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Wetting states of two-dimensional drops under gravity
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In this study we give an analytical model for the Young-Laplace equation of two-dimensional (2D) drops
under gravity. Inspired by the pioneering work of Landau and Lifshitz [Fluid Mechanics, 2nd ed. (Pergamon
Press, Oxford, 1987), pp. 242–243], we derive general analytical expressions of the profile of drops on flat
surfaces, which is available for arbitrary contact angles and drop volumes. We then extend the theoretical model
to drops on inclined surfaces and reveal that the contact line plays an important role in determining the wetting
state of the drops: (1) when the contact line is completely pinning, the rear and front contact angles and the
shape of the drop can be uniquely determined by the drop volume, the slope of the inclined surface, and the
contact area; (2) when the contact angle hysteresis is taken into consideration, various mathematical solutions
of the wetting state exist for a drop of given volume on a given surface, but there is only one wetting state
corresponding to a minimum free energy which results from the competition between the capillary force and
gravity. Our theory is in excellent agreement with numerical and experimental results.
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I. INTRODUCTION

When a drop is deposited on a surface, it adopts a specific
shape which is governed by the Young-Laplace equation
[1,2]. Obtaining the solution of the Young-Laplace equation
is fundamentally important for understanding the underlying
physics of wetting, such as the capillary force, adhesion and
friction at the solid-liquid interface, morphology of the liquid,
stability and transition of the wetting state, etc. In the absence
of gravity, drops would adopt a spherical shape. Influences
such as the gravity and the roughness of the surface are of
practical importance in wetting [3–5] and need to be taken into
consideration. One of the earliest and most comprehensive
efforts addressing the gravitational effect on the shape of a
three-dimensional (3D) sessile drop came from Bashforth and
Adams [6,7]; however, there is no known closed solution of
the Bashforth-Adams equation, so some iterative numerical
methods have to be employed. When gravity is considered,
the exact (nontrivial) solutions of the Young-Laplace equation
have been found only in the cases of (1) a fluid in a semi-
infinite domain bounded by a vertical plane wall or (2) for a
fluid between two vertical parallel walls. These results were
both given by Landau et al. [8], and they are solutions for
wetting in two-dimensional (2D) space. Moreover, the charac-
teristic size of the study is on the order of the capillary length
a = (σ/ρg)1/2 [9], in which σ , ρ, and g are the liquid-vapor
surface tension, mass density of the liquid, and gravitational
acceleration.

Sparked by these seminal works, researchers have resorted
to approximate solutions to quantify the relevant questions,
such as the shape and contact angle measurement of drops
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on flat surfaces [7,10–20], pendant drops [21–23], the balance
between the surface tension and gravity for drops lying on
inclined surfaces [10,24–29], drop-on-fiber systems [9,30],
the capillary rise in a wedge or tube [31–35], etc., including
both 2D and 3D cases. However, their utility has a limited
scope because usually the effect of gravity (which is charac-
terized by the Bond number) was assumed to be very small
(Bo = ρgl2/σ � 1, denoting l the size of the drop), or the
value of the contact angle θ (which is used to characterize
the wettability of the surface) was assumed in some specific
regime. When a drop is lying on an inclined surface in the
presence of roughness, the question is more complicated. The
only known exact relationship is for a 2D case [10],

ρgV sin α = σ (cos θrear − cos θfront ), (1)

in which ρ is the areal density of the drop with a cross
section V , θrear and θfront are the rear and front contact angles,
and α is the slope of the surface; when it reaches a critical
value (i.e., sliding angle) the drop begins to slide down the
surface. Equation (1) is simply based on a force balance of
different components of the surface tensions and gravity along
the inclined surface. In Sec. III we will verify that Eq. (1)
is essentially a boundary condition of the Young-Laplace
equation for drops lying on inclined surfaces. For the 3D case,
Eq. (1) is modified to ρgV sin α = kwσ (cos θrear − cos θfront ),
in which w is the width of the solid-liquid contact area and k

is a numerical constant that depends on the shape of the drop
[26]. Unfortunately, even for given values of α and V , we can-
not distinguish θrear and θfront from Eq. (1) alone. Moreover,
we cannot predict the sliding angle via Eq. (1) with certain
values of V and the contact angle θ . Considering these open
questions, exact (nontrivial) solutions of the Young-Laplace
equation for drops under gravity have remained to be explored
further, and more modeling efforts are still needed.
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In the present study, we restrict our analysis to the 2D
problem of drops having a size on the order of the capillary
length, which is a natural extension of the seminal works on
2D wetting [8,10,25], and this simplification is easier to tackle
than the 3D problem. In fact, 2D results have considerable
practical applications to industrial problems, such as the dip-
coating and printing processes, deposition and solidification
of molten materials, anisotropic wettability on striped surfaces
for fluidic control, and directional transport of liquid on solids
[36–40]. In these cases, the dimension of the liquid in one
direction is much larger than it is in the other direction, so the
cross section could be approximately assumed to be a 2D case.
Recently, interest in 2D geometry has increased, and some
results suggest that the physics are almost indistinguishable
between the 2D and 3D cases such as in liquid spreading,
wettability of drops on soft solids, and motion of long bubbles
in channels [41–44]. Here we derive exact analytical solutions
of the Young-Laplace equation for 2D drops lying on both
flat and inclined surfaces. We not only exactly determine
all related quantities (V , the rear and front contact angles,
the profile of the liquid, contact region, free energy, etc.)
without any assumption or approximation, but also reveal the
dependencies among them.

