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Impact of anisotropic interactions on nonequilibrium cluster growth at surfaces
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Using event-driven kinetic Monte Carlo simulations, we investigate the early stage of nonequilibrium surface
growth in a generic model with anisotropic interactions among the adsorbed particles. Specifically, we consider
a two-dimensional lattice model of spherical particles where the interaction anisotropy is characterized by a
control parameter η measuring the ratio of interaction energy along the two lattice directions. The simplicity of
the model allows us to study systematically the effect and interplay between η, the nearest-neighbor interaction
energy En, and the flux rate F , on the shapes and the fractal dimension Df of clusters before coalescence. At
finite particle flux F we observe the emergence of rodlike and needle-shaped clusters whose aspect ratio R

depends on η, En, and F . In the regime of strong interaction anisotropy, the cluster aspect ratio shows power-law
scaling as function of particle flux, R ∼ F −α . Furthermore, the evolution of the cluster length and width also
exhibit power-law scaling with universal growth exponents for all considered values of F . We identify a critical
cluster length Lc that marks a transition from one-dimensional to self-similar two-dimensional cluster growth.
Moreover, we find that the cluster properties depend markedly on the critical cluster size i∗ of the isotropically
interacting reference system (η = 1).
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I. INTRODUCTION

The nonequilibrium surface growth of atomic systems by
means of epitaxial layer growth has been intensively studied
over the last decades. Several aspects from the submonolayer
to the multilayer growth regime have been experimentally
investigated in detail by atomic force microscopy [1–17],
scanning tunneling microscopy [18–21], high or low energy
electron diffraction [22–28], Raman [29] and Auger electron
spectroscopy [30] experiments. Recently, also x-ray scatter-
ing studies of epitaxially grown thin films have been per-
formed [31–38]. Furthermore, such purely inorganic systems
are theoretically well studied by means of rate equation
approaches [39–53] and kinetic Monte Carlo simulations
(kMC) [54–57]. Theoretical and numerical results for the
cluster density, cluster size distribution, evolution of layer
coverages, and the global interface width are qualitatively
in good agreement with experimental data for the growth of
certain atomic systems [39–52]. Moreover, good agreement
between experimental data and kMC simulations was also
found for the growth of the organic molecule fullerence
C60 [31].

The above mentioned observables along with the shape of
clusters in the submonolayer regime are of peculiar interest
regarding the fact that clusters formed in the early stage
of thin film growth provide the basis for further nucleation
and growth in higher layers. Indeed, depending on properties
of initially nucleated clusters, the morphology of the grown
structure can drastically vary in the multilayer regime. This
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may strongly affect mechanical, optical, and electrical proper-
ties of thin film devices [33,38].

In this study we investigate the submonolayer growth of
systems with anisotropic interactions. However, we note that
even atomic systems can exhibit some kind of anisotropy. For
example, Cu grown epitaxially on Pd(110) in the temperature
regime below 300 K has revealed a diffusion anisotropy,
which is responsible for the formation of one-dimensional
clusters [58]. At higher temperatures, transverse diffusion
of adsorbed Cu atoms sets in, leading to isotropic diffu-
sion and the formation of regular two-dimensional clusters.
Another example is the growth of Ag on fcc metal (110)
surfaces: Quenched molecular-dynamics simulations [59,60]
have shown that the energy barriers and interaction energies
for in-plane bonds parallel [(11̄0)] and normal [(001)] are
not identical, which implies anisotropic interactions among
adsorbed atoms. By varying the adsorption rate F or the
substrate temperature T , a rich variety of cluster morphologies
from small isotropic clusters to one-dimensional and elon-
gated two-dimensional clusters is observed [61,62]. A further
example involves the growth of Zn crystals on isotropic
liquid surfaces. This system is known to produce rodlike
and needle-shaped clusters with preferential lattice direction
for particle attachment [63], and therefore also implies a
form of interaction anisotropy among the adsorbed Zn atoms.
These studies indicate that the ratio � = D0(T )/F of the free
diffusion D0(T ) over adsorption rate F not only influences
the cluster density (which is well understood [39–41]), but
also the cluster morphology. However, details of the interplay
between � and cluster morphologies under nonequilibrium
growth conditions in presence of interaction anisotropy are,
so far, not well understood.

This is even more the case for systems of conjugated
organic molecules (COM). In contrast to most atomic systems
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or systems of nearly spherical organic molecules like fullerene
C60, elongated organic molecules like diindenoperylene, p-
sexyphenyl (6P), the perylene derivative PTCDI-C8 or pen-
tacene are known to generally interact anisotropically with
each other when adsorbed on both organic and inorganic
substrates [33,35,37,38,64–69]. Therefore, one expects rather
complex cluster shapes and corresponding changes in the
cluster density, cluster size distribution, and the coalescence
behavior in the submonolayer growth regime as compared to
atomic systems. But also when we tend towards multilayer
growth, the behavior of organic and hybrid inorganic-organic
systems (HIOS) can strongly differ from isotropically inter-
acting systems.

The structural and chemical flexibility of organic
molecules is one of the main reasons for the production
of hybrid inorganic-organic thin film devices. For example,
the partial fluorinated derivative 6P-F4 of the prototypical
organic semiconductor para-sexiphenyl 6P is known to grow
in a distinctly different morphology than 6P on the nonpolar
ZnO(101̄0) surface [33]. For 6P, needle-shaped clusters of flat
lying molecules are found in the second layer. In contrast to
this, fluorinated 6P-F4 grows in an upright standing fashion
with smoother surface morphology than 6P. These examples
show the impact of small chemical variations, which change
the anisotropic particle-particle and particle-substrate interac-
tions, on the growth mode.

In order to get a deeper insight in how anisotropic interac-
tions affect the nonequilibrium surface growth, we here study
the submonolayer growth by means of event-driven kMC sim-
ulations [70,71] involving spherical particles with anisotropic
nearest-neighbor interactions. The simulations are performed
on a two-dimensional square lattice. Particles are adsorbed
on the lattice at rate F and hop between nearest-neighbor
sites until they meet other particles, yielding in-plane bonds
that reduce the hopping rate. We vary the interaction energy
and the degree of anisotropy of bonds to study the effect
of modified interparticle interactions on structurally altered
organic molecules to mimic effects like different polarities.
Thereby, the effect of interaction anisotropy on the shapes of
clusters formed in the very early stage of thin film growth is
analyzed in detail.

The rest of the paper is organized as follows. In Sec. II A,
we describe the event-driven kMC simulation setup and the
growth model with anisotropic interactions. In addition, we
introduce in Sec. II B an anisotropic version of the Eden
growth model. Numerical results for cluster properties for
different system settings under nonequilibrium growth condi-
tions are presented in Sec. III. We close with a brief summary
and conclusions in Sec. IV.

