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Recently there have been several considerations by different authors of viscosity and the Green-Kubo stress
correlation function from the microscopic perspective. In most of these and earlier works the atomic level stress
is the minimal element of stress. It is also possible to consider, for pairwise interaction potentials, as the minimal
elements of stress, the stress tensors associated with the pairs of interacting particles. From this perspective, the
atomic level stress is not the minimal stress element, but a sum of all pair stress elements in which involved
a selected particle. In this paper, we consider the Green-Kubo stress correlation function from a microscopic
perspective using the stress tensors of interacting pairs as the basic stress elements. The obtained results show
the presence of a long-range bond-orientational order in the studied model liquid and naturally elucidate the
connection of the bond-orientational order with viscosity. It turns out that the long-range bond-orientational
order is more clearly expressed in the pairs’ stress correlation function than in the atomic-stress correlation
function. On the other hand, previously observed stress waves are much better expressed in the atomic-stress
correlation functions. We also address the close connection of our approach with the previous bond-orientational
order considerations. Finally, we consider the probability distributions for the bond-stress and atomic-stress
correlation products at selected distances. The character of the obtained probability distributions raises questions
about the meaning of the average correlation functions at large distances.
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I. INTRODUCTION

It is generally believed that understanding the behavior of
supercooled liquids, the phenomenon of the glass transition,
and the behavior of amorphous solids requires an understand-
ing of the structure and dynamics of these materials at the
atomic scale [1–8].

One of the directions, in discussing the liquids and amor-
phous materials from the microscopic perspective, concerns
the considerations of stresses in these materials at the atomic
scale. Since the beginning of computer age, the stress states
of model supercooled liquids and amorphous solids have been
addressed at the atomic scale by many researchers [8–41].

The considerations of the stress fields from the micro-
scopic perspective often utilize essentially the concept of
the atomic level stress [8–41]. This approach, besides ad-
dressing the stress states of individual particles, also allows
addressing the long-range stress correlations. Considerations
of the correlations between the microscopic stress fields are
important because they lead to a better understanding of the
elastic properties of amorphous materials and also because
these correlations are related to viscosity via the Green-Kubo
expression [1,42–44].

Another widely used approach to address struc-
tural/geometrical correlations in liquids and glasses is based
on the considerations of the bond-orientational order (BOO)
parameters [45–48]. In the introduction of this approach
[45,46], as in many of its later implementations, it was
assumed that there is “a bond” between a pair of particles if
these two particles can be considered as the nearest neighbors.

In the original papers [45,46], the BOO parameters have been
associated with three different groups of bonds. In other
words, it is possible to say that three different cases have
been considered. In one case, the BOO parameters have been
associated with individual bonds. In another case, the BOO
parameters have been associated with a chosen particle and all
its nearest neighbors. In the third case, the BOO parameters
have been associated with all bonds in the sample in order to
address the global “magnetization” of the BOO.

In our view, most often the BOO approach is used to
demonstrate the development of some local BOO in liquids
on supercooling through considerations of particles and their
nearest-neighbor environments [45–65]. For this, the BOO
parameters associated with the spherical harmonics of the
order l = 4, 6, 8, 10 are routinely considered. These choices
of l are made because they allow distinguishing between the
nearest-neighbor cluster geometries in the SC, FCC, HCP, and
BCC crystal lattices and also to distinguish the icosahedral
clusters from the clusters associated with the mentioned lat-
tices.

On the other hand, the nearest-neighbor BOO parameters
associated with l = 2 spherical harmonics are closely related
to the atomic level stresses, as evident from the considerations
in Refs. [30,45,46,49]. We will also discuss this connection in
this paper.

It is somewhat surprising, but while in the literature
there are many discussions of the local and medium range
BOO [45–65] there appear to be only several publications
[30,45,46,49,58] in which the long-range correlation func-
tions (CFs), defined through the BOO parameters, have been
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explicitly considered as a function of distance. The reason
for this situation might be related to the expectation that for
the developing icosahedral ordering in liquids on cooling the
distance between the two icosahedral clusters may not be the
best parameter to describe the developing BOO due to the
(possibly) branched (fractal) geometry of the domains formed
by the connected (or interpenetrating) icosahedra.

The basic idea behind this paper is the observation that for
the particles interacting through pair potentials the elementary
units of stress are not the particles’ stresses, but the stresses
associated with interactions between the pairs of particles.
We gained the idea to consider the bonds’ stresses from
Refs. [66,67]. There the notion of the bonds’ stress has been
mentioned, though correlations between the bonds’ stresses
have not been considered. Another motivation to consider
correlations between the bonds’ stresses is based on Ref. [68]
in which a simple relation between the average lifetime of the
nearest-neighbor local atomic environment and the Maxwell
relaxation time has been suggested.

The primary purpose of this paper, as of our several previ-
ous publications [33–39], is to develop a better understanding
of the atomic scale stress correlations relevant to the Green-
Kubo expression for viscosity.

The paper is organized as follows. In Sec. II we discuss the
Green-Kubo expression for viscosity from the perspectives of
the atomic level stresses and the bonds’ stresses. There we
also discuss the rotationally invariant form of the Green-Kubo
stress CF. In Sec. III we discuss the connection of the micro-
scopic Green-Kubo stress CF in the rotationally invariant form
with the CFs from the BOO approach. The model that has
been used in our MD simulations is described in Sec. IV. In
four subsections of Sec. V we discuss our results. We conclude
in Sec. VI.

II. THE GREEN-KUBO EXPRESSION FOR VISCOSITY
AND MICROSCOPIC STRESS TENSORS

The Green-Kubo expression is widely used in MD simu-
lations for the calculations of zero-frequency and zero-wave-
vector viscosity. It relates shear viscosity to the decay of the
macroscopic stress correlation function [1,13,42–44]:

η = V

kBT

∫ ∞

0
〈�αβ (to)�αβ (to + t )〉todt, (1)

where V is the volume of the system, kB is the Boltzmann
constant, T is the temperature, and �αβ (t ) is the off-diagonal
(α �= β ) component of the macroscopic stress tensor of the
system at time t . The averaging is done over the equilibrium
canonical ensemble (in practice, over the initial times, to,
under the assumption that ergodicity holds).

The full expression for the macroscopic stress tensor can
be found in Refs. [1,13,42–44]. We are interested in its
simpler form which is the most relevant for the studies of
viscosities of dense and supercooled liquids; i.e., we neglect
the contributions to the stress tensor associated with the
velocities of the particles, as it has been shown in multiple
previous investigations that these contributions are negligibly
small (≈2% [13]) in comparison to the terms involving only
interactions between the particles. Then the expression for the
components of the macroscopic stress tensor can be written as

[1,10–15,33,34,40–44,69]

�αβ (t ) = ρo

N

i=N∑
i=1

s
αβ

i (t ), s
αβ

i ≡
∑
j �=i

ϕ′(rij )
ra
ij r

b
ij

rij

, (2)

where N is the number of particles in the system, ρo ≡ N/V

is the particles’ number density, and ϕ′(rij ) is the derivative of
the pair-interaction potential between particles i and j . In the
following, we will refer to s

αβ

i as to (the component of) the
atomic-stress element of the particle i.