II. GENERAL SOLUTION OF THE SHAPE OF DROPS
LYING ON A HORIZONTAL SURFACE

As shown in Fig. 1, we demonstrate the exact profiles of
two drops lying on horizontal surfaces under gravity in 2D
space. Practically, these shapes correspond to cross sections of
a liquid on surfaces of the aforementioned cases [36–40]. The
shape of the drop is governed by the Young-Laplace equation
κσ = �p, where κ and �p are the curvature and pressure
difference between the liquid and vapour phases at any point
of the meniscus. In Fig. 1 the Young-Laplace equation can be
expressed as

z′′

[1 + (z′)2]3/2
σ = �p0 + ρgz, (2)

in which �p0 is a constant. Previously researchers employed
various approximate methods to solve Eq. (2). The term z′
was usually ignored (i.e., let κ ≈ z′′), and this view obtained a
great success in the field of lubrication [4], but the solution
is limited to small contact angles. For high contact angles,
researchers employed perturbation methods and approximate
solutions [7,16–20] and could also get good results, even
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FIG. 1. Wetting states of 2D drops on horizontal surfaces under
gravity. These profiles are obtained using Eqs. (4) and (5): (a) θ =
60◦, d = 2a; (b) θ = 150◦, d = 2a (the origin of the coordinate
system is not at the center of the solid-liquid contact area; see Fig. 8).

though there is still a lack of comprehensive understanding,
and a general solution which can be applied to any value of
the contact angle remains unaddressed.

The exact solutions of the Young-Laplace equation under
gravity obtained by Landau et al. [8] are applicable only to
the profile of menisci bounded by one or two vertical planes.
However, the modeling could be extended to derive exact
analytical solutions of the wetting state of sessile drops under
gravity. To our best knowledge, the exact solution of Eq. (2)
for 2D drops under gravity has not been reported previously
(see Appendixes A 1 and A 2). We obtain

V = 2a2

[√
A − cos θ

∫ θ

0

cos ξ√
A − cos ξ

dξ − sin θ

]
, (3)

x = ±
√

2a

2

∫ η

0

cos ξ√
A − cos ξ

dξ, η ∈ [0, θ ], (4)

z = −
√

2a
√

A − cos η, η ∈ [0, θ ]. (5)

For a drop of given volume on a given surface (in other
words, θ and V are known parameters), A is a constant (A ∈
[1,∞]) which is uniquely defined by Eq. (3). Subsequently,
the profile of the liquid-vapor meniscus can be obtained using
Eqs. (4) and (5). (Note: in Fig. 1 the origin of the coordinate
system is not at the center of the solid-liquid contact area; see
Fig. 8.) According to Eqs. (4) and (5), we further obtain the
width d of the solid-liquid contact area and the height h of the
drop:

d =
√

2a

∫ θ

0

cos ξ√
A − cos ξ

dξ, (6)

h =
√

2a(
√

A − cos θ − √
A − 1). (7)

Moreover, we use w and rmax to denote the width and half-
width of the liquid phase, w = 2rmax. When 0◦ � θ � 90◦,
we have w = d = 2rmax; when 90◦ < θ � 180◦, we have w =
2rmax > d with

rmax =
√

2a

2

∫ π/2

0

cos ξ√
A − cos ξ

dξ, (8)

h1 =
√

2a(
√

A − √
A − 1),

h2 =
√

2a(
√

A − cos θ −
√

A), (9)

where h1 = z0 − z|r=rmax , h2 = z|r=rmax − z1, and h = h1 +
h2. A combination of Eqs. (3) and (6) leads to

V = 2a2

[√
2

2

(
d

a

)√
A − cos θ − sin θ

]
. (10)

There are two cases which are valuable to be discussed.
First, when A → ∞, we get d ≈ √

2a sin θ/
√

A and h ≈√
2a(1 − cos θ )/2

√
A from Eqs. (6) and (7), respectively,

which results in h/d ≈ (1 − cos θ )/2 sin θ . This case corre-
sponds to very small droplets with a spherical shape because
the effect of gravity can be ignored. Second, when A → 1,
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FIG. 2. Comparisons between theoretical [solid curves, the solutions of Eqs. (6)–(8)] and numerical results [dots, the solutions of Eq. (2)]:
(a) The dependency of h/a on w/a. The contact angle θ ranges from 5◦ to 180◦. When w/a is large enough, h/a → 2 sin(θ/2) [9], as the
plateau shown in each curve. (b), (c) Profiles of drops with a fixed solid-liquid contact region d/a = 2.0 and a fixed volume V/a2 = 1.5,
respectively. Different curves (bottom-up) correspond to θ = 30◦, 60◦, 90◦, 120◦, 150◦, 180◦. The x axis and z axis shown in (b) and (c) are in
scale.