II. MODEL AND METHODS

A. The kMC model with anisotropic interactions

During the nonequilibrium growth process simulated
by a kMC algorithm, particles are adsorbed on an initially
empty square lattice with an effective adsorption rate F given
in monolayer per minute (ML/min). Once adsorbed, they
perform activated Arrhenius-type hopping processes to a
randomly chosen nearest-neighbor lattice site. The hopping
rate rij ∼ exp(−β�E) from lattice site i to a neighboring

site j is determined by an activation energy barrier �E which
involves up to three contributions: (I) an in-plane diffusion
barrier Ed , (II) an additional out-of-plane diffusion barrier for
hopping across step edges Ees , and (III) a nearest-neighbor
interaction energy contribution En. In systems with isotropic
nearest-neighbor interactions, the corresponding energy
contribution (III) depends on the interaction energy En

of a two particle bond and on the number n = ∑
〈ij 〉 oij

of occupied in-plane nearest-neighbor lattice sites (where
oij = 0 if the neighboring site j is unoccupied and oij = 1 if
j is occupied). The total contribution of the interaction energy
to the hopping rate rij then reads as

∑
〈ij 〉 oijEn = nEn. Here,

we consider anisotropic nearest-neighbor interactions, where
not only the number n of in-plane bonds, but also their
configuration, matters.

To this end, we define the interaction anisotropy parameter
η ∈ [0, 1] which changes the nearest-neighbor interaction en-
ergy of in-plane bonds along the y axis (Ey

n = ηEn) relative to
that along the x axis (Ex

n = En). Thereby, we model generic
properties of anisotropic interactions (which are essentially
omnipresent for conjugated organic molecules, but also for
some atomic systems [61–63]) combined with a global sym-
metry breaking, e.g., an external electric field.

Possible real systems corresponding to our model might
be organic oligomers on the (1010) surface of a ZnO semi-
conductor. The surface generates an electric field that induces
dipole moments in the adsorbed molecules along the field
direction [72], yielding anisotropic dipolar interactions. To
give a further example, anisotropic dipolar interactions oc-
cur between partially fluorinated organic molecule such as
di-fluorinated para-sexiphenyl (6P-F2) [33]. In our model,
setting η = − 1

8 mimics the interaction of parallel aligned
neighboring dipoles. Furthermore, the situation with η < 1
may describe systems where a lattice direction of preferred
particle attachment exists. This is the case for the growth
of elongated and needle-shaped Zn crystals on isotropic sur-
faces [63] and the growth of Ag clusters on fcc metal (110)
surfaces [61,62]. In principle, both of these systems can be
considered with our model.

One important peculiarity of our system is the fact that
the particle shape remains isotropic. This allows us to study
the impact of anisotropy in the interactions alone, without ac-
counting for steric effects. Clearly, the latter effects are ubiq-
uitous in a lot of realistic anisotropic systems such as films of
organic molecules. However, from the simulation perspective,
anisotropic particle shapes lead to additional complications
such as blocked pathways for hopping processes, overhangs
of adsorbed particles, and the difficult question as to how
the out-of-plane diffusion of anisotropically shaped particles
should be treated [68,73–76]. We consider the present sim-
plified model as a first step to the overall goal to better
understand the effect of anisotropic interparticle interactions
under nonequilibrium growth conditions.

An illustration of the kMC model setup is shown in Fig. 1.
The total interaction energy of a particle at site i reads as
(nx + ηny )En, where nx is the number of occupied lateral
neighbor sites along the x direction, while ny is the same
for the y direction. For η = 1, the model thus reduces to
the isotropic case [with total interaction energy (nx + ny )En

= nEn], while η < 1 represents the situation with anisotropic
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FIG. 1. Illustration of our model system for the nonequilibrium
cluster formation and lateral growth in presence of anisotropic
interactions. The in-plane interaction between particles on nearest-
neighbor sites in x direction is denoted by Ex

n = En. The parameter η

controls the degree of interaction anisotropy. For η = 1 interactions
are isotropic, while for η < 1, the interaction energy Ey

n = ηEn of
bonds in y direction is lowered relative to Ex

n .

interactions among the adsorbed particles. Specifically, de-
creasing η leads to an increase of the anisotropy of interparti-
cle interactions. The resulting expression for the hopping rate
from an initially occupied site i to the final site j is given by
the Clarke-Vvedensky bond-counting ansatz [70,71]

rij = ν0 exp{−β[(nx + ηny )En + Ed + sijEes]}. (1)

Here, we have introduced the attempt frequency ν0 =
2kBT /h, where kB is the Boltzmann’s constant, T the sub-
strate temperature, and h the Planck constant. Further, β =
1/kBT . The first term in the exponent [(nx + ηny )En] de-
scribes the contribution to the total activation energy barrier
�E that stems from in-plane interparticle bonds, while the
second and third terms represent the in-plane (Ed ) and out-
of-plane diffusion barrier (Ees), respectively. The latter leads
to a reduced rate for diffusion processes across step edges
(where sij = 1) by a factor α = exp(−βEes ). The case sij = 0
corresponds to pure in-plane diffusion.

The simulation consists of a sequence of iterations. After
each iteration step, where either a particle performed a hop-
ping process to a randomly chosen nearest-neighbor lattice
site or a new particle got adsorbed, the simulation time is
updated in a stochastic manner by a time step τ . The latter
is calculated according to

τ = − ln(R)

rall
, (2)

where R ∈ (0, 1] is a random number which is chosen uni-
formly from the given interval and rall is the sum of rates
related to all particles adsorbed in the topmost layer on the
surface. In other words,

rall =
L2∑
i=1

⎛
⎝ 4∑

j=1

rij + F

⎞
⎠, (3)

where L is the lateral length of the discretized simulation box.
Following earlier studies [54–57], we do not allow the collec-
tive diffusion of clusters and forbid overhangs and vacancies
in the simulations. This means that the solid-on-solid (SOS)
condition is applied to the system.

For all simulations in this work, we set the energy barrier
for free diffusion to Ed = 0.5 eV. We choose this value
because it is a good approximation for several real systems
ranging from organic molecules like C60 to inorganic systems
like Ag or Pt [31,54]. The out-of-plane diffusion barrier is
set to Ees = 0.1 eV for the same reason. The adsorption rate
is varied between F = 1 ML/min and F = 100 ML/min,
while the temperature is fixed to T = 313 K, a commonly
used temperature in experimental growth studies with organic
molecules [24,31]. If not stated otherwise, the coverage is set
to θ = 0.05. This low coverage is chosen to make sure that
coalescence of clusters has not yet set in. The simulations
are performed at different values of the interaction energy and
the anisotropy parameter in the ranges En ∈ [0.10 − 3.0] eV
and η ∈ [0, 1], respectively. By this we study the interplay
between En and η concerning properties of growing clusters
in the submonolayer growth regime when anisotropic interac-
tions are present.

B. Anisotropic Eden growth model

The kinetic Monte Carlo algorithm described in Sec. II A
mimics the kinetically driven growth of thin films based
on Arrhenius-type activation energy-dependent process rates.
One goal of this study is to compare the kMC results with
those from an anisotropic stochastic Eden growth model. The
latter is more elementary in the sense that it simulates cluster
growth simply by attachment of particles to an existing cluster.
This implies essentially the neglection of computationally
costly hopping processes that usually dominate in kMC simu-
lations, especially under realistic growth conditions [77–83].