Substitution of (2) into (1) leads to the following expres-
sions for the CF between the macroscopic stress tensors:

Fαβ (t ) ≡ 〈�αβ (to)�αβ (to + t )〉to , (3)

Fαβ (t ) = F
αβ
auto(t ) + Fαβ

cross(t ), (4)

F
αβ
auto(t ) ≡

〈
1

N

∑
i

s
αβ

i (to)sαβ

i (to + t )

〉
to

, (5)

Fαβ
cross(t ) ≡

∫ ∞

+ε

Fαβ
cross(t, r )dr, (6)

Fαβ
cross(t, r )

≡
〈

1

N

∑
i

s
αβ

i (to)
∑
j �=i

s
αβ

j (to + t )δ(r − rij (to))

〉
to

, (7)

where δ(r − rij (to)) is the δ function that introduces the
dependence of the CF [Eqs. (6) and (7)] on the separation,
	rij = 	rj − 	ri , between particles i and j at time to. In (6) the
lower integral limit is +ε because r = 0 corresponds to the
case when i = j and this situation is taken into account by
F

αβ
auto(t ) from (5).

In our previous papers we studied the dependencies of
Eqs. (3)–(7) on t and r [33–39]. The major result of those
investigations, in our view, is the demonstration that Fauto(t )
effectively accounts for the contribution to viscosity due to the
structural relaxation, while the contribution to viscosity due
to Fcross(t, r ) is associated with vibrational modes in liquids
and their attenuation. Our results suggest that approximately
half of the value of viscosity is associated with nonlocal
vibrational modes. There are also other papers in which the
decomposition of the macroscopic stress correlations into the
atomic scale stress CFs has been investigated [11,14,15,22–
24,40,41]. A somewhat different approach, which also ad-
dresses the atomic-scale correlations, is based on the intro-
duction of a continuous stress field through a coarse-graining
procedure [22–25]. Without going into the details, it is possi-
ble to say that the existence of nonlocal stress fields has been
demonstrated and their structure and time evolution has been
addressed.

The major idea behind this paper is quite simple. It is easy
to notice that (2) can be rewritten as follows:

σαβ (t ) = −2ρo

N

∑
ij

f α
ij (t )rβ

ij (t ) = −2ρo

N

∑
j �=i

b
αβ

ij (t ), (8)

b
αβ

ij (t ) ≡ f α
ij (t )rβ

ij (t ), bij ≡ fij rij ≡ | 	fij | · |	rij |, (9)
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where f α
ij = −(dφij /drij )(rα

ij /rij ) is the α component of the

force acting on particle i from particle j and b
αβ

ij is the αβ

component of the stress tensor associated with the interaction
between particles i and j . The factor of 2 in (8) originates
from the fact that every pair of particles in (2) is counted twice,
while in (8) every pair of particles is counted only once. Note
that if particles i and j do not interact, i.e., they are too far
away from each other, then f α

ij = 0 and b
αβ

ij = 0.
If the interaction between the particles is such that the first

nearest neighbors are well defined and the interaction with
the second neighbors is negligibly small in comparison to
the interaction with the first neighbors, then it is possible to
think about the b

αβ

ij for the nearest neighbors i and j as about
the stress tensor of the ij bond. We will assume, as is done
usually, that the ij bond is located at 	Rij ≡ (	ri + 	rj )/2.

In the following discussions, we use the terms “bond’s
stress” and “bond-stress correlation function” to describe
structural correlations in a model liquid at the atomic scale.
The use of this terminology does not imply that we assign a
precise physical meaning to the concept of the “bond’s stress”
in the way it is done for the macroscopic stress tensor in
the continuum theory of elasticity. From the perspective of
addressing the microscopic structure of liquids, our use of
these terms is essentially identical to the widely used termi-
nology associated with the concept of atomic level stresses
[8,11,14,15,19,26–28,30–33,35,37–41].

Using the components of the pair interaction stress tensors,
b

αβ

ij , we can rewrite the CF of the macroscopic stress tensors
in Eqs. (1) and (3) similarly to expressions (3)–(7):

Bαβ (t ) ≡ Fαβ (t ) ≡ 〈�αβ (to)�αβ (to + t )〉to , (10)

Bαβ (t ) = B
αβ
auto(t ) + Bαβ

cross(t ), (11)

B
αβ
auto(t ) ≡

〈
1

N

∑
ij

b
αβ

ij (to)bαβ

ij (to + t )

〉
to

, (12)

Bαβ
cross(t ) ≡

∫ ∞

0
Bαβ

cross(t, r )dr, (13)

Bαβ
cross(t, r )

≡
〈

1

N

∑
ij

b
αβ

ij (to)
∑
kh

b
αβ

kh (to + t )δ(r − rij,kh)

〉
to

, (14)

rij,kh ≡ | 	Rkh(to + t ) − 	Rij (to)|. (15)

Note that the notation rij,kh is for the distance between the
bond ij at time to and the bond kh at time to + t . Note also that
in order to obtain the correct value of the correlation function
B

αβ
cross(t ) in (13), we simply need to count correlations between

all interacting pairs; i.e., the definition of 	Rij does not affect
the value of the macroscopic CF.

The number of interacting pairs in the system fluctuates.
For this reason the normalization in Eqs. (12) and (13) is to
the number of particles in the system. Of course, definitions
(5), (6) and (12), (13) should lead to exactly the same result,
i.e., to the value of the macroscopic stress tensor.

In the preceding paragraph we made a reference to the
exactly the same values of the CF between the macroscopic

stress tensors which should be obtained from the micro-
scopic approaches based on considerations of the atomic
stresses or bond stresses. In our view, it is worth making
here a comment related to the history of application of the
Green-Kubo expression. As far as we understand, the original
derivations of the Green-Kubo expression [42–44] are actu-
ally microscopic and thus microscopic considerations adopted
relatively recently [11,14,15,22–24,33–41] are much closer
in spirit to the derivations of the Green-Kubo expression
than the macroscopic view of the Green-Kubo expression
usually used. Our research of the literature suggests that the
macroscopic view of the microscopically derived Green-Kubo
expression has been adopted in one of the first papers on
viscosity calculations in computer simulations [70] (see also
Ref. [71]). There the connection between the microscopic and
macroscopic views has not been addressed in details. The
issue concerning the possible nonequivalence of the micro-
scopic and macroscopic perspectives has been discussed at
first in Ref. [72]. Thus, in our view, it is important to realize
that microscopic considerations are more original than the
macroscopic considerations. The exact equivalence between
the macroscopic and microscopic perspectives in the case
of computer simulations on finite systems with the periodic
boundary conditions follows exactly from the fact that the
considered systems are finite and that there are the periodic
boundary conditions.

Any physically meaningful structural CFs describing
isotropic states should not depend on the orientation of the
observation coordinate frame. This means that (time or Gibbs-
ensemble averaged) CFs [Eqs. (5)–(7) and Eqs. (12)–(14)]
should be the same in any observation coordinate frame.
Therefore, we may think that the averaging over to also
includes in itself the averaging over all possible orientations of
the observation coordinate frame. Thus, instead of considering
the contribution of every product s

αβ

i s
αβ

j to Eqs. (5)–(7) or

b
αβ

ij b
αβ

kh to Eqs. (12)–(14) in a particular observation coordinate
frame, we can instead consider their contributions averaged
over all directions of the observation coordinate frame. Note
in this context that the product s

αβ

i s
αβ

j is not rotationally
invariant. More detailed considerations of the relevant issues
have been presented in Refs. [22–24,37,38]. Earlier the rel-
evant issues actually have been addressed within the bond-
orientational order approach through considerations of the
rotationally invariant combinations of the BOO parameters
[45–47,61].