we get d → ∞ and h ≈ 2a sin(θ/2) [9], which indicates big
puddles. In the latter case, when θ ∈ [90◦, 180◦], Eq. (9) re-
duces to h1 ≈ √

2a, h2 ≈ √
2a[

√
2 sin (θ/2) − 1]. This sug-

gests h1 is approximately constant and h relies just on h2. This
essentially implies that if we focus just on the upper part of
the liquid [z � z|r=rmax in Fig. 1(b)], we always get a nominal
puddle with θ = 90◦. Moreover, when A → 1 (d → ∞), the
profile of the liquid-vapor interface of a half puddle (e.g., the
part when x � 0) is similar to the meniscus of an infinitely
long cylinder pressing at a liquid-air interface, which has
received a lot of interest in recent years [45,46].

In order to check the validity of the above theoretical
results, we carry out numerical calculations by employing
a finite element method (Surface Evolver [47]) and make
comparisons between these two ways. In Fig. 2(a) we give
the dependency of h on w. Moreover, we also focus on
specific cases: we fix the dimensionless values of the solid-
liquid contact area at d/a = 2.0 and the volume at V/a2 =
1.5 in Figs. 2(b) and 2(c), respectively, but vary the contact
angle (θ ∈ [30◦, 180◦]). The solid curves represent results
obtained using Eqs. (3)–(5), and the dots are numerical results
extracted from Surface Evolver. Moreover, we also carry
out experiments systematically by employing a commercial
contact angle measurement (OCA20, Dataphysics, Germany).
Considering producing a 2D drop is challenging, but by
employing patterns with hydrophilic and superhydrophobic
regions (details are given in Appendix B), we produce liquid
strips, and its appearance observed from the side view could
be approximately treated as the profile of a 2D droplet. First,
as shown in Fig. 3, we give the evolution of the liquid profiles
with the apparent contact angle (or the area of the cross sec-
tion) on horizontal substrates (the left column). In these cases,
the width of the contact region is fixed at d = 6.3 mm, and
the apparent contact angles range from θ = 36.3◦ to θ =
118.7◦. To make comparisons, we superpose the theoretical
results (using hollow red circles) on the experimental frames,
which repeats the experiments very well. The comparisons
demonstrated in Figs. 3 and 4 suggest that the theory, numer-
ical, and experimental results are in an excellent agreement
with each other.

III. DROPS LYING ON AN INCLINED SURFACE

By employing the same approach but with modified bound-
ary conditions (Appendix A 3), we can quantify the wetting
state of drops on inclined surfaces. As shown in Fig. 4, we
define d as the width of the solid-liquid area and H as the
altitude difference between the left and right contact lines.

(c)

(d)

(a)

(b)

FIG. 3. Comparison of the experimentally and theoretically
obtained liquid profiles. The theoretical results are obtained using
Eqs. (3)–(5) and are represented as hollow red circles. For each
wetting state, the left one is the original experimental image, and
the right one shows the comparison. The width of the solid-liquid
contact region is d = 6.3 mm. The corresponding contact angles
and areas of the cross section are (a) θ = 36.3◦, A = 5.5 mm2;
(b) θ = 67.5◦, A = 8.5 mm2; (c) θ = 87.5◦, A = 11.5 mm2;
(d) θ = 118.7◦, A = 19.5 mm2. The scale bar represents
2.0 mm.
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FIG. 4. Definitions of the geometrical parameters for drops lying on inclined surfaces. α is the slope of the surface, d = dL + dR is the
projected length of the solid-liquid contact area dSL on the x axis, and H = z1 − z2 is the altitude difference between the rear and front contact
lines. We define θrear = β1 + α and θfront = β2 − α, respectively: (a) θrear � α, (b) θrear � α, and (c) θrear � α and the liquid-vapor meniscus
consists of a concave and a convex part (more details are given in Fig. 9).

For convenience, we define θrear = β1 + α and θfront = β2 −
α as the apparent contact angles at the rear and the front
contact points. We have the following three cases. In the
first two cases, θrear � α and θfront � α (which means β1 � 0)
as shown in Figs. 4(a) and 4(b), respectively, the profiles
of the liquid-vapor interface are globally convex and for
convenience can be characterized using the following unified
formulas:

H =
√

2a(
√

A − cos β2 −
√

A − cos β1), (11)

d =
√

2a

2

(∫ β1

0

cos ξ√
A − cos ξ

dξ +
∫ β2

0

cos ξ√
A − cos ξ

dξ

)
.

(12)

In fact, we can write d as d = dL + dR with

dL =
√

2a

2

∫ β1

0

cos ξ√
A − cos ξ

dξ,

dR =
√

2a

2

∫ β2

0

cos ξ√
A − cos ξ

dξ, (13)

and H as H = h2 − h1 with

h1 =
√

2a(
√

A − cos β1 − √
A − 1),

h2 =
√

2a(
√

A − cos β2 − √
A − 1). (14)

For the case in Fig. 4(b), dL, dR, h1 and h2 are virtual
geometrical parameters and not shown. In these first two
cases, A is still a coefficient and A ∈ [1,∞].