Within the Eden model, a cluster on the discretized two-
dimensional lattice space L2 is defined as a finite subset
C ∈ L2 of occupied lattice sites. At the boundary of such a
cluster, unoccupied sites ∂C that possess at least one occupied
neighbor site

∂C = {j ∈ Z2 C : ∃i ∈ C → ‖i − j‖ = 1} (4)

represent the set of growth sites which have a nonzero prob-
ability to be occupied in an iteration step during the cluster
growth process. On a square lattice there exist four different
types of nodes ∂kC (k = 1, 2, 3, 4), where k is the number
of occupied neighbor sites. Therefore, the total boundary is
simply given by ∂C = ∂1C ∪ ∂2C ∪ ∂3C ∪ ∂4C.

The cluster at initial time t0 = 0 is a fixed connected set
C0 ⊂ Z2. In our case, the initial cluster at t0 consists of just
a single occupied site in the middle of the lattice. Thus,
there exist four growth sites in the first iteration step. In each
step tn → tn+1 one of the growth sites ∂C is occupied and
the cluster grows Cn → Cn+1 by one lattice site. The prob-
ability pi for particle attachment at boundary site i depends
on its local environment, namely, the number of occupied
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nearest-neighbor sites snn:

pi =
∑
〈i,j 〉

snn
j , (5)

where snn
j = 1 if the neighboring site is occupied, snn

j = 0 for
unoccupied neighbor sites, and the sum 〈i, j 〉 is taken over all
nearest neighbors of site i. Therefore, only growth sites with
at least one neighboring cluster site have a nonzero probability
pi to be occupied during the cluster growth process.

In order to model anisotropic interactions, we split the oc-
cupation probability pi for lattice site i into two contributions
related to the x and y directions and impose an imbalance
between these two directions. The anisotropy parameter ξ

determines the reduced attachment probability for particles
along the y direction [79]:

pi = px
i + p

y

i =
∑
〈i,j〉x

snn
j + ξ

∑
〈i,j 〉y

snn
j . (6)

Here, 〈i, j 〉x denotes occupied neighbors along the x direction
and 〈i, j 〉y along the y direction. Consequently, p

y

i < px
i , if

ξ < 1. We normalize all probabilities p̃i = pi/
∑c

j=1 pj such
that

∑
p̃i = 1. The attachment anisotropy in the stochastic

Eden model mimics the interaction anisotropy in the kMC
simulations and it results in the formation of elongated clus-
ters for ξ < 1 [79].

The actual simulation proceeds as follows. In each iteration
step, we pick a random number r ∈ [0, 1] from a uniform
interval. If r ∈ [p̃i , p̃i+1], we choose site i to be occupied in
this step. Different values for ξ are used to study the effect of
anisotropic interactions on the growth of clusters. The results
are compared to clusters from the kMC simulations to check
whether this minimal model is able to produce clusters with
the same properties.

C. Target quantities

1. Spatial extension of clusters

In order to study how anisotropy in the interparticle in-
teraction affects the shape of growing clusters, we calculate
the average length L of clusters in x direction as function of
cluster size S. The latter is the number of particles a cluster
consists of. We further calculate the extension of the cluster
in y direction, i.e., the cluster width W . This also yields the
aspect ratio R = L/W which we calculate for different cluster
sizes S as function of interaction energy En ∈ [0.15, 1.0] eV
and anisotropy parameter η ∈ [0, 1]. The obtained results are
averaged over at least 1000 clusters for each cluster size S.
Furthermore, we calculate the cluster size distribution P (S)
and the distribution of cluster lengths P (L) in order to analyze
not only average quantities, but also fluctuations around the
average.

2. Fractal dimension of clusters

An additional measure of the cluster morphology is the
mass fractal dimension Df that describes the scaling of the
cluster size S (or mass) with the radius of gyration via [84–88]

S = k0(Rg/a)Df . (7)

In Eq. (7), the value of the constant prefactor k0, depends on
the cluster shape [84,87] and is of order unity. Further, Rg

is the radius of gyration and a represents the particle radius
which we set to 1. We determine Df (as function of interaction
energy En and anisotropy parameter η) via the inertia tensor
which, for a cluster in the x-y plane consisting of S particles,
is given by [84,89,90]

T =
S∑

i=1

⎛
⎝ y2

i −xiyi 0
−xiyi x2

i 0
0 0 x2

i + y2
i

⎞
⎠. (8)

The eigenvalues Ei (i = 1, 2, 3) of T, sorted according to
their size (E1 � E2 � E3), define the square of the principal
radii of gyration via R2

i = Ei/S, with S being the cluster size.
Thus, R1 � R2 � R3. From the quantities Ri , the radius of
gyration (given in lattice sites) follows as

Rg =
√

1

2

(
R2

1 + R2
2 + R2

3

)
. (9)

The precise value of the cluster shape-dependent pre-factor
k0, that accounts for the cluster shape anisotropy (elongation
of the cluster), depends on the ratio of the largest over the
smallest squares of principal radii of gyration, that is, A13 =
R2

1/R
2
3 [84,91,92].

3. Cluster density

A further important quantity is the cluster density ρN =
N/L2 (where N is the number of “stable” clusters in the
system of size L2) for different values of the interaction
energy En and the anisotropy parameter η. Clusters are
considered as stable when they grow during the simulation
time by subsequent particle attachment rather than dissolve
into individual particles again. The latter are called unstable
clusters. The distinction between these two types of clusters
is typically associated with the critical cluster size i∗ which
is defined as the largest size of unstable clusters such that
clusters of size S � i∗ dissolve while clusters of size S > i∗
grow. In the early stage of growth, the number of stable
clusters, and thus the cluster density ρN , increases until it
saturates at ρc

N . This maximum value of the cluster density
is referred to as the critical cluster density ρc

N . According to a
rate equation approach [50,93], ρc

N is connected to the critical
cluster size i∗ via the scaling relation ρc

N ∼ (D0(T )/F )−χ ,
with the exponent χ = i∗/(i∗ + 2), the rate for free in-plane
diffusion D0(T ) = ν0exp(−βEd ) and the adsorption rate F .
We are particularly interested in the critical cluster size of
the systems with isotropic interactions (η = 1) for different
interaction energies En. We take these isotropic systems as
“reference” systems because, as will be shown in Sec. III C,
the precise value of i∗ in these systems has strong impact
on the cluster shape properties in presence of anisotropic
interactions when the nearest-neighbor bond strength in the
y direction is reduced to E

y
n = ηEn (η < 1).

4. Critical cluster size, reversible versus irreversible cluster growth

The general procedure to determine i∗ for the isotropically
interacting reference systems is as follows. First, ρc

N is calcu-
lated for different � = D0(T )/F by changing the temperature
T . We then choose i∗ such that it fits the numerically obtained
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scaling of the critical cluster density ρc
N . For i∗ = 1 (χ = 1

3 ),
already dimers represent stable clusters which do not decay.
In this case, the critical cluster density scales as ρc

N ∼ �−1/3.
In other words, the case i∗ = 1 corresponds to irreversible
attachment, where particles become immediately immobilized
for the rest of the growth procedure once they form at least
one in-plane bond to a neighboring particle. In contrast to
this, for i∗ > 1 particle attachment is reversible in the sense
that they may detach from clusters, diffuse further, and attach
again to the same or some other cluster in the system. In this
case χ < 1

3 , and consequently ρc
N scales differently compared

to the situation i∗ = 1. A major problem with this procedure
is that we need to perform simulations at different � to obtain
the best fit for the scaling of ρc

N that determines i∗ when T

or F are varied. However, often we are interested only in the
question whether cluster growth is reversible or irreversible at
a specific value of �.