In Ref. [38] we expressed the value of s
αβ

i s
αβ

j averaged over
all directions of the observation coordinate frame in terms of
the stress components in a particular observation coordinate
frame. In particular, it has been shown that (see expression
(56) in Ref. [38])

〈
s
xy

i s
xy

j

〉
�

= −
(

3

10

)
pipj +

(
1

10

) n,m=3∑
n,m=1

λn
i λ

m
j

(
cnm
ij

)2

=
(

1

10

) n,m=3∑
n,m=1

λn
i λ

m
j

[(
cnm
ij

)2 − 1

3

]
, (16)

where 〈. . .〉� is the averaging over the directions of the obser-
vation coordinate frame. pi ≡ 1

3 (λ1
i + λ2

i + λ3
i ) is the atomic
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ij

ijkh
ij,khα

rij,kh

kh
FIG. 1. Let us suppose that bonds ij and kh are at distance

rij,kh from each other and that the angle between their direc-
tions is αij,kh. If there are no correlations between the direc-
tions of the bonds at distance rij,kh then the function f (r ) ≡
〈[cos2(α(ij,kh) ) − 1/3]δ(r − |rij − rkh|)〉(ij,kh) should be equal to zero
for the separation distance rij,kh. As discussed in the text, the average
value of this function is directly related to viscosity.

scale pressure on particle i, λ1
i is the first eigenvalue of the

stress tensor s
i
, etc. cnm

ij is the cosine of the angle between
the nth eigenvector of the tensor s

i
and mth eigenvector of the

tensor s
j
.

In the considerations of the stress CFs in isotropic liquids
one can expect that the right-hand side of (16) might also
depend on the orientations of the eigenvectors of the stress
tensors with respect to the direction from i to j . Indeed,
for the stress tensors of the particles i and j it is the only
special direction in an isotropic liquid. However, note that it
follows from (16) that only the orientations of the stress tensor
eigenvectors with respect to each other are relevant, while the
orientations of the eigenvectors with respect to the direction
from i to j are irrelevant. See Refs. [22–24,37,38] and also
expression (12) from Ref. [30].

Clearly, (16) can also be applied to the stress tensors of the
bonds. The stress tensor of any ij interacting pair of particles
has only one nonzero eigenvalue, i.e., bij = fij rij . Thus, for
the bonds expression (16) is very simple:〈

b
xy

ij b
xy

kh

〉
�

= (
1

10

)
bij bkh

[
cos2(αij,kh) − 1

3

]
. (17)

See Fig. 1. With (17) expression (14) becomes a special pair
density function of the bonds,

B(t, r ) ≡ 1

10N

〈 ∑
ij �=kh

bij bkh

[
cos2(αij,kh) − 1

3

]

×δ(r − rij,kh)

〉
to

, (18)

in which the contribution of every pair of bonds is
weighted by their tensions and the mutual orientation factor
[cos2 (αij,kh) − 1

3 ]. See Fig. 1. It is easy to see that if in 3D
there is no correlation in the orientations of the bonds at
distance r then (17) averages to zero.

III. ON THE CONNECTION WITH THE
BOND-ORIENTATIONAL ORDER APPROACH

The changes in the structures of liquids on cooling are
often described within the bond-orientational order (BOO)
approach [45–50,62]. The stress CFs [Eqs. (3)–(7), (10)–(14)]
that we consider are actually closely related to some of the
CFs that have been defined within the BOO approach.

The basic quantities introduced in the BOO approach are
the spherical harmonics associated with “a bond” connecting
a pair of particles [45–47]. In most cases, it is assumed
that particles i and j are connected by a bond if they are
within some distance from each other. It has been discussed
recently that this simple definition has shortcomings and the
possible fixes have been suggested [55,56]. In our view, the
considerations of the bonds’ stresses discussed here also touch
on the issues raised in [55,56].

In any case, for now, we assume that we can associate “a
bond” with particles i and j if they are within some distance
from each other. The direction of this bond, 	rij ≡ 	rj − 	ri ,
can be characterized with “the bond orientation parameters,”
Qlm(	rij ), which are just the spherical harmonics, Ylm(θij , φij ):

Qlm(	rij ) ≡ Ylm(θij , φij ). (19)

In the following, as before, we assume that the bond 	rij is
located at 	Rij ≡ (	ri + 	rj )/2. Note that the values of Qlm(	rij )
depend on the choice of the observation coordinate frame.

Further, “the bond orientation parameters” for some groups
of bonds are usually introduced:

Qlm(group) ≡ 〈Qlm(	r )〉group, (20)

where the angular brackets on the right-hand side signify the
averaging over the selected group of bonds.

Further, in order to avoid the dependence of Qlm on the
choice of the observation coordinate frame, the rotationally
invariant combinations of Qlm are introduced:

Ql ≡
[

4π

2l + 1

m=+l∑
m=−l

|Qlm|2
]1/2

, (21)

Wl ≡
∑

m1, m2,m3
m1 + m2 + m3 = 0

(
l l l

m1 m2 m3

)
Qlm1

Qlm2
Qlm3

, (22)

where right after the sum sign in (22) stand(s) Wigner 3j
symbol(s).

Considerations of the “bond-order parameters,” Ql and Wl ,
for the particles in simple lattices, such as simple cubic (SC),
face-centered cubic (FCC), or body-centered cubic (BCC),
allow one to distinguish these structures from each other and
also, in particular, to distinguish particles with the icosahe-
dral environment from the particles with the environments
characteristic for the mentioned crystal lattices [45–48,62].
At present, in our view, the BOO approach is used most fre-
quently to characterize the geometry of the nearest-neighbor
shells around the chosen particles and the formation of do-
mains from the clusters of a particular (usually icosahedral)
symmetry [45–65].

It has been demonstrated that in order to distinguish be-
tween different crystalline (and icosahedral) motives it might
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be better to consider as groups of bonds all bonds associated
with a chosen particle and its nearest neighbors, i.e., also
include in the group all bonds associated with the nearest
neighbors [50].

The BOO approach can also be used to address correla-
tions between the local environments of different particles
[30,45,46,49,58]. For this, in Refs. [45,46,58] the following
rotation-invariant CF has been considered:

Gl (r ) ≡
(

4π

2l + 1

)(
1

Go(r )

)

×
m=+l∑
m=−l

〈Qlm(	rij )Q∗
lm(	rkh)δ(r − rij,kh)〉ij,kh, (23)

where the averaging in (23) is effectively over all pairs of
bonds, i.e., (ij ) and (kh), distance r away from each other.
In (23) the function Go(r ) is the pair density function of the
bonds, whose definition also follows from (23). However, in
defining Go(r ) through (23) there should not be Go(r ) in the
denominator on the right-hand side.