However, if the solid-liquid contact area dSL is large
enough, as shown in Fig. 4(c), θrear � α (which also means
β1 � 0), the liquid-vapor meniscus consists of a concave (on
the left) and a convex (on the right) parts. In this case, we
obtain

H =
√

2a(
√

A − cos β1 +
√

A − cos β2), (15)

d =
√

2a

2

(∫ −β1

β0

cos ξ√
A − cos ξ

dξ +
∫ β2

β0

cos ξ√
A − cos ξ

dξ

)
,

(16)

in which β0(� 0) means the slope of the meniscus at z0 (the
curvature κ|z0 = 0), and in this case A = cos β0 ∈ [0, 1]. We
can write d as d = dL + dR with

dL =
√

2a

2

∫ −β1

β0

cos ξ√
A − cos ξ

dξ,

dR =
√

2a

2

∫ β2

β0

cos ξ√
A − cos ξ

dξ, (17)

and H = h1 + h2 with

h1 =
√

2a(
√

A − cos β1),

h2 =
√

2a(
√

A − cos β2). (18)

Similarly to calculating the morphology of the drop on the
horizontal surface, i.e., using Eqs. (4)–(7), the profile of the
drop on the inclined surface can also be obtained. When we
take the value of ξ between [β0, β1] and [β0, β2] in Eqs. (13)
and (14) [or Eqs. (17) and (18)], we can get the corresponding
values of (x, z) and the whole profile of the drop, as shown in
Figs. 5(a) and 5(c).

Interestingly, one can imagine that if d is larger than a
critical value, there will be no existence of physical solution of
the above equations for a sessile drop. Instability and wetting
transition would happen, and the liquid would break up. In
this case, dynamics would be involved, and the corresponding
behaviors are complicated and beyond the scope of this paper.
For further discussion, see the recent Refs. [48–50].

Moreover, the volume of the drops in Fig. 4 can be obtained
(see Appendix A 3):

V

a2
= 1

tan α
[cos β1 − cos β2] − [sin β1 − sin β2]. (19)

Multiplying ρga2 sin α on both sides of Eq. (19) leads to
Eq. (1), which means that Eq. (1) is indeed a natural boundary
condition of the Young-Laplace equation.

In the following, two situations will be discussed: (1)
a completely pinning of the contact line and (2) when the
contact angle hysteresis and a movability of the contact line
are taken into consideration.

A. Complete pinning of the contact line

As a consequence of the inevitable roughness of real
surfaces, the contact line pinning is a very common

042802-4



WETTING STATES OF TWO-DIMENSIONAL DROPS UNDER … PHYSICAL REVIEW E 98, 042802 (2018)

X  a

Z
a

(a)

X  a

Z
a

(c)

(b)

(d)

2V a

2V a   = 0.8

SLd a

SLd a = 1.0SLd a = 1.0

fr
on

t, 
 re

ar
fr

on
t, 

 re
ar

front

rear

front

rear

2V a   = 0.8

FIG. 5. Profile of drops on inclined surfaces with α = 30◦: (a) dSL/a = 1.0, the volume varies as V/a2 = 0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2;
(c) V/a2 = 0.8, the solid-liquid area varies as dSL/a = 0.8, 1.2, 1.6, 2.0, 2.4, 2.8. The solid curves are theoretical results and the dots are
numerical results extracted from Surface Evolver. In (b) and (d), the variation of θrear and θfront are given, corresponding to (a) and (c),
respectively. The red dots and black squares are theoretical results with the solid curves as a guide to the eye.

phenomenon [9]. If the contact line is completely pinned,
for a specific case (i.e., a drop of given volume on a given
inclined surface with a given solid-liquid contact area), V ,
α, and dSL are given, so d = dSL cos α and H = dSL sin α

are also known. Combining Eqs. (1), (11), and (12) [or
Eqs. (15) and (16)] (recall we have defined β1 = θrear − α

and β2 = θfront + α), the three unknown parameters (A, θrear,
and θfront) can be found by solving these three equations. This
case is very different from the case in Sec. II, in which the
only one unknown parameter A is solely determined by using
Eq. (3). Two examples of drops lying on an inclined surface
with α = 30◦ are demonstrated in the following. First, in
Fig. 5(a), the solid-liquid contact area is fixed at dSL/a = 1.0.
Different curves correspond to drops with different volumes,
V/a2 ∈ [0.05, 1.2]. Second, in Fig. 5(c) the volume of
the drop is fixed at V/a2 = 0.8 with a variation of the
solid-liquid contact area dSL/a ∈ [0.8, 2.8]. The solid curves
are theoretical results, which agree well with numerical results
(dots) extracted from Surface Evolver. We give the variation
of θrear and θfront in Figs. 5(b) and 5(d), corresponding to
Figs. 5(a) and 5(c), respectively. Moreover, based on the same
setup as shown in Fig. 3 and Appendix B, we tilt the substrate
to obtain the wetting state of 2D drops, and their side views
are shown in Fig. 6. In this cases, the width of the contact
region is also fixed at d = 6.3 mm. The areas of the cross
section of the frames are similar to each other but with a
distinguished slope of the substrate ranging from α = 8.0◦

to 60.0◦, so the rear contact angles θrear and front contact
angles θfront are very different from each other in different
frames. To make comparisons, we superpose the theoretical
results (hollow red circles) on the experimental frames, which
shows our theory repeats the experiments very well.