As an estimate, we calculate the sum of all hopping events
at all time steps t0, t1, t2, . . . , tf −1, tf [with tn+1 = tn + τ ,
see Eq. (2)] of the simulation. In this time series t0 = 0
corresponds to the empty lattice at the start of the simulation,
while tf corresponds to the time at the end of the simulation
when the final coverage of θ = 0.05 has been reached. In each
iteration step tn → tn+1, where a particle performs a hopping
event, we distinguish between free hopping without lateral
neighbors (n = 0) corresponding to a rate rij ∼ exp(−βEd )
(denoted as r0) and hopping processes of particles with at least
one in-plane bond (n > 0) with rate rij ∼ exp(−βEd + nEn)
(denoted as r>0). We then calculate the sum R0 of all hopping
events with r0 and the sum R>0 of all events with r>0 during
the entire simulation, that is,

R0 =
tf∑

t=t0

r0(t ), r0(t ) =
{

1, nt = 0
0, nt > 0 (10)

R>0 =
tf∑

t=t0

r>0(t ), r>0(t ) =
{

1, nt > 0
0, nt = 0.

(11)

Here, nt is the number of in-plane bonds of the particle that
performed a hopping process at time tn. From these two sums,
we calculate the quantity

ω1 = R0

R>0
, (12)

measuring the ratio between free hopping events and hopping
events with in-plane bonds. If cluster growth is irreversible
(i∗ = 1), no detachment events occur. Thus, R>0 = 0 and con-
sequently ω1 = 0. In contrast, nonzero values of ω1 (R>0 >

0) indicate the presence of detachment events or, in turn,
reversible cluster growth (i∗ > 1). This method does not allow
a precise determination of the exact of value of i∗, but it is
sufficient to distinguish between the cases i∗ = 1 and i∗ > 1.
We will use the quantity ω1 in Sec. III C to differentiate
between irreversible or reversible cluster growth conditions
in the isotropically interacting reference systems.

III. RESULTS

In the following, we present numerical results of kMC
simulations for the nonequilibrium surface growth with

FIG. 2. Spatial configurations at coverage θ = 0.05, T = 313 K,
F = 1 ML/min (used in all figures). In (a) and (b) the interaction
energy is En = 0.2 eV. In (a) the interactions are isotropic (η = 1)
while in (b) strong anisotropy in the inter-particle interaction is
present (η = 0.1). The configurations in (c) and (d) depict the same,
but at higher interaction energy En = 0.7 eV.

interaction energies ranging from En = 0.10 eV to En =
3.0 eV and interaction anisotropies η ∈ [0, 1]. First, we
mainly focus on two exemplary interaction energies and
values of the anisotropy parameter. These are En = 0.2 and
0.7 eV and η = 1 (isotropic interactions) as well as η =
0.1 (strongly anisotropic interactions). We chose these two
values of En because, for isotropic interactions, En = 0.7 eV
represents a reference system with i∗ = 1, while at En = 0.2
eV, we find i∗ = 2 from scaling of the critical cluster density
ρc

N . Therefore, for η = 1 these two values of En represent
growth conditions with reversible and particle irreversible
attachment, respectively.

A. Spatial configurations and cluster shapes

1. Fractal dimension, spatial configurations, and distributions

As a starting point, we present snapshots of spatial con-
figurations of surface structures in the submonolayer growth
regime at coverage θ = 0.05 ML in Fig. 2 for two interaction
energies En = 0.2 [Figs. 2(a) and 2(b)] and En = 0.7 [see
Figs. 2(c) and 2(d)] eV for isotropic (η = 1) and strongly
anisotropic (η = 0.1) growth conditions at T = 313 K and
F = 1 ML/min.

For isotropic growth conditions (η = 1) the clusters have
compact shapes at En = 0.2 eV [see Fig. 2(a)], while they
are strongly ramified for the much stronger interaction energy
En = 0.7 eV [see Fig. 2(c)]. This can be explained via corre-
sponding values of the critical cluster size i∗. At En = 0.2 eV,
we find i∗ = 2 (χ = 1

2 ). This implies reversible attachment,
i.e., particles with only one lateral bond may detach from
clusters in order to attach to cluster boundary sites with a
higher coordination number (i.e., number of occupied in-plane
nearest-neighbor lattice sites). These particle rearrangements
lead to compact clusters with fractal dimension Df ≈ 2.
This is shown in Fig. 3 where Df versus η is plotted for
different values of En. We observe that, at En = 0.2 eV,
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FIG. 3. Fractal dimension Df of clusters at interaction energies
En as function of interaction anisotropy η. The solid line corresponds
to the dimension of compact two-dimensional objects (Df = 2),
while the dotted line represents Df of DLA clusters in 2D (Df =
1.71).

Df is not affected by anisotropic interactions and remains
close to Df ≈ 2 for all η � 1. At En = 0.7 eV, attachment of
particles to clusters is irreversible (i∗ = 1, χ = 1

3 ). This leads
to ramified cluster shapes [see Fig. 2(c)] where already one
lateral bond is strong enough to suppress particle detachment.
Specifically, we find that, at isotropic growth conditions, the
fractal dimension in this case is Df ≈ 1.7 (also for En = 0.3
and 0.5 eV). The latter value is close to Df = 1.71, the fractal
dimension of clusters grown by diffusion-limited aggregation
(DLA) [94–98].

We observe that strong interaction anisotropy (η = 0.1)
leads to a visible elongation of clusters in x direction (di-
rection of strong in-plane bonds) for both considered values
of En. Moreover, we find that clusters at En = 0.7 eV are
stronger elongated and have a smaller width W compared
to clusters at En = 0.2 eV. This already suggests stronger
impact of interaction anisotropy on cluster shapes at higher
En. Further, strong interaction anisotropy (η = 0.1) removes
the ramified structure of clusters at En = 0.7 eV, yielding
elongated but compact clusters with smooth boundaries. This
is confirmed in Fig. 3, where, upon decreasing η from 1 to
η = 0.1, Df (at En = 0.7 eV) first remains unaffected up to
η = 0.4 and then steadily increases until it approaches Df ≈
2 for η → 0. Later on (in Sec. III C) we give an explanation
for the interaction energy-dependent value of η (in the regime
En � 0.3 eV) where Df starts to increase from Df ≈ 1.7
upon decrease of η.

The emergence of elongated clusters reveals an imbalance
between attachment and detachment rates for in-plane bonds
in x and y directions, respectively. This is understandable
from the fact that, for η < 1, the hopping rate rij [see Eq. (1)]
of a particle with in-plane bonds in y direction only is higher
compared to particles with in-plane bonds in x direction
because at η < 1 the inequality ηEn = E

y
n < Ex

n holds.
To summarize these observations, as η is decreased from

1, clusters become elongated for any value of the interaction
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FIG. 4. Distribution P (S ) of cluster sizes S at interaction energy
En = 0.2 eV (a) and En = 0.7 eV (b) and various values of the
anisotropy parameter η ranging from isotropic conditions (η = 1) to
η = 0 (no interaction energy for bonds along y direction). Here and
in the following figures, temperature T and adsorption rate F are
chosen as in Fig. 2.

energy En. At sufficiently large interaction energy (En �
0.3 eV at F = 1 ML/min), one obtains DLA clusters at
isotropic growth conditions. At low interaction energy (En �
0.2 eV), Df ≈ 2 holds at any value of η. Different from
that, at high interaction energy (En � 0.3 eV), the fractal
dimension Df reveals a pronounced increase from the value
Df ≈ 1.7 corresponding to the DLA universality class to a
value (Df ≈ 2) reflecting regular, compact two-dimensional
objects, as η → 0.