While the BOO approach can be used to address the long-
range correlations between the bonds and the small clusters
of particles it appears that the number of studies in which
this has been done is relatively small [30,45,46,49,58]. In
such considerations the spherical harmonics corresponding
to l = 4 and l = 6 are usually considered due to the search
for a proliferating icosahedral order. In Ref. [30] has been
considered a triple-product CF associated with the spherical
harmonics of the order l = 2 for the two clusters of particles
and with the spherical harmonics of the order l = 2, l = 4, and
l = 6 for the radius vector between the two clusters. However,
we have not found studies in which the considerations of the
orientations of the individual bonds described through the
binary products of the l = 2 spherical harmonics have been
presented.

Let us consider two bonds, (ij ) and (kh), with the angle
αij,kh between them. See Fig. 1. For these two bonds, the
addition theorem for the spherical harmonics reads as follows:

Pl (cos(αij,kh))

= 4π

2l + 1

m=+l∑
m=−l

Qlm(θij , φij )Q∗
lm(θkh, φkh), (24)

where Pl (cos (αij,kh)) is the Legendere polynomial of degree
l. Thus, (23) can be rewritten as (it is clear that the summation
over m and the averaging over different bonds can be changed
in order)

Gl (r ) ≡ 1

Go(r )
〈Pl (cos(αij,kh))δ(r − rij,kh)〉ij,kh. (25)

In particular, for l = 2,

P2(cos(αij,kh)) = 3
2

[
cos2(αij,kh) − 1

3

]
, (26)

and (23) can be rewritten as

G2(r ) ≡ 3

2Go(r )

〈[
cos2(αij,kh) − 1

3

]
δ(r − rij,kh)

〉
ij,kh

. (27)

The comparison of (27) with (18) shows that the bond-
stress CF (BSCF) associated with viscosity, (18), is closely

related to the l = 2 bond-order CF (27). The differences
between the two CFs are associated with the tensions of the
bonds in (18) and with the normalization of the bond-order
CF to ∼1/Go(r ).

Considerations of the bond-order correlations associated
with all nearest neighbors of particles i and k can also be
easily done with expression (25). For this it is necessary to
introduce into (25) the summations over the particles j and h

and write in the δ function rij instead of rij,kh.
Rewriting expression (23) in the form of (25) is, of course,

a trivial point. However, we find it somewhat puzzling that
the form (25) usually is not considered in the literature. In
our view, expression (25) provides a simple and intuitive
insight into the geometrical nature of the correlations behind
the expression (23). In particular, expression (25) explicitly
shows how the functions Gl (r ) for l > 2 depend on the angles
between the bonds, though in those expressions the angles
between the bonds enter through more complex higher degree
Legendre polynomials. Note that the direction from one bond
to another is irrelevant for all l. From this perspective, it
is also of interest to gain some intuitive insight into the
nature of geometrical correlations behind expression (22). An
illustrative example on this issue is given in the Appendix.

IV. THE MODEL

In order to address the behavior of correlation function
Bαβ

cross(t, r ) (13) we used a binary equimolar system of par-
ticles interacting through purely repulsive potential(s):

φab(r ) = ε
(σab

r

)12
, (28)

where a and b mark the types of particles: A or B. The
values of the parameters are σAA = 1.0, σAB = 1.1, σBB =
1.2. The masses of the particles are mA = 1.0, mB = 2.0.
The chosen value of the particles number density is ρo =
(NA + NB )/V = 0.80.

In the following, the distance is measured in the units of
σ ≡ σAA and temperature in the units of ε. The unit of time is
τ = (mσ 2/ε)1/2.

In our simulations, in order to address possible size effects,
we considered the systems of two sizes. The small and the
large systems contained 5324 and 62 500 particles in total
correspondingly. The half lengths of the edges of the cubic
simulation boxes were (L/2) ∼= 9.41σ and (L/2) ∼= 21.38σ

correspondingly. The periodic boundary conditions in x̂, ŷ, ẑ

directions have been applied.
Previously we already used this model to address the

behavior of the atomic-stress correlation functions (ASCFs)
F

αβ
auto(t ) and Fαβ

cross(t, r ) [Eqs. (5) and (6)] [38,39]. This and
similar models also have been used by other authors to address
certain features of supercooled liquids [73–75].

The simulations have been performed using the LAMMPS
molecular dynamics package [76,77].

The methodological details concerning the system prepa-
ration and equilibration can be found in Ref. [38]. In order to
collect sufficient statistics for the BSCF for t = 0 at T = 0.26
on the system with the total number of particles N = 62 500
we considered the structures from 3 consecutive MD runs.
In every run we generated 100 structures. The separation
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FIG. 2. The top panel shows the correlation function
4πr2[ρp (r ) − ρpo] between the particles of different types.
Note the presence of the distance-dependent scaling factor 4πr2.
The data were obtained on the system with (L/2) ≈ 21.38. The
bottom panel shows the CF 4πr2[ρb(r ) − ρbo] between the AB-AB
bonds. The notation ρbo is used for the average number density of
such bonds in the system.

time between the two consecutive saved structures was 10τ .
See Fig. 2 of Ref. [38]. We found only small statistical
differences between the results from these 3 MD runs. The
curves presented in this paper were produced by averaging
the data from these 3 MD runs. The statistics for the other
temperatures and times were obtained on approximately the
same amount of data.

V. RESULTS

A. The average correlation functions

In this paper, we consider the model liquid at two tem-
peratures, i.e., at T = 1.00 and T = 0.26. The temperature
T = 1.00 approximately corresponds to the potential energy
landscape crossover temperature, while at T = 0.26 the liquid
is in the deeply supercooled state. See Refs. [38,39] for the
relevant temperature scales and the results for the ASCFs:
F (t ), Fauto(t ), Fcross(t ), Fcross(t, r ) [Eqs. (3)–(7)].

In Fig. 2 we show the results for the 4πr2 scaled pair
density functions for the particles and for the bonds; i.e., we
consider the functions

rGp(r ) ≡ 4πr2[ρp(r ) − ρpo], (29)

rGb(r ) ≡ 4πr2[ρb(r ) − ρbo], (30)
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P(f) = (1/5.0)exp(-f/5.0)

T = 0.260

N = 62500

FIG. 3. The probability distributions of the force tensions be-
tween AA, AB, and BB particles at T = 0.260 for the system
of 62 500 particles. Note that for the particles separated by the
distance corresponding to the position of the first peak in the PDF
the repulsive force is ≈12.

where Gp(r ) and Gb(r ) are the pair distribution functions
(PDFs) for the particles and the bonds.

In the literature the functions ρp(r ) or Gp(r ) are usually
considered since ρp(r ) has the clear physical meaning while
Gp(r ) can be obtained by Fourier transform from the exper-
imental scattering intensity [1]. We, however, consider here
the CFs with the additional r factor because these functions
allow making more direct comparisons with the stress CFs
(3)–(6) and (10)–(13) which are directly relevant to viscosity.
Note again that CFs (7) and (14) contain in themselves the
correlation of a chosen particle (bond) with all other particles
(bonds) at some distance from it, i.e., they also include in
themselves the factor 4πr2.

It follows from both panels of Fig. 2 that one can clearly
distinguish 10 (or 12) coordination shells in the 4πr2 scaled
pair density functions for the particles and for the bonds
at T = 0.260. At the high temperature, T = 1.0, one can
distinguish ∼8 coordination shells for the particles and ∼7
coordination shells for the bonds. Of course, it would be
impossible to observe that many coordination shells without
the 4πr2 scaling. Note that the data have been obtained on the
cubic system with (L/2) = 21.38 with the periodic boundary
conditions in x̂, ŷ, ẑ directions; i.e., note that the considered
CFs almost completely decay on the length scales smaller
than (L/2).