The achievement of the above exact solutions of the
Young-Laplace equation guarantees a direct evaluation of a
broad range of physical quantities, which plays an important
role for further understanding of the underlying mechanism
in wetting. For example, one can calculate the free energy
of the drop, which includes two parts, the surface energy Es

and gravitational potential Eg, so E = Es + Eg. Es is defined
using

Es = σSLV + (σSL − σSV)dSL

= σ (SLV − dSL cos θY) (20)

in which θY is the Young contact angle and defined using
cos θY = (σSV − σSL)/σ [1], denoting σ , σSV, and σSL

the liquid-vapor, solid-vapor, and solid-liquid interfacial
tensions, respectively. SLV is the arc length of the liquid-vapor
interface. Considering Eg depends on relative position, we
need a reference level (Z = 0) at which to set the potential
energy equal to 0. For convenience, we always set the front
point of the solid-liquid area at X = 0 and Z = 0, as shown
in Figs. 5(a) and 5(c). The reference level will not alter the
physics in this problem.
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Finally, we obtain the normalized total free energy for Figs. 4(a) and 4(b):

E

aσ
=

√
2

2

(∫ β1

0

A cos ξ + sin2 ξ√
A − cos ξ

dξ +
∫ β2

0

A cos ξ + sin2 ξ√
A − cos ξ

dξ

)
+

√
2V

a2

√
A − cos β2 − 1

6

(
d

a

)3

tan2 α

−
(

d

a

)[√
(A − cos β1)(A − cos β2) + cos θY

cos α

]
. (21)

For Fig. 4(c), we obtain

E

aσ
=

√
2

2

(∫ −β1

β0

A cos ξ + sin2 ξ√
A − cos ξ

dξ +
∫ β2

β0

A cos ξ + sin2 ξ√
A − cos ξ

dξ

)
+

√
2V

a2

√
A − cos β2 − 1

6

(
d

a

)3

tan2 α

+
(

d

a

)[√
(A − cos β1)(A − cos β2) − cos θY

cos α

]
. (22)

From the definition of Es in Eq. (20), we know that for a
complete contact line pinning case, dSL cos θY is a constant, so
the Young contact angle θY has no contribution for determin-
ing the profile of the liquid-vapor meniscus. In other words,
let us give insight in view of energy. For given values of V , α,
and dSL, there are infinite mathematical solutions of the liquid
profile (correspond to various values of A, θrear, and θfront), but
the one in the real case must be with the minimum free energy
(i.e., corresponding to δE = 0), and the solutions are Eqs. (1),
(11), and (12) [or (15) and (16)]. Since δ(dSL cos θY) = 0, so
the intrinsic contact angle θY contributes only to the value of
the total free energy.

Moreover, the results obtained in this section are consistent
with the results of the drop lying on a flat surface (α = 0◦).
In Sec. I we never introduce any contact angle hysteresis
or line pinning, so θ = θrear = θfront, and Eqs. (12) and (14)
degrades to Eqs. (6) and (7), respectively. For a drop of given
V and θ , A can be determined from Eq. (3), and then d can
be determined naturally from Eq. (6) [otherwise, if V and d

are known, A and the apparent contact angle θ can also be
determined by the combination of Eqs. (6) and (10)].

B. Movable contact line

As shown in Sec. III A, for a drop of given volume V

on an inclined surface with a certain value of α, if dSL is
fixed, θrear, θfront and the profile of the liquid phase are fixed.
However, in practice contact angle hysteresis is observed,
the apparent contact angle could take values ranging from
the so-called advancing (maximal) contact angle θA to the
receding (minimal) contact angle θR. In this section we take
consideration of the contact angle hysteresis and discuss a
situation if the drop could have different values of dSL, θrear,
and θfront (θR � θrear < θfront � θA).

As one example, we fix the volume of the drop and the
slope of the inclined surface at V/a2 = 0.8 and α = 30◦,
respectively. For different values of dSL, θrear and θfront could
take different values, and the shape of the drop could take
different profiles as well [see Figs. 5(c) and 5(d)]. However,
one can imagine that among these possible wetting states, the
total free energy of the drop would be different. If the contact
line does not pin seriously, the drop might adjust its shape
(e.g., though varying dSL) and choose a wetting state with the
minimum free energy.

To verify our conclusion, we give the dependency of E (the
red circular dots) on dSL as shown in Fig. 5. We can see there
is a minimum value (Emin) exists, and this state can be exactly
characterized by a combination of [based on Eq. (21) or (22)]

dE

ddSL
= 0 (23)

and Eqs. (1), (11), and (12) [or Eqs. (15) and (16)]. The
four unknown parameters [A, θrear, θfront, and dSL (or d)]
can be thereby uniquely determined by these four equations.
Therefore, we find the wetting state with Emin (maybe the
most likely wetting state) when the contact angle hysteresis
is involved.