So far, we have concentrated on the directly visible dif-
ferences in the spatial configurations of individual clusters
at low and high interaction energy at isotropic and strongly
anisotropic interactions. One also observes an impact of inter-
action anisotropy (η < 1) on the distribution of cluster sizes
S. This is shown for the normalized cluster size distribution
P (S) in Fig. 4. For isotropic interactions and En = 0.2 eV, S

is rather equally distributed around a mean value of S ≈ 30.
This peak vanishes for interaction anisotropies η < 0.4 and
P (S) becomes flat in the region S � 20. Instead, P (S) peaks
at S < 5 for η < 0.4, which reflects a mixture of a few large
and many very small clusters. Thus, the interaction anisotropy
leads to a completely different composition of cluster sizes in
the system. The reduced amount of large clusters is due to
the lowered interaction energy E

y
n of bonds in the y direction

at η < 1. It follows that the detachment rate of particles
with in-plane bonds in the y direction only increases as η

is decreased. Consequently, less stable clusters are formed
and at θ = 0.05 only a few clusters managed to surpass the
critical cluster size to become stable. The situation is different
at En = 0.7 eV. Decreasing the anisotropy parameter from
η = 1 to 0.4 does not affect P (S). Not until η < 0.4, the peak
of P (S) shifts from S ≈ 25 to S ≈ 20 which only reflects a
marginal change in the cluster size distribution. Further, the
distribution becomes narrower and clusters of size S > 40
vanish but the majority of clusters still have an intermediate
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FIG. 5. Distribution P (L) of cluster lengths L at En = 0.2 eV
(a) and En = 0.7 eV (b) and various values of the anisotropy param-
eter η.

size of S ≈ 20 that is quite similar to the value at isotropic
growth conditions.

Additionally, the normalized cluster length distribution
P (L) is shown in Fig. 5. At En = 0.2 eV, the peak in the
distribution P (L) is shifted to larger values of L and is
slightly broadening as η is decreased from 1. This reflects
the cluster elongation process, which continues up to η = 0.4.
For stronger interaction anisotropies, we only observe a sharp
peak at very small length L, consistent with the results in
Fig. 4. At En = 0.7 eV, the length distribution is not affected
when η is decreased from η = 1 to 0.4. For η < 0.4 the peak
in P (L) is shifted towards larger lengths L. At the same time,
P (L) broadens.

2. Average cluster shapes

We now focus in more detail on the response of the average
cluster shapes upon variations of the anisotropy parameter η.
To this end, we present in Fig. 6 the average cluster shapes for
fixed cluster size S = 40 at En = 0.2 [see Figs. 6(a)–6(c)] and
En = 0.7 eV [see Figs. 6(d)–6(f)] for three different values
of the anisotropy parameter η. For η = 1, the average cluster
shape is isotropic at both interaction energies En = 0.2 and
0.7 eV, as expected. By decreasing η from 1 at En = 0.2 eV,
the average clusters become immediately elongated along
the direction of stronger interaction energy, i.e., along the x

direction. Thus, already relatively weak interaction anisotropy
(η = 0.7) leads to anisotropic cluster shapes with growth
preferred in the x direction. We conclude that at En = 0.2 eV
there is a gradual cluster shape transformation as function of
η as soon as the regime of anisotropic interactions is entered
(η < 1). For strong interaction anisotropy, such as η = 0.1,
we observe strongly elongated clusters whose average shape
[see Fig. 6(c)] matches quite good with the individual clusters
shown in Fig. 2(b).

At En = 0.7 eV we encounter a different behavior of the
cluster shape transformation. First, decreasing η from 1 to

FIG. 6. Average shapes of clusters of size S = 40 for different
values of the interaction anisotropy parameter η and the interaction
energy En. The two values for En considered are En = 0.2 eV
(a)–(c) and En = 0.7 eV (d)–(f). The parameter η is reduced from
from isotropic interactions (η = 1) to 0.7, 0.4, and 0.1.

η = 0.4 has essentially no impact on the initially isotropic
shape. Second, at η = 0.1, the clusters are much stronger
elongated compared to the case En = 0.2 eV. This is in good
agreement with the spatial configurations shown in Figs. 2(b)
and 2(d). We conclude that there are two types of the cluster
shape transformation, that is, gradual (En = 0.2 eV) versus
sharp (En = 0.7 eV).

To further illustrate that the type of the cluster shape
transformation depends on the interaction energy En,
the spatial extension of clusters (of size S = 40), namely, the
cluster length L and width W upon decreasing η from 1 are
plotted in Fig. 7. At En = 0.2 eV we observe an immediate
splitting of L and W . This corresponds to anisotropic cluster
growth where the cluster length and width grow at different
rates and thus leads to the formation of elongated clusters. The
smooth behavior of the splitting of L and W as function of η at
En = 0.2 eV confirms a gradual cluster shape transformation.
In contrast, decreasing η from 1 at En = 0.7 eV leaves L and
W essentially identical up to η = 0.4. Only for η < 0.4 we
notice the splitting, which, in agreement with the results in
Figs. 2 and 6, is also much stronger pronounced compared to
En = 0.2 eV and therefore the cluster shape transformation is
sharp.

Finally, it is interesting to discuss these results from the
perspective of a simple model based on energy minimization.
Indeed, at least close to equilibrium, one would expect that the
cluster shapes are simply related to the total energy cost Eb to
form a compact cluster. For a cluster of size S = LW with
length L and width W , Eb is determined by the total number
of cluster boundary sites and the corresponding energy of all
broken bonds:

Eb = 2WEn + 2LηEn. (13)
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FIG. 7. Evolution of cluster length L and width W at En = 0.2
and 0.7 eV as function of η. The considered clusters are of size S =
40. The evolution of L and W upon decrease of η from 1 confirms
the gradual shape transformation at En = 0.2 eV and the sharp shape
transition at En = 0.7 eV.