Figure 3 shows the probability distributions of the bonds’
tensions between AA, AB, and BB particles. As follows from
the figure, these distributions are close to exponentials, as
expected according to Refs. [78–82].

Figure 4(a) shows the total ASCFs (6) for the systems with
(L/2) = 9.41 and (L/2) = 21.38 at time t = 0. “The total”
means that the shown CFs are the sums of the CFs between
AA, AB, and BB particles. The behavior of such and closely
related CFs has been studied in Refs. [11,14,15,22–24,33–41].

Figure 4(b) shows the BSCFs calculated from the same
structural data that have been used to produce Fig. 4(a). The
contributions from all bonds, i.e., AA, AB, and BB, have been
taken into account. Note rather different scales on the y axes
in Figs. 4(a) and 4(b)
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FIG. 4. Panel (a) shows the ASCF Fxy
cross(r ) (7) between the

particles of types A and B at time t = 0 and T = 0.260 for the
systems of two sizes. Panel (b) shows the BSCF Bxy

cross(r ) (14) at t =
0 and T = 0.260 between the bonds of all types. The results from
the systems of two sizes are shown. It also shows the bond-order CF
scaled by (29.22). The long-range oscillations in the curves suggest
the existence of some long-range BOO. The similarity between
the BSCF and the bond-order CF show that the oscillations in the
BSCF primary reflect the existence of some BOO. Note that at large
distances oscillations in the BSCF are more pronounced and more
regular than the oscillations in the ASCF.

It is clear from the comparison of Fig. 4(a) with Fig. 4(b)
that the long-range structural correlations are more pro-
nounced and more regular in Fig. 4(b), i.e., in the BSCFs.
On the other hand, it is possible to think that the ASCFs in
Fig. 4(a) contain some fine features—such as the splitting
of the second peak—which are not present or not well pro-
nounced in the BSCFs.

In Fig. 4(b) the bond-order CF is also shown. It has been
calculated similarly to the BSCF, i.e., according to (18), but
in the calculations of the bond-order CF it has been assumed
that bij = fij rij = 1 for all interacting pairs that have been
counted as the bonds. The cutoff distances for the bonds’
assignments for all pair types have been chosen to correspond
to the first minimums in the corresponding partial PDFs. The
bond-order CF obtained in this way has been multiplied by a
constant scaling factor of 29.22 in order to make a comparison
with the BSCF. It follows from the figure that the scaled
bond-order CF and the BSCF almost coincide. This shows that
the BSCF describes mostly the BOO, while differences in the
tensions of the bonds are not that important for the structure
of the BSCF.
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FIG. 5. The main figure and the inset show on different y scales
the distance integrals of the ASCF and the BSCF for the system
of 62 500 particles at T = 0.260. Note that if the integrals are
performed over the whole range of distances then the results of the
integrations should be exactly the same if the same structures were
used for the calculations of the CFs. This behavior can be observed
in the inset.

As discussed before, the integrals over the distance of the
stress CFs in Figs. 4(a) and 4(b) should lead to exactly the
same value which is the value of the macroscopic stress CF at
time t = 0. This behavior is demonstrated in Fig. 5.

Note in the inset of Fig. 5 that the ASCF, after obtaining a
nonzero value from the zero-distance term (5), also abruptly
grows as the first nearest neighbors become included. Beyond
this distance, the integral of the ASCF does not exhibit sig-
nificant changes. The variation of the integral for the cutoff
distances larger than 10 are caused by the limited statistics
of the data. From the perspective of the BSCF the situation
looks differently. The BSCF also obtains nonzero value from
the zero distance term (12). As distance increases further the
BSCF oscillates very significantly around the value which is
approximately close to the average value of the ASCF. Thus,
from the perspective of the BSCF large distances are very
relevant for viscosity.

In our view, the correlation functions Fxy
cross(r ) (7) and

Bxy
cross(r ) (14), while of the same origin, actually describe

quite different structural aspects. Thus, it appears that the
BSCF Bxy

cross(r ) (14) indeed primarily describes the correla-
tions in the BOO between individual bonds. The atomic level
stresses, as has been discussed previously [26–28,30], essen-
tially describe deviations of the local atomic environments
from some average atomic environment in which the local
atomic shear stresses are equal to zero. Correspondingly, the
ASCF describes correlations between the deviations of the
local atomic environments from some average local atomic
environment.

B. Distribution of the values of the stress products

In the context of the presented results, in our view, it is
important to discuss the probability distributions (PDs) of the
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FIG. 6. The main figure shows the probability distributions
(PDs) of the product 〈bxy

ij b
xy

kh〉� for the ij and kh bonds within three
intervals of distances. The vertical dashed lines show the average
values of these PDs. The inset shows that the intervals [3.02 : 3.21]
and [3.52 : 3.71], used for the calculations of the PDs in the main
figure, correspond to the positions of the peak and the next minimum
in the BSCF. The magnitudes of the peak and the minimum are also
shown.

products 〈sxy

i s
xy

j 〉
�

, 〈bxy

ij b
xy

kh〉� and how these PDs depend on
the distance from i to j or from ij to kh. This issue, in
our view, is also relevant to many previously obtained results
[11,13–15,22–24,33–41], though it has not been discussed
there.

It is known from numerous previous investigations of the
macroscopic Green-Kubo stress CF at low temperatures that
it is relatively difficult to accumulate good statistics for its
long-time tails [13]. It is also computationally demanding
to accumulate good statistics for the microscopic CFs dis-
cussed in Refs. [11,14,15,22–24,33–41], as is mentioned in
some of these publications. In our view, the characters of the
mentioned above PDs provide the key for understanding this
situation. Often, when the average value of some variable is
considered this variable has a not too wide Gaussian distribu-
tion around the average value. This is absolutely not the case
for the PDs of 〈sxy

i s
xy

j 〉
�

and 〈bxy

ij b
xy

kh〉�.
Figure 6 shows the PDs of the products 〈bxy

ij b
xy

kh〉� from the
distance intervals J1 ≡ [3.02 : 3.21], J2 ≡ [3.52 : 3.71], and
J3 ≡ [20.20 : 20.80]. The intervals J1 and J2 approximately
correspond to the consecutive maximum and minimum in
the BSCF shown in Fig. 4 and in the inset of Fig. 6. In the
inset these intervals are shown as blue and red horizontal
line segments. The PD from the large-distance interval J3

corresponds to the case of nearly uncorrelated bonds. See
Ref. [85] for an additional comment.

Note that the differences between all three PDs are small in
comparison to the overall (similar) shapes of the distributions.
Yet, these differences are the reason for the nonzero values of
the average BSCF at the considered intervals.