Unfortunately, the problem is further complicated by the
fact that A, θrear, θfront, and dSL are functions of each other
and they are coupled. So far we could not express Eq. (23)
using an explicit formula, and we leave this open question for
further research. Instead, by employing a numerical method,
we can solve these four equations and find the corresponding
wetting state. We mark the resulting Emin and dSL in Fig. 7
using a green asterisk. In Fig. 7, Emin/aσ corresponds to
dSL/a ≈ 1.34.

Moreover, from Figs. 5(c) and 5(d), we can see the math-
ematical solution of the apparent contact angle θrear and θfront

exists over quite a large range. However, in the real material
system, the apparent contact angle usually falls between a
limited scope, θ ∈ [θR, θA], which indicates that even though
we have constructed a closed solution to determine the wetting
state of sessile drops, the mathematical model still could not
include all the physics. Figure 7 shows that some of the
wetting state owns a relative larger free energy, for instance,
dSL/a = 2.8 compared with dSL/a = 1.34, so maybe it is the
reason why such state could not exist in practice. Moreover,
even real materials could exhibit similar contact angles, and
the contact angle hysteresis could be completely different. For
example, a very high contact angle could be achieved on the
petal’s surface of a rose, but a very high adhesive force exists
between the surface and sessile drops [51]. So influences such
as adhesion, the ability of the liquid meniscus to detach from
the surface, the strength of the contact line pinning, etc., have
to be taken into consideration. These influences may result
from the properties of specific material and liquid systems and
need to be involved by employing more elaborate models in
the future.
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(b)

(c)

(d)

(a)

FIG. 6. Comparison of the experimentally and numerically ob-
tained liquid profiles on tilted substrates with d = 6.3 mm. Frames
on the right column is the combination of original experimental
frames (on the left column) and the theoretical results (hollow red
circles). The corresponding parameters α, A, θrear , and θfront are (a)
8.0◦, 10.4 mm2, 67.1◦, 72.3◦; (b) 24.0◦, 8.4 mm2, 48.1◦, 79.0◦; (c)
43.0◦, 9.0 mm2, 39.2◦, 86.9◦; (d) 60.0◦, 9.9 mm2, 33.9◦, 98.2◦. The
scale bar represents 2.0 mm.

IV. CONCLUDING REMARKS

In this paper we have derived exact analytical solutions
of the Young-Laplace equation for 2D drops under gravity,
which allow the shape of the drops and other related geo-
metrical parameters (e.g., d, h, θrear, and θfront) to be fully
determined. The excellent agreement between the experimen-
tal and theoretical results demonstrated makes such solutions
good candidates for the description of 2D drops beyond the
capabilities of the lubrication approximation or other types
of perturbation solutions (in powers of Bo as the small pa-
rameter). Although 2D drops are of theoretical (rather than
practical) interest, the existence of an exact analytical solution
is a potentially useful step for future studies of industrial
processes in a 2D case [36–40].

We believe that the results presented in this work provide a
rather important platform for extensions of a number of funda-
mental directions in wetting. First, instead of constant values

s

g

min

SLd a

FIG. 7. Dependency of the normalized energy E/aσ on dSL/a.
These results correspond to Figs. 5(c) and 5(d), in which V/a2 =
0.8 and α = 30◦. The red circular dots and blue upward-pointing
and black downward-pointing triangles represent numerical results
(Surface Evolver) of E, Es, and Eg, respectively. The cross symbols
are the corresponding theoretical results. The green star indicates a
wetting state corresponding to Emin/aσ .

of α and V , we could investigate the dependency of θrear,
θfront, and dSL on α or V . We believe there are some critical
parameters that account for a series of interesting phenomena,
such as when the rear contact line will break up, when the
drop will run down the slope, etc. Second, introducing con-
tact angle hysteresis �θ and assuming θrear = θ − �θ/2 and
θfront = θ + �θ/2 may give us perspectives from a different
view. Third, since elliptic integrals are widely utilized, we
suggest finding explicit expressions using an asymptotic way
built on the exact solutions we have constructed, which would
be easier to use and more robust than previous methods which
rely on various approximations (z′ ≈ 0 or Bo � 1). Fourth,
considering that interactions are particularly important near
the solid-liquid-vapor three-phase contact line, additional con-
tributions such as the Derjagin’s disjoining pressure and the
elasto-capillarity [9] are worth being explored in further study.
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APPENDIX A: MODELING AND DEDUCTION
OF THE GENERAL SOLUTION

Differently from the work of Landau et al. [8], in which
they considered only a hydrophilic case and the contact angles
between the liquid and each side of the two walls are equal
[Fig. 8(a)], we extend the discussion to arbitrary contact an-
gles (α ∈ [0◦, 180◦] and α1 
= α2 
= α3 
= α4). Built on these,
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FIG. 8. Wetting and modeling: (a) a 2D meniscus between two
plates under gravity. α = 150◦, d/2 = a; (b) a 2D drop under gravity.
θ = α − π/2 = 60◦, d = 2a; (c) a 2D meniscus between two plates
under gravity. α = 150◦, and there is a gap between the bottom walls;
a drop is formed with θ = α = 150◦ and d/2 = a; (d) a 2D drop
under gravity. θ = 150◦, d = 2a.

we can find exact solutions of the Young-Laplace equation for
2D drops on horizontal and inclined surfaces.