For a perfectly compact cluster of size S, the width is given
by W = S/L. This allows us to rewrite Eq. (13) as

Eb = 2En(S/L + ηL). (14)

From Eq. (14) we find that Eb reaches the minimum value
when the cluster length fulfills

L(S, η) =
√

S/η. (15)

Equation (15) provides an estimate for the cluster length
evolution in presence of anisotropic interactions at growth
conditions, where particle detachment (i∗ > 1, see Sec. III C)
is possible, such that clusters can obtain the equilibrium shape.
We find that Eq. (15) indeed describes the cluster length at
small adsorption rates F (F = 1 ML/min in Fig. 8) and low
interaction energies En (i.e., under conditions where particle
detachment is indeed present). This is shown in Fig. 8 where,
as function of η, the cluster length L40 (of clusters of size S =
40) is plotted for different En at F = 1 ML/min. Consider,
as an example, the value En = 0.15 eV. Here, the rate for
breaking lateral bonds (of particles with one nearest neighbor)
is high enough in both the x and y directions, such that clusters
retain a compact shape (the interaction energies En where
attachment is either reversible or irreversible are discussed in
detail in Sec. III C). Consequently, L40 is close to the length
predicted by Eq. (15) in the range 0.1 � η � 1.0 (see the
black line in Fig. 8). Finally, at En = 0.3 eV, clusters (at η =
1) are ramified with fractal dimension Df ≈ 1.7 (see Fig. 3),
which means that they are far from the compact equilibrium

FIG. 8. Length L40 of clusters of size S = 40 as function of the
interaction anisotropy parameter η for different interaction energies
En at F = 1 ML/min. The solid black line corresponds to the length
L(S, η) = √

S/η for growth close to equilibrium [see Eq. (15)].

shape. As a consequence, we observe large deviations from
the equilibrium length predicted by Eq. (15) also in the regime
of anisotropic interactions (this holds for any En � 0.3 eV).
Taken together, these results reflect the fact that energetic
arguments expressed by Eqs. (13)– (15) only hold at small
values of En and F , where particle detachment is possible
(i∗ > 1) for any η.

B. Cluster shape properties: One-dimensional
vs two-dimensional cluster growth

1. Cluster length evolution

The results presented so far already demonstrate the impact
of interaction anisotropy on shape properties of clusters under
nonequilibrium growth conditions. Now, we focus on the
evolution of cluster shapes during growth. To this end, we
plot in Fig. 9 the average cluster length L(S) as function of
cluster size S at En = 0.2 and 0.7 eV for different values of
η. At En = 0.2 eV and isotropic interactions (η = 1), L(S)
closely follows the prediction from energy arguments [see
Eq. (15)], i.e., L = √

S. In contrast, at En = 0.7 eV and η = 1
we observe significant deviations because the clusters are
now ramified and do not exhibit the equilibrium shape [see
Fig. 2(c)].

As interaction anisotropy is switched on (η < 1), we ob-
serve an immediate effect on the evolution of L(S) at En =
0.2 eV (i.e., at relatively weak interaction anisotropy). This is
consistent with the previous results and confirms a gradual
cluster shape transformation. In contrast, at En = 0.7 eV,
L(S) remains unchanged up to η � 0.4 (see the snapshots in
Fig. 6). This finding approves again that at high interaction
energy (En = 0.7 eV), weak interaction anisotropy (η � 0.4)
has far less impact on the cluster shape than at low interaction
energies.

As η is lowered, one finds a transition to a linear relation
L(S) = S (see the dotted line in Fig. 9) for small cluster
sizes S. The relation L(S) = S represents maximally elon-
gated, one-dimensional clusters which grow in the direction
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FIG. 9. Average cluster length L(S ) as function of cluster size
S for interaction energy En = 0.2 eV (a) and En = 0.7 eV (b) and
different values of η. The solid line represents L(S ) = √

S, while the
dotted line corresponds to L(S ) = S.

of the strong bonds only (“one-dimensional growth”). At
En = 0.7 eV and η = 0.1, L(S) follows the one-dimensional
growth line up to S ≈ 30, while at En = 0.2 eV and η = 0.1,
L(S) begins to deviate from L(S) = S already at around S ≈
10. Therefore, the one-dimensional growth is more robust at
high interaction energies.

We conclude that in the presence of strongly anisotropic
interactions, the initial stage of cluster growth appears to be
one dimensional with respect to particle attachment. This
growth mode breaks down at a specific cluster length Lc

which depends on En and η. The length Lc is defined as
the length of the cluster where |L(S) − S| � 1 sets in upon
increase of S. The value of Lc increases with increasing En,
resulting in stronger elongated clusters at high interaction
energies En.

2. Breakdown of one-dimensional cluster growth

In Fig. 10, Lc(η) is plotted for various interaction energies
as function of η. Irrespective of En, the function Lc(η) in-
creases as η is decreased from 1 and converges to a finite value
in the limit η → 0. Specifically, in the range En � 0.3 eV,
Lc converges to very similar values Lc(0) = L0

c ≈ 35. In
contrast, at En < 0.3 eV, L0

c depends on En, e.g., L0
c ≈ 25

at En = 0.2 eV and L0
c ≈ 18 at En = 0.15 eV. We also see

that, at En � 0.3 eV, the increase of Lc as function of η is
smooth and sets in already at weak interaction anisotropy. In
contrast, at En > 0.3 eV, Lc remains essentially unaffected
by weak interaction anisotropy. Also shown in Fig. 10 is the
function Lc(η) resulting from energy considerations [derived
from Eq. (15)]. We observe that this function yields a reliable
estimate only for small values of En (consistent with the
discussion of L40 in Fig. 8).

FIG. 10. Critical length Lc(η) for various values of the inter-
action energy En as function of the anisotropy parameter η. For
comparison, we have included the corresponding result from energy
considerations [see Eq. (15)].

3. Transition to two-dimensional self-similar cluster growth

To better characterize the growth mode that follows the
one-dimensional growth upon increase of the cluster size S,
we calculate the average aspect ratio R(S) = L(S)/W (S),
where W (S) is the cluster width. An aspect ratio R that
remains constant as function of cluster size S implies that
the cluster growth is self-similar. This means, in other words,
that L(S) and W (S) increase at constant rates. Figure 11(a)
shows R(S) for η � 0.4 and different values of En. After
an initial linear increase, corresponding to the region of one-
dimensional cluster growth, the aspect ratio R(S) reaches a
plateau and then remains constant as S increases. We call
this saturation value Rsat. A saturation value Rsat = 1 would
correspond to isotropic self-similar growth without preferred

FIG. 11. (a) Evolution of the average aspect ratio R(S ) =
L(S )/W (S ) as function of cluster size S at En = 0.2 eV (greens) and
En = 0.7 eV (blues) at different values of η. The black dotted line
corresponds to R(S ) = S. (b) Saturation value Rsat (η) for various
interaction energies En.
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FIG. 12. Critical cluster density ρc
N for different in-plane interac-

tion energies En in the (isotropic) reference system. The inset shows
the detachment ratio ω1 as function of En.

growth direction [i.e., L(S) = W (S)]. For Rsat > 1, clusters
are elongated [L(S) > W (S)] but the growth is still self-
similar. Such a plateau exists for all considered combinations
of En and η. Only the actual value of Rsat and the cluster size
S, where the plateau is reached, depend specifically on En and
η.

In addition, Rsat is plotted for various En as function of
η in Fig. 11(b). For En � 0.3 eV, Rsat converges to similar
values as η → 0. The onset of anisotropic self-similar growth
(Rsat > 1) is shifted to smaller values of η for increasing
En. Furthermore, for En < 0.3 eV, Rsat is lower compared to
Rsat ≈ 25 as for En � 0.3 eV.

C. Role of the critical cluster size i∗

A major observation in presence of anisotropic interactions
(η < 1) is that, depending on the interaction energy En, there
exist two types of cluster shape transformations. It turns
out that this can be explained by properties of the isotropic
reference systems (η = 1). To this end, we now take a closer
look at the critical cluster size i∗ at η = 1 as function of
interaction energy En.

