

ds
= M (s), (A1)

where E is the Young’s modulus, I is the area moment of
inertia, and M (s) is the moment required for static equilibrium
at [x(s), y(s)]. Equating moments about this arbitrary point
and differentiating with respect to s yields

EI
dθ

ds
= M1 − Fxey + Fyex, (A2)

EI
d2θ

ds2
= −Fxe

dy

ds
+ Fye

dx

ds
. (A3)

Noting that dy

ds
= sin(θ ) and dx

ds
= cos(θ ), the overall

length of the elastica and the geometry of the boundary points
can be expressed as

∫ S∗

0
ds = L, (A4a)

∫ S∗

0
cos(θ )ds = L − δx, (A4b)

∫ S∗

0
sin(θ )ds = ye. (A4c)

In order to make use of these conditions, Eq. (A3) is first
rewritten and integrated with respect to θ .

∫
EI

d2θ

ds2
dθ = −Fxe

∫
sin(θ )dθ + Fye

∫
cos(θ )dθ,

(A5)

1

2
E

(
dθ

ds

)2

= Fxe cos(θ ) + Fye sin(θ ) + Z, (A6)

where Z is a constant of integration. Rearranging gives

ds =
{

EI

2[Fxe cos(θ ) + Fye sin(θ ) + Z]

}1/2

dθ. (A7)

Equation (A7) can be substituted into Eq. (A4); however,
the expressions cannot be integrated across points of inflection
( dθ

ds
= 0) [46]. This is addressed by introducing new parame-

ters that allow Eqs. (A4a)–(A4c) to be expressed using elliptic
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integrals [40,47].

P cos(α) = 2Fxe

EI
, (A8a)

P sin(α) = 2Fye

EI
, (A8b)

C = 2Z

EI
, (A8c)

which can be combined with basic trigonometric identities
giving

ds =
[

1

P cos(α) cos(θ ) + P sin(α) sin(θ ) + C

]1/2

dθ,

(A8d)

ds =
[

1

P (α − θ ) + C

]1/2

dθ. (A8e)

Further, a change in the variable of integration is facilitated
by the following transformations:

2k2 = C

P
+ 1, (A9a)

1 − 2k2sin2(φ) = cos(α − θ ). (A9b)

Differentiating and rearranging (A9b) by using trigonomet-
ric identities yields

dθ = 2k cos(φ)[1 − k2sin2(φ)]−1/2dφ, (A10a)

sin(θ ) = sin(α)[1 − 2k2sin2(φ)]

+ cos(α)[2k sin(φ)][1 − k2sin2(φ)]1/2, (A10b)

cos(θ ) = cos(α)[1 − 2k2sin2(φ)]

− sin(α)[2k sin(φ)][1 − k2sin2(φ)]1/2. (A10c)

To allow integration using the new variables introduced in
Eq. (A9), the following elliptic integrals are employed [46]:

Fe(φ, k) =
∫ φ

0
[1 − k2sin2(φ)]

−1/2
dφ, (A11a)

Ee(φ, k) =
∫ φ

0
[1 − k2sin2(φ)]

1/2
dφ. (A11b)

Fe(φ, k) and Ee(φ, k) are the incomplete elliptic integrals
of the first and second kind, respectively. These elliptic inte-
grals are combined with Eqs. (A6) and (A10) to rewrite (A7).

L =
(

2

P

)1/2

[Fe(φ2, k) − Fe(φ1, k)], (A12a)

L − δx =
(

2

P

)1/2

{cos(α)[−Fe(φ2, k) + Fe(φ1, k)

+ 2Ee(φ2, k) − 2Ee(φ1, k)] + 2k sin(α)

× [cos(φ2) − cos(φ1)]}, (A12b)

ye =
(

2

P

)1/2

{sin(α)[−Fe(φ2, k) + Fe(φ1, k)

+ 2Ee(φ2, k) − 2Ee(φ1, k)] + 2k cos(α)

× [− cos(φ2) + cos(φ1)]}. (A12c)

In Eqs. (A12a)–(A12c), φ1 and φ2 are amplitudes cor-
responding to the left and right ends of the flexible beam,

respectively. Since θ (s = 0) = β = θ (s = L) is prescribed at
the ends φ1 and φ2 may be found by solving (A10b) at both
ends:

sin(β ) = sin(α)[1 − 2k2sin2(φ1)]

+ cos(α)[2k sin(φ1)][1 − k2sin2(φ1)]1/2, (A12d)

sin(β ) = sin(α)[1 − 2k2sin2(φ2)]

+ cos(α)[2k sin(φ2)][1 − k2sin2(φ2)]1/2. (A12e)

Equations (A12a)–(A12e) are solved using the built-in
MATLAB function FSOLVE to yield solutions for φ1, φ2, k, P ,
and α. Since FSOLVE employs iterative solvers, suitable initial
estimates must be provided. Noting that points of inflection
occur for φ = nπ + π

2 for n ∈ Z, appropriate initial guesses
for φ1 and φ2 are employed to obtain elastica curves with
the desired number of inflection points along the beam and
concavities at the clamped ends [40], corresponding to the
aligned and polarized topologies. Symmetry is used to solve
for opposite concavities and boundary conditions.

Following the same approach as above, appropriate
changes of variable and manipulations can be applied to the
expression for bending strain energy. This allows the energy
to be computed directly from the solutions to (A12a)–(A12e).
First, the bending strain energy in an infinitesimal segment is
integrated over the beam length [45]:

U =
∫ S∗

0

EI

2

(
dθ

ds

)2

ds. (A13)

Using (A6)–(A8) to change the variable of integration, this
can be rewritten as

U =
∫ (

EI

2
[Fxe cos(θ ) + Fye sin(θ ) + Z]

)1/2

dθ, (A14)

U = EI

2

∫
[P cos(α − θ ) + C]1/2dθ. (A15)

Then, applying (A9) and (A10),

U = EI

2

∫
(P {(2k2 − 1) + [1 − 2k2sin2(φ)]})

1/2
dθ,

(A16)

U = EI

2

∫
(P [2k2(1 − sin2(φ))])1/2 2k cos(φ)√

1 − k2sin2(φ)
dφ,

(A17)

U = EI
√

2P

∫
k2[1 − sin2(φ)]√

1 − k2sin2(φ)
dφ, (A18)

U = EI
√

2P

∫
k2 − 1 + 1 − k2sin2(φ)√

1 − k2sin2(φ)
dφ, (A19)

U = EI
√

2P

{
(k2 − 1)

∫
[1 − k2sin2(φ)]

−1/2
dφ

+
∫

[1 − k2sin2(φ)]
1/2

dφ

}
. (A20)
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This can then be written using the elliptic integrals in (A11) as a finite integral from φ1 to φ2 as

U = EI
√

2P {(k2 − 1)[Fe(φ2, k) − Fe(φ1, k)] + [Ee(φ2, k) − Ee(φ1, k)]}. (A21)

This can be computed directly after solving for P, k, φ1, φ2 in (A12).
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