In this paragraph we describe how the values of the BSCF
in the inset of Fig. 6 can be obtained from the average
values of the PDs in the main part of Fig. 6. In our system
of 62 500 particles at T = 0.260 there are approximately

TABLE I. The values of the parameters that have been used
to check the connection between the BSCF normalized to the
number of particles (14), i.e., Bαβ

cross(t = 0, r ), and the PDs of
the correlation products between the pairs of bonds at the se-
lected distance intervals. The connection is given by Bαβ

cross(t, r ) ∼
4πr2

ij,kh〈〈sxy

ij s
xy

ij 〉�〉(ρbo/ρpo ). The values of Bαβ
cross(t = 0, r ) esti-

mated from the PDs of the bonds’ correlation products are given in
the last column.

Interval rij,kh 〈〈sxy

ij s
xy

ij 〉�〉 Bαβ
cross(t, r )

[3.02 : 3.21] ∼3.11 +0.0644 ∼ + 276.1
[3.52 : 3.71] ∼3.61 −0.0467 ∼−269.8

415 000 bonds. The average particles’ number density is
ρpo = 0.8 while the estimated average bonds’ number density
is ρbo ≈ 5.31. In order to evaluate the BSCF per bond, i.e.,
normalized to the number of bonds, we have to evaluate the
value of the expression 4πr2

ij,kh〈〈sxy

ij s
xy

ij 〉�〉, where 〈〈sxy

ij s
xy

ij 〉�〉
is the average value of a particular bond-stress distribution in
the main part of Fig. 6. However, in the inset the BSCF is
normalized to the number of particles. In order to find the
BSCF normalized to the number of particles it is necessary
to multiply the BSCF normalized to the number of bonds by
(ρbo/ρpo) ≈ 6.64. The results of the estimates for the two
short-distance intervals are given in Table I. These values are
close to the corresponding values of the BSCF in the inset of
Fig. 6.

Figure 7 shows the probability distributions of the
spherically averaged products between atomic stresses, i.e.,
〈sxy

i s
xy

j 〉
�

, for the AB pairs of particles for the distance
intervals I1 ≡ [3.70 : 3.90], I2 ≡ [4.10 : 4.25], I3 ≡ [10.36 :
10.69], and I4 ≡ [19.50 : 20.0]. As follows from Fig. 4(a), the
I1 interval includes the position of the fourth separate peak in
the ASCF, while I2 includes the position the fourth minimum.
The PDs obtained from the large-distance intervals I3 and I4

illustrate the PDs from the nearly uncorrelated particles.
It follows from the figure that the PDs for all selected

intervals are very close to each other. They are essentially
indistinguishable. We note that these distributions are not
symmetric with respect to the zero value on the horizontal
axis even for the pairs of particles at large distances, i.e.,
for the separation intervals I3 and I4. This can be seen from
the comparison of the blue curve with its reflection with
respect to zero value on the x axis. This reflection is the
red-dashed curve. Despite the similarity of the PDs from the
different intervals, the calculations of the average values of
〈sxy

i s
xy

j 〉
�

lead to slightly different results which are shown
as essentially coinciding vertical dashed lines. The average
values of 〈sxy

i s
xy

j 〉
�

from the intervals I1, I2, I3, and I4

are 0.01105, −0.007481, 3.4116 × 10−4, and 3.80417 × 10−5

correspondingly. These values multiplied by 4πr2
I ρp lead to

the approximate magnitudes of the corresponding values of
the ASCF in Fig. 4(a). See the caption of Fig. 7 for more
details.

The results presented in this section demonstrate that the
stress CFs in Figs. 4(a) and 4(b) originate from rather small
differences between the wide probability distributions. In
our view, the results show that while these average values
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FIG. 7. The main figure shows the PDs of 〈sxy

i (A)sxy

j (B )〉� for
the AB pairs of particles separated by rij (AB ) within selected dis-
tance intervals: I1 ≡ [3.70 : 3.90], I2 ≡ [4.10 : 4.25], I3 ≡ [10.36 :
10.69], and I4 ≡ [19.50 : 20.00]. The two blue curves originating
from I3 and I4 cannot be distinguished. Particles’ pairs associated
with these large-distance intervals are nearly uncorrelated, as follows
from Fig. 4(a). The red dashed curve shows the I4 blue curve
symmetrically reflected with respect to the zero-abscissa value. It
shows that the probability distribution curves are not symmetric even
for the well-separated, i.e., independent, pairs of particles. The green
curve originates from the pairs with rij (AB ) ∈ I1. It is also very close
to the blue curves. It follows from the figure that nonzero values of
the stress CF in Fig. 4(a) originate from the very small differences
between the PDs. These differences cannot be observed in the main
part of the figure. However, these small differences lead to the
nonzero values of the ASCF. With the notation ξ = 〈sxy

i (A)sxy

j (B )〉�

we get 〈ξ〉PD (I1) = 0.01105, 〈ξ〉PD (I2) = −0.00748, 〈ξ〉PD (I3) =
3.41 × 10−4, and 〈ξ〉PD (I4) = 3.8 × 10−5. These average values are
shown in the figure with the vertical dashed and dot-dashed lines.
These lines cannot be distinguished on the presented scale of the x

axis. However, these invisible differences lead to the nonzero values
of the ASCF shown in Fig. 4(a). To make a comparison with the
average values of the ASCF in Fig. 4(a) it is necessary to multiply the
positions of the vertical lines by 4πr2

ij (AB )ρp (AB ). Using rij (I1) =
3.8 and ρp (AB ) = 0.4 we get Fi (t = 0, rij (I1)) = 0.802 which is
in reasonable agreement with the results in Fig. 4(a). Assuming that
rij (I2) = 4.15, we get Fi (t = 0, rij (I2)) = −0.648 which is also in
reasonable agreement with Fig. 4(a). To demonstrate more clearly the
small differences between the PDs we show in the inset the quantities
{ξ [P1(ξ ) − P4(ξ )]} (upper green curve with positive ordinate values)
and {ξ [P2(ξ ) − P4(ξ )]} (lower magenta curve with negative ordinate
values), where P4(ξ ) is the PD originating from interval I4, while
P1(ξ ) and P2(ξ ) are the PDs originating from intervals I1 and I2.
Since pairs with large separation are essentially uncorrelated the
integral of ξP4(ξ ) is essentially zero and, as follows, the integrals
over the green and magenta curves lead to the average values of
the stress correlations associated with I1 and I2. It is clear that the
integral over the green curve is positive, while the integral over
the magenta curve is negative. The main purpose of the figure is
to demonstrate that the CFs shown in Fig. 4(a) originate from the
very small differences between the PDs associated with the different
distance intervals.

are related to viscosity via the Green-Kubo expression they
actually contain rather limited information about the structure
of liquids.