For this purpose, the critical cluster density ρc
N is plotted

as function of En for the isotropically interacting reference
systems (η = 1) in Fig. 12. We recall that ρc

N scales ∼
[D0(T )/F ]−χ [with χ = i∗/(i∗ + 2)]. From Fig. 12 it is seen
that ρc

N increases as the interaction energy is increased from
En = 0.1 to 0.3 eV, but saturates in the range En > 0.3 eV.
Since we do not change the temperature T and adsorption rate
F , it follows from the known scaling of ρc

N [39,41,43,44] that
i∗ has to be identical for all En > 0.3 eV. In this regime, the
critical cluster size therefore is i∗ = 1, which corresponds to
conditions where bonds are irreversible.

This conclusion is confirmed by the analysis of ω1(En) [see
Eq. (9)] at η = 1 (see the inset of Fig. 12). Consistent with
the analysis so far, ω1 = 0 for En > 0.3 eV, which means
absence of particle detachment (bonds are irreversible). In
other words, already dimers form stable clusters and i∗ =
1. As En is decreased towards lower values, ω1 becomes
nonzero, which means that bonds become reversible (particles

can break bonds and detach from clusters). Consequently, one
enters the regime of i∗ > 1. We conclude that, coming from
high interaction energies, there is a transition from irreversible
to reversible bonds at En ≈ 0.3 eV. This observation allows
to explain the type and the onset of the cluster shape trans-
formation in presence of anisotropic interactions (η < 1). We
can distinguish between three different scenarios.

1. Interaction energy En > 0.3 eV and η = 1

In this case, bonds are irreversible in the x and y directions
and, consequently, cluster growth is isotropic for any En >

0.3 eV (see inset of Fig. 11 at η = 1 where Rsat = 1 at η = 1).

2. Interaction energy En > 0.3 eV and η < 1

In this situation, bonds in the x direction are irreversible
and as long as E

y
n = ηEn > 0.3, also bonds in the y direction

are irreversible and, therefore, cluster growth is isotropic
even for η < 1 (as long as E

y
n > 0.3 eV). However, as soon

as the regime E
y
n = ηEn < 0.3 is entered by increasing the

strength of the interaction anisotropy, bonds in the y direction
become reversible while bonds in the x direction remain
irreversible. Anisotropic cluster growth sets in at the value
of η that leads E

y
n � 0.3 eV. At En = 0.5 eV, we find the

onset of the transformation at η = 0.6, which corresponds to
E

y
n = 0.3 eV, consistent with the transition from irreversible

to reversible bonds. The same holds at En = 1.0 eV, where
we find the onset at η = 0.3, which again corresponds to
E

y
n = 0.3 eV for bonds along the y direction. This explains,

depending on En, the sharp cluster shape transformation and
the precise value η where it sets in.

3. Interaction energy En < 0.3 eV and η � 1

Here, bonds in both the x and y directions are reversible.
At η = 1, cluster growth is isotropic because there is no
imbalance between bond strengths Ex

n = E
y
n . In contrast to

case 2, clusters become elongated for any η < 1 because we
are always in the regime of reversible bonds (Ey

n < 0.3 for
all η). Even though bonds in the x direction are reversible,
the detachment rate for bonds in the y direction is higher at
η < 1. Therefore, cluster growth is anisotropic with growth
preferred in the x direction (despite the fact that also bonds in
x direction are reversible). Different from case 2, the cluster
shape transformation here is gradual because we are always in
the regime where bonds are reversible.

Moreover, we can also explain why both Lc and Rsat con-
verge to similar values for En � 0.3 as η → 0 (see Figs. 10
and 11). In the latter case, E

y
n = 0. Therefore, all of the sys-

tems are identical in the sense that bonds in the x direction are
irreversible while bonds in the y direction are reversible. The
hopping rate for particles with bonds in the y direction only
is the same as the rate for free diffusion, rij ∼ exp(−βEd ).
The reason for this is that at η = 0 there is no contribution to
the activation energy barrier �E from in-plane bonds in this
direction. Consequently, Lc(0) and Rsat (0) are practically the
same for En � 0.3 eV.
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FIG. 13. Double logarithmic plot of the average aspect ratio 〈R〉
at θ = 0.1 and En = 0.5 eV as function of adsorption rate F in the
regime of strong interaction anisotropy.

D. Effect of the adsorption rate F on cluster properties

So far we have focused on the interplay between the
interaction energy En and the interaction anisotropy η at fixed
adsorption rate F (F = 1 ML/min). In experimental studies,
the parameters En and η are essentially fixed (corresponding
to the system considered). The parameter, which can be
precisely varied in experiments (next to the temperature T ), is
the adsorption rate F . This parameter has indeed a profound
impact since it determines not only the cluster density, but also
the thin film morphology in the multilayer growth regime (as
it is well established for atomic growth [99–105]). Motivated
by this, we therefore study the impact of different adsorption
rates F in presence of anisotropic interactions.

First, we consider the scaling of the average aspect ratio
〈R〉 = 1/N

∑
R (sum of all aspect ratios R in the system

divided by N , the number of clusters) with adsorption rate
F in the regime of strong interaction anisotropy η � 0.3.
Second, we focus on the evolution of the average cluster
length 〈L〉 and width 〈W 〉 as function of coverage θ before
coalescence sets in.

Considering a coverage θ = 0.1, we find that 〈R〉 exhibits
power-law scaling 〈R〉 ∼ F−α , with α ≈ 0.3. This is shown in
Fig. 13 where 〈R〉 is plotted as function of F at En = 0.5 eV
and η � 0.3 eV. Interestingly, the scaling exponent (α ≈ 0.3)
does not depend on η for all analyzed interaction energies
from En = 0.2 to 0.7 eV.

The evolution of the average length 〈L〉 versus cover-
age θ at En = 0.5 eV and η = 0.3 is plotted in Fig. 14(a),
where we have included results for different values of F .
We observe again power-law scaling with scaling exponent
gl that depends only weakly on the adsorption rate F (we
checked that the power-law scaling holds for any En in the
range from En = 0.2 to En = 0.7 eV). This is confirmed by
Fig. 14(b) where one can see that gl somewhat increases
with increasing η, but remains almost identical for different
adsorption rates F . Different from the behavior of gl , the
exponent gw decreases for decreasing η (again almost inde-
pendent of F ) as shown in Fig. 14(c). Moreover, we find that,

FIG. 14. (a) Double logarithmic plot of the average cluster length
〈L〉 as function of θ for various adsorption rates F at En = 0.5 eV
and η = 1. (b) Cluster length scaling exponent gl and (c) cluster
width scaling exponent gw as function of η.

as long as the cluster growth is isotropic, the scaling expo-
nents have values gl ≈ gw ≈ 0.5, which are consistent with
those observed during the domain growth in the random-field
Ising model with isotropic interactions (RFIM-DI) [106] or
the axial next-nearest-neighbor Ising model (ANNNI) [107].
When anisotropy is switched on in the RFIM-DI and the
ANNNI, the scaling exponents become different along the
x and y directions, respectively. In the present model, we
also find different exponents for the two lattice directions,
that is, 0 < gw < 0.5 < gl < 1, when the interactions become
strongly anisotropic. This indicates an interesting similarity
between our growth model and the models of Ising type.