1. Hydrophilic state

The key idea is that when we make a comparison between
Figs. 8(a) and 8(b), we can conclude that the shape enclosed
by the meniscus between the two walls and the horizontal
dashed line in Fig. 8(a) (as shown in red) is the same as the
shape of the 2D drop in Fig. 8(b) in the case (1) θ = α − π/2
or (2) the distance between the two walls is equal to the width
of the 2D drop. This analysis suggests if we can obtain the
profile of the meniscus in Fig. 8(a), we can get the profile of
the 2D drop in Fig. 8(b).

On the basis of the Young-Laplace equation [Eq. (2)]
and the boundary conditions as shown in Fig. 8(a) z|x→∞ =
0, z′|x→∞ = 0, z′′|x→∞ = 0, we get

z

a2
− z′′

[1 + (z′)2]3/2
= 0. (A1)

A first integral of Eq. (A1) leads to

z2

2a2
= A − 1√

1 + (z′)2
, (A2)

in which A is a constant. We have to emphasize that Eqs. (A1)
and (A2) are both valid for any part of the meniscus (in other
words, the menisci inside and outside of the two vertical
parallel walls) even though the menisci are not continuous
at the wall. However, the differential equation cannot be
solved over the entire domain x ∈ [−∞, ∞]. To obtain the
solution of the profile of the meniscus, corresponding bound-
ary conditions of each part have to be taken into consid-
eration. Here we just focus on the meniscus between the
two walls. Regarding z′|x=0 = 0 and z′|x=d/2 = 1/ tan α, we
can obtain z0 = z|x=0 = −√

2a
√

A − 1 and z1 = z|x=d/2 =
−√

2a
√

A − sin α.
By using a transformation [8] z = −√

2a
√

A − cos ξ , in
which ξ is a variable and ξ ∈ [0, α − π/2], and replacing α

FIG. 9. Modeling and calculations of the menisci. The black
solid lines represent solid walls in a liquid. There are some gaps
between the walls in (a) and (c). The red solid and dashed lines
represent the liquid-vapor and solid-liquid interface of the virtual
drops. O is the origin of the coordinate system. (a) θrear = 51.2◦,
θfront = 76.9, dSL/a = 2.0, V/a2 = 0.8, z0/a = −0.63, z1/a =
−0.73, z2/a = −1.72; (b) θrear = 15.3◦, θfront = 20.0, dSL/a = 1.0,
V/a2 = 0.05, z1/a = −0.40, z2/a = −0.90; (c) θrear = 8.4◦, θfront =
84.9, dSL/a = 4.0, V/a2 = 1.8, z0/a = 0, z1/a = 0.33, z2/a =
−1.68, β0 = 10.8◦. They correspond to panels (a–c) in Fig. 4; α =
30◦.

by θ = α − π/2, we can get the values of x, z, and V [see
Eqs. (3)–(5)]:

x =
∫ η

0

dx

dz

dz

dξ
dξ =

√
2a

2

∫ η

0

cos ξ√
A− cos ξ

dξ, η ∈ [0, θ ],

(A3)

V = 2
∫ d/2

0
z dx = 2

∫ θ

0
z

dx

dz

dz

dξ
dξ

= 2a2

[√
A − cos θ

∫ θ

0

cos ξ√
A − cos ξ

dξ − sin θ

]
. (A4)

2. Hydrophobic state

When θ ∈ [90◦, 180◦], similar ideas could also be em-
ployed: we assume there is a gap between the two bottom
walls [see Fig. 8(c)], and because of the pressure difference
between the middle and the outside walls, there will be a
drop formed, and its shape [enclosed using the red color in
Fig. 8(d)] will be the same as the drop shown in Fig. 8(d) in the
case they have the same values of θ and d. After performing
similar calculations as shown in Sec. A 1, we can obtain the
same equations, Eqs. (3)–(10).

3. Drop lying on an inclined surface

Last, using a similar idea, we model the wetting of drops
lying on inclined surfaces, as shown in Fig. 9. We either
use two walls with different contact angles [Fig. 9(b)] or use
an inclined slope between the two walls with some gap in
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the middle [see Figs. 9(a) and 9(c)]. The virtual 2D drops
are enclosed using red curves, and the solid and dashed red
curves represent the liquid-vapor and solid-liquid interfaces,
respectively. The rear and front contact angles θrear and θfront

are also marked. By employing proper boundary conditions,
the liquid could form shapes as given in Fig. 9. Here we
have to emphasize that just for the sake of simplicity, the
menisci outside of the two vertical parallel walls are given as
flat surfaces (e.g., θ = 90◦ between the outside walls and the
liquid), which will not vary the physics of the menisci between
the walls.