In our view, it is possible to gain some intuitive under-
standing of the obtained data through a consideration of an
example usually presented in the context of the fluctuation-
dissipation theorem [83,84]. Thus, let us think about a very
heavy particle that moves through a liquid with a speed which
is much smaller than the average speed of the light particles
comprising the liquid. Since the particle is very heavy, we
assume that its speed almost does not change. In addition, let
us assume that the size of the heavy particle is not much larger
than the size of the liquid’s particles. In such a situation, the
heavy particle experiences forces due to the collisions with
the particles of the liquid. The averaging of these forces over
time produces the average viscous force. Note, however, that
the heavy particle does not actually experience the viscous
force at any particular time; i.e., the viscous force is only a
convenient way to describe the effect of a very large number
of collisions. It is reasonable to expect that the value of the
average viscous force in the described situation should be
much smaller than the forces arising due to the individual
collisions between the particles (if the speed of the heavy
particle is zero then the average viscous force also should
be zero). Note also that the average viscous force does not
correspond to any particular collision or any particular type of
collisions. In our view, it is possible to draw a parallel between
the average viscous force acting on a particle and the average
value of the microscopic stress CF at some distance. Thus,
while the average viscous force results from the averaging
over a very large number of “collision” forces, the average
value of the stress CF at some distance, 〈sxy

i s
xy

j 〉
�

, results from
the averaging over a very large number of particle pairs’ stress
products, s

xy

i s
xy

j . Then, similarly to the situation with the av-
erage viscous force, the average value of the stress correlation
function at some distance, 〈sxy

i s
xy

j 〉
�

, does not correspond
to any particular realization of the structural arrangement of
the particles. Instead, 〈sxy

i s
xy

j 〉
�

represents the result of the
averaging over a large number of quite different configura-
tions. For this reason, in our view, one cannot expect to find a
structure in the liquid state that actually would correspond to
the average value of the stress correlation function.

In our view, the presented results also elucidate why it is
relatively difficult to accumulate sufficient statistics for the
good quality ASCFs and BSCFs—for this it is necessary to
produce rather good quality statistics for the wide probability
distributions of the pair-stress correlations.

C. Evolution of the BSCF with temperature

Figure 8(a) shows how the BSCF depends on distance
for two temperatures (rather high and rather low). It is clear
that there are no particularly abrupt qualitative changes in the
BSCF on cooling. However, there is an interesting change
in the behavior of the BSCF with the increase of distance.
Note that as temperature decreases the amplitudes of peaks
for distances r < 3σ decrease, while for r > 3σ increase.
Previously, in discussing Fig. 4(b), it has been demonstrated
that oscillations in the BSCF reflect mostly the BOO, but
not the correlations in the bonds’ tensions. As temperature
decreases there are fewer and fewer strongly compressed
bonds in the systems. In order to demonstrate the effects
associated with the bonds’ tensions we show in Fig. 8(b) the
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FIG. 8. Panel (a): The dependencies on the distance of the BSCF
at the high and low temperatures. Note that as temperature decreases
the amplitudes of peaks decrease for r < 3σ and increase for r > 3σ .
Panel (b): The dependencies on the distance of the bond-order CF at
the high and low temperatures. Note that as temperature decreases
the amplitudes of peaks increase for all distances, in contrast to the
situation with the BSCF in panel (a). Panel (c): The dependencies on
the upper cutoff of the integrals over the distance of the BSCFs in
panel (a).

bond-order CF analogous to the BSCF in Fig. 8(a); i.e., in
order to produce panel (b) it was assumed that bij = 1 for all
bonds. The comparison of panel (b) with panel (a) suggests
that the decrease in the amplitudes of peaks in the BSCF for
r < 3σ on cooling is associated with the changes in the bonds’
tensions. It is also clear from the comparison that the increase
in the amplitudes of peaks for r > 3σ on cooling is caused by
the increase in the BOO.

The changes in the BSCF and bond-order CF in Figs. 8(a)
and 8(b) at large distances are clearly of interest due to their
relation to viscosity. Thus, the integrals over all distances of

the BSCFs in panel (a) are the contribution to viscosity from
t = 0 at the discussed temperatures. The dependence of such
integrals of the two BSCFs in panel (a) on the upper limit
of the integration is presented in panel (c). We see that the
contribution to viscosity from t = 0 in the high-temperature
liquid is larger than in the low-temperature liquid. However,
it is necessary to remember that the BSCF in the high-
temperature liquid quickly decays with time; i.e., the larger
value of viscosity in the low-temperature liquid is due to the
slow decay of the BSCF associated with the slow α relaxation.

In our view, the most puzzling point with respect to the
average values of the stress CFs concerns the results presented
in the previous section. Thus, due to the large deviations of
the particular values of 〈bxy

ij b
xy

kh〉� or 〈sxy

i s
xy

j 〉
�

from their
average values, it is not quite clear what we can learn about the
structure or dynamics of the system from the considerations of
the average CFs.

D. Shear stress waves

In our previous studies of the ASCFs on two different sys-
tem of particles we observed in the data very pronounced fea-
tures that have been interpreted as propagating compression
and shear waves [33–39]. See also Ref. [41]. This interpreta-
tion initially has been based on the “speeds of propagation”
of the observed features which are close to the expectable
speeds of the longitudinal and transverse waves. Later, the
ASCFs have been analytically derived for a simple model of
a crystal with phonons [36]. The ASCFs calculated in this
model exhibited features which also should be interpreted as
propagating shear and compression waves; for the considered
model there is no any other alternative. The similarity of
the features in the ASCFs obtained within the crystal model
analytically with the features observed in the ASCFs obtained
numerically on the model liquids also provides support for
the interpretation of the observed features as signatures of
the propagating compression and shear waves. Finally, in the
previous works, we have demonstrated the nontrivial effects
associated with the periodic boundary conditions [34,39]. The
independence of the macroscopic value of viscosity from the
sizes of finite systems with the periodic boundary conditions
also can be explained through the shear stress waves that
leave and reenter the simulation box because of the periodic
boundary conditions. The major result of those studies is the
demonstration that approximately half of the value of viscos-
ity is associated with the structural rearrangements, while the
other half is associated with the character of propagation of
the shear stress waves.

Thus, in view of our previous works and also the works of
others, it is of interest to address the existence of the features
in the BSCF that can be interpreted as propagating shear
waves. This issue is addressed in Fig. 9. As follows from
the figure and its caption, the shear stress waves cannot be
observed in the BSCF as easily as they can be observed in
the ASCF. However, panel (c) of the figure demonstrates that
shear stress waves are also present in the BSCF and they can
be revealed through a couple of simple manipulations with the
BSCFs.

The reason because of which the shear stress waves are
nonobservable in the BSCF directly is related to the values of
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FIG. 9. Panel (a) shows the ASCFs at T = 0.260 for the times
t = 1τ and t = 2τ . Note that the blue curve (t = 1τ ) exhibits a broad
shift to the negative intensities, obscured by the oscillations, in the
interval of distance 1.5 < (r/σ ) < 3.5, while it also exhibits a broad
shift to the positive intensities in the interval 3.5 < (r/σ ) < 6.5. The
red curve, corresponding to t = 2τ , exhibits a broad negative inten-
sity in the interval 3.5 < (r/σ ) < 6.5 and a broad positive intensity
in the interval 6.5 < (r/σ ) < 10.0. Thus, as time increases, the
regions of negative and positive intensities shift to larger distances.
As has been discussed in Refs. [33–36,39] this shift of positive and
negative intensities with the increase of time reflects the propagation
of shear stress waves in the system. Panel (b) shows the BSCF
calculated on the same configurations that have been used to produce
panel (a). In contrast to panel (a), the curves corresponding to t = 1τ

and t = 2τ are indistinguishable in panel (b). Thus, the shear stress
waves cannot be observed in the BSCFs themselves. Note, however,
the very different scales on the y axis in panels (a) and (b). Thus,
it may not be surprising that shear stress waves with the amplitudes
shown in panel (a) cannot be seen in panel (b). The shear stress waves
can, however, be extracted from the BSCF curves with the treatment
of the data presented in panel (c). The blue curve in panel (c) shows
the difference between the red and blue curves shown in panel (a).
The green curve in panel (c) shows the difference between the dashed
red and the blue curves presented in panel (b). The red curve in panel
(c) shows the result of the convolution of the green curve with the
Gaussian of width σ = 1. We see that the blue and red curves in panel
(c) are very close to each other and that both of them exhibit a broad
minimum and a broad peak which can be (should be) interpreted as
the signatures of the propagating shear waves.

the tension of the bonds and changes in these values due to
the propagating waves. These changes are much smaller
than the tensions of the bonds. It is also reasonable to
assume that the propagating waves do not alter signifi-

cantly the directions of the majority of the bonds. Under
these conditions one indeed can expect that the propagat-
ing shear waves may not be observable in the BSCF di-
rectly. The situation with the ASCF is different because
all pair forces acting on a selected particle mostly com-
pensate each other. The noncompensated remaining force
is much smaller than the average bond’s tension associ-
ated with the nearest neighbors. This remaining force might
be comparable to the changes in the remaining force due
to the propagating shear waves. This is likely to be the
reason because of which the shear stress waves are directly
observable in the ASCF.

In earlier articles on the mode-coupling theory (MCT)
it has been demonstrated that in order to properly describe
the decay of the transverse current CF, it is necessary to
introduce the coupling between the density fluctuations and
the transverse current correlation function [86–95]. In a recent
article, in order to describe the decay of the macroscopic shear
stress CF, the coupling between the short-time dynamics and
the long-time hydrodynamic modes related to the transverse
current correlation function also has been considered [95].
In our view, the features that we observe in the ASCF and
which we interpret as shear stress waves should correspond
to the transverse current CFs discussed within the MCT.
Finally, recently the behavior of the microscopic shear stress
correlation function has been addressed theoretically [96,97].
In out view, the results presented in [97] support our previous
interpretations of the features that we interpreted as shear and
longitudinal stress waves.

VI. CONCLUSIONS

In this paper, we addressed the atomic scale nature of the
Green-Kubo stress correlation function for viscosity using
the pair-interactions between the particles as the elementary
units of stress. Previously, the atomic level stresses have been
used as the elementary units of stress by us and other authors
[14,15,33–41]. In a different approach the space correlations
in the coarse-grained stress fields also have been considered
[22–24].

The major purpose of the reported research was to inves-
tigate whether the bond-stress correlation functions (BSCFs)
can provide additional information and new insights with
respect to the data already obtained using the atomic-stress
correlation functions (ASCFs). Besides, the considerations of
the BSCF allow one to draw a direct parallel and make certain
comparisons with the results obtained previously within the
bond-orientational order (BOO) approach.

The obtained results show that the long-range structural
correlations are more pronounced in the BSCFs, while the
dynamical correlations are better expressed in the ASCFs.
The long-range bond-orientational order CF considered in
the reported work is closely related to the BSCF originating
from the atomic scale Green-Kubo expression for viscosity.
The considered long-range bond-order CF is related to the
l = 2 spherical harmonics and is different from the long-
range bond-order CFs previously discussed within the BOO
approach. The characteristic feature of the bond-order CF
related to viscosity is that mutual orientations of the pairs of
bonds are relevant to it, while the orientations of the bonds

042904-11



V. A. LEVASHOV PHYSICAL REVIEW E 98, 042904 (2018)

with respect to the direction from one bond to another turn
out to be irrelevant. It is of interest to notice that while the
considerations of the short-range BOO are abundant in the
literature there appear to be only several publications that
address the behavior of the long-range bond-order CFs as
functions of distance [30,45,46,49,58].

The considered BSCF, ASCF, and bond-order CF describe
the averaged values of the correlation products (for a given
value of the distance, r). For the selected distances, we consid-
ered the probability distributions of the correlation products
whose averaging leads to the averaged CFs. The results show
that the individual realizations of the correlation products can
deviate very significantly from their averaged values. This
result shows, in our view, that the developing long-range
correlations that we observe in the averaged values of the
BSCF, ASCF, and the BOO CF are actually so small, after all,
that it is not clear how they can be relevant for the dynamic
slowdown in liquids on supercooling. On the other hand,
according to the Green-Kubo expression, the integrals of these
average CFs over the distance, for every instant in time, is the
contribution to viscosity from this instant. The very slowly
decaying (in time) nonzero values of the distance-integrals of
these correlations lead to the very large values for viscosity of
supercooled liquids.

We also demonstrated that the shear stress waves, pre-
viously observed in the ASCFs, cannot be observed in the
BSCFs directly, but can be easily extracted from the BSCFs.
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APPENDIX: GEOMETRICAL CORRELATIONS BEHIND
THE EXPRESSION (22) FOR Wl

For convenience we reproduce here expression (22):

Wl ≡
∑

m1, m2,m3
m1 + m2 + m3 = 0

(
l l l

m1 m2 m3

)
Qlm1

Qlm2
Qlm3

. (A1)

In expressions (22) and (A1) every BOO parameter for the
considered group of bonds, i.e., Qlm, is a sum of the spherical
harmonics of the same type associated with the bonds in the
group. Thus, the product of the three BOO parameters for the
group can be decomposed into the sum of the contributions
from the triplets of bonds.

The left-hand side of (A1), by construction, does not
depend on the orientation of the observation coordinate
frame. Thus, the averaging of the left-hand side of (A1)
over the directions of the observation coordinate frame is
just the value of the left-hand side in a particular observa-
tion coordinate frame. On the other hand, this value should
be equal to the value of the right-hand side also averaged over
the directions of the observation coordinate frame. Thus, as
follows from the previous paragraph, the spherical averaging
of the right-hand side consists of the spherically averaged
contributions associated with the triplets of bonds. In order
to get an insight into the geometry associated with the triplets
of bonds and influencing the value of the CF Wl we consider,
as an example, the contribution associated with the product
Y20(θ1, φ1)Y20(θ2, φ2)Y20(θ3, φ3), where the angles θn and
φn characterize the orientations of the three bonds. Since
Y20(θ, φ) ∝ 3 cos2(θ ) − 1 (no dependence on φ), the spher-
ical averaging of the product of the three spherical harmonics
Y20(θ, φ) involves the averaging of cos2(θn) and the products:
cos2(θn) cos2(θm), cos2(θ1) cos2(θ2) cos2(θ3).

We averaged these functions of the angles over the di-
rections of the observation coordinate frame using the same
method that has been used in Ref. [38] in order to derive
the expression (16) of this paper. We performed the nec-
essary analytical calculations with the wxMaxima computer
program [98]. Here we provide the final answers without
giving more details on the procedure described previously
(see Appendix A in Ref. [38]). With the notation r̂n =
[cos(φn) sin(θn), sin(φn) sin(θn), cos(θn)], the results are the
following:

〈[cos(θ1)]2〉� = 1
3 , (A2)

〈[cos(θ1) cos(θ2)]2〉� = 1
15 + 2

15 (r̂1r̂2)2, (A3)

〈[cos(θ1) cos(θ2) cos(θ3)]2〉�
= − 1

35 + (r̂1 · [r̂2 × r̂3])2

+ 2
35 [(r̂1r̂2)2 + (r̂1r̂3)2 + (r̂2r̂3)2]. (A4)
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