The reason for us to employ such modeling is that in this
way we can easily apply the boundary conditions z|x→∞ =
0, z′|x→∞ = 0, z′′|x→∞ = 0 to Eq. (2) to get Eq. (A1). After
that, we get Eq. (A2), and this step is very useful for obtaining

the other relationships. This is the key difference between our
idea and the previous methods for handling this question. Oth-
erwise, if we start modeling from a 2D sessile drop, the way to
find the analytical solution is not so obvious. In the pioneering
work of Frenkel [10], even though the modeling was started
based on some analytical formula, later some assumptions
were made and approximate solutions were given. We have
to emphasize that the idea put forward in this paper should
not be the unique way to solve the Young-Laplace equation
for 2D sessile drops on flat and inclined surfaces, there maybe
various methods, but the way we carried out is really feasible
to easily find the solution.

The other related quantities such as h, d, V , and E of the
drops on inclined surfaces as shown in Figs. 4 and 5 can also
be obtained. For Figs. 4(a) and 4(b), we obtain

V

a2
=

√
2

2

(
d

a

)(√
A − cos β1 +

√
A − cos β2

)
− (sin β1 + sin β2), (A5)

SLV =
√

2a

2

(∫ β1

0

1√
A − cos ξ

dξ +
∫ β2

0

1√
A − cos ξ

dξ

)
, (A6)

Ep

aσ
= (A − cos β2)

(
d

a

)
−

√
2
√

A − cos β2(sin β1 + sin β2) − 1

6

(
d

a

)3

tan2 α

+
√

2

2

(∫ β1

0

√
A − cos ξ cos ξ dξ +

∫ β2

0

√
A − cos ξ cos ξ dξ

)
. (A7)

For Fig. 4(c) we obtain

V

a2
=

√
2

2

(
d

a

)(√
A − cos β2 −

√
A − cos β1

)
− (sin β1 + sin β2), (A8)

SLV =
√

2a

2

(∫ −β1

β0

1√
A − cos ξ

dξ +
∫ β2

β0

1√
A − cos ξ

dξ

)
, (A9)

Ep

aσ
= (A − cos β2)

(
d

a

)
−

√
2
√

A − cos β2(sin β1 + sin β2) − 1

6

(
d

a

)3

tan2 α

+
√

2

2

(∫ −β1

β0

√
A − cos ξ cos ξ dξ +

∫ β2

β0

√
A − cos ξ cos ξ dξ

)
. (A10)

A combination of either Eqs. (11) and (A5) or Eqs. (15)
and (A8) leads to Eq. (19).

APPENDIX B: EXPERIMENTS

In this section, we give details of the experimental proce-
dures to illustrate how we obtain 2D liquid strips.

To realize this aim, in the first step, we create striplike re-
gions with different wetting properties on a silicon wafer. The
fresh silicon wafer is firstly cleaned by ethanol and deionized
(DI) water and dried. Then a tape with width d = 6.3 mm
is attached on it. After that, we coat such substrate with a
commercial coating agent (Glaco Mirror Coat “Zero,” Soft 99)
containing nanoparticles and an organic reagent [52]. Then the
tape is carefully detached, and the bare silicon wafer substrate
is exposed. Because the region under the tape is protected
in advance, it is still hydrophilic, and the apparent contact
angle is θ∗ = 74.4 ± 3.0◦. The regions on the two sides of the

d(I)

(II)

(II)

FIG. 10. Top view of the wetting state of an obtained liquid
strip on a horizontal surface. The striplike region (I) with width
d = 6.3 mm represents the hydrophilic part which is confined by
two superhydrophobic regions denoted using (II).
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hydrophilic region are superhydrophobic, corresponding to
the apparent contact angle θ∗ = 154.0 ± 2.0◦. By employing
this way, a heterogeneous substrate with a hydrophilic region
confined by two superhydrophobic regions is obtained, as
shown in Fig. 10.

Next, DI water is carefully deposited onto the hydrophilic
region by employing a syringe. After water attaches the
hydrophilic region, the solid-liquid-vapor three-phase contact
line starts to spread along the direction of the strip until it pins
because of the contact angle hysteresis. However, two contact
lines at the boundary of the hydrophilic and superhydrophobic
regions which are perpendicular to the spreading direction
always pin. Because of the pinning of the contact line at

the two ends of the liquid strip, by adding different volumes
of water, liquid strips with the same width d of the solid-
liquid contact region but different contact angles θ (from the
side view) and areas of the cross section A are achieved,
as shown in Fig. 3. Typically, the length of the water strip
is in the range of 18–25 mm when θ < 90◦ and 12–15 mm
when θ > 90◦. In order to get the profile of the liquid on
a slope, we just tilt the substrate, as shown in Fig. 6. Since
the length of the liquid strip is much larger than its width
and the contact lines constrained on the boundaries of the
hydrophilic and superhydrophobic regions are quite straight,
we treat the side view of the liquid strip as the profile of a 2D
drop.
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