E. Comparison with the anisotropic stochastic
Eden growth model

So far we have investigated the cluster growth by event-
driven kMC simulations where adsorption, nucleation, attach-
ment, detachment, and diffusion processes of particles on the
substrate are included. We now turn to the much simpler
anisotropic Eden model for cluster growth (see Sec. II B),
where anisotropy of lateral bonds is taken into account by an
imbalance of attachment probabilities as described in Eq. (6).
One main difference to the kMC model is that diffusion
processes are absent in the Eden model, where the cluster
growth is only determined by the attachment probabilities
of boundary sites. Our key question is whether this mini-
mal model still contains sufficient information to reproduce
the clusters obtained in the kMC simulations for various
anisotropic growth conditions.
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FIG. 15. Comparison of the cluster length evolution between
clusters obtained from kinetic Monte Carlo simulations (at En =
0.2 eV and different values of η) with clusters obtained from the
stochastic Eden model at different ratios ξ of the attachment prob-
ability in x and y directions, respectively.

For this purpose, we plot in Fig. 15 the cluster length L(S)
obtained from both kMC simulations at En = 0.2 eV and the
Eden model. This value of En is chosen because it produces
compact clusters with fractal dimension Df ≈ 2. Moreover
(as confirmed in Fig. 8), the cluster shape at En = 0.2 eV
is close to the equilibrium shape for any η, and the Eden
model with anisotropic interactions is supposed to correctly
describe equilibrium clusters. The good agreement in Fig. 15
for the isotropic case (η = ξ = 1) is expected since there is
no imbalance between attachment and detachment rates for
the x and y directions. More interesting is the matching of
both models in the regime where anisotropic interactions are
present. Here, the anisotropy parameter ξ for the attachment
probabilities in the Eden model [see Eq. (6)] has been used as
a fitting parameter to reproduce the kMC results. The Eden
model does not only correctly describe the cluster length
evolution L(S), but also gives the correct critical lengths Lc

and the aspect ratio Rsat in the self-similar growth regime.
This is shown in Figs. 16(a) and 16(b), respectively. We note,
however, that the anisotropic Eden model is not able to repro-
duce clusters at interaction energies En where cluster shapes
deviate from the equilibrium shape (see L40 at En = 0.3 eV
in Fig. 8). For adsorption rate F = 1 ML/min, this means
that the Eden model is only capable to reproduce clusters
at En � 0.2 eV.

The good agreement between the two approaches (for
En � 0.2 eV in the kMC simulations at F = 1 ML/min)
shows that the isotropic diffusion of free particles does not
play a crucial role in the cluster formation process in presence
of anisotropic interactions. However, this is only the case
as long as one operates in the regime where detachment of
particles from clusters is possible (i∗ > 1). In this regime,
it seems that only the rates for attachment and detachment
determine the cluster shape. Therefore, we expect that a more
detailed analysis of attachment and detachment rates will
generally (also for the case i∗ = 1) help to better understand

FIG. 16. (a) Saturation value of the aspect ratio Rsat and
(b) the critical length Lc of clusters obtained from kinetic Monte
Carlo simulations and the Eden model. The in-plane interaction en-
ergy in kMC simulations is En = 0.2 eV. The anisotropy parameter
η ∈ [0, 1] and ξ is modified such that it fits the kMC results.

the resulting cluster shapes under nonequilibrium growth con-
ditions in presence of anisotropic interactions.

IV. CONCLUSIONS

Using event-driven kMC simulation on a square lattice, we
have studied the effect of anisotropic nearest-neighbor interac-
tions in the submonolayer growth regime. Our model assumes
a spherical particle shape and anisotropy is introduced by
reducing the interaction energy of in-plane bonds along the
y direction by a factor η relative to the interaction energy
in the x direction. By varying the interaction energy, the
anisotropy parameter, and the adsorption rate, we have ana-
lyzed in detail the resulting clusters in presence of anisotropic
interactions.

As expected, anisotropic interactions lead to nonspherical
(elongated), rodlike, and needle-shaped clusters with fractal
dimension Df ≈ 2, as we have shown explicitly by inspect-
ing snapshots and by calculating the fractal dimension as
function of interaction anisotropy. Moreover, we have shown
that energetic arguments for cluster shapes only hold for low
adsorption rates and low interaction energies. Furthermore,
cluster size distributions show that, for increasing interaction
anisotropy, clusters become smaller. This effect is more pro-
nounced the smaller the interaction energy.

A detailed analysis of cluster shapes as function of η

reveals two different types of cluster shape transformation.
At low interaction energy, the transformation from isotropic
to elongated clusters is gradual. In contrast, it is sharp at
high interaction energies. Moreover, for strong interaction
anisotropy, the early stage of cluster growth appears to be
one dimensional with particle attachment along the direction
of strong bonds only. This growth mode breaks down at a
critical length. From analyzing the aspect ratio we identify the
subsequent self-similar growth mode.
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Interestingly, we have found that the critical cluster density
and detachment ratio in the isotropic reference system help
to explain the properties of the cluster shape transformation
in the anisotropic case. Furthermore, the comparison with the
reference systems also explains the value of the anisotropy pa-
rameter where the transformation from isotropic to elongated
cluster shapes sets in.

Moreover, we have investigated the effect of the (ex-
perimentally controllable) adsorption rate on cluster shape
properties. According to our results, the average aspect ratio
as function of adsorption rate displays power-law scaling in
the regime of strong interaction anisotropy. The scaling expo-
nent does not depend on the anisotropy parameter. Also, the
evolution of the average cluster length and width as function
of coverage exhibit power-law scaling with scaling exponents
that depend only weakly on the adsorption rate.

In addition to kMC simulations, we have also employed
an anisotropic version of the Eden model where diffusion
processes are neglected. In this context, we have used the
anisotropy parameter, that controls the attachment probabil-
ities, as a fitting parameter. By this it is indeed possible to
reproduce main features of the cluster growth observed in the
kMC simulations. In particular, we find good agreement in the
cluster length evolution, the critical length, and the saturation
value of the aspect ratio.

The good agreement between results from kMC simula-
tions and the Eden model suggests that attachment (rather than
diffusion) is the dominant mechanism in determining cluster
shapes. Therefore, it may be worth to further investigate, on
a very fundamental level, attachment as well as detachment
rates to gain a deeper understanding of the cluster shape
transformations.

The present kMC simulations can be extended in sev-
eral directions. By appropriately setting the values for the
anisotropy parameter in the kMC setup, our model could be
used to numerically study the experimentally relevant growth
of elongated Zn clusters on isotropic surfaces [63] as well
as to study the effect of dipole-dipole interactions among
particles. By this one could approach experimentally relevant
systems that have already been studied [33,72]. A further
future direction would be to explore, based on our model, the
multilayer growth regime. Investigations in these directions
are in progress.
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[89] J. Vymětal and J. Vondrášek, J. Phys. Chem. A 115, 41 (2011).
[90] D. N. Theodorou and U. W. Suter, Macromolecules 18, 1206

(1985).

042801-14

https://doi.org/10.1021/jp505364d
https://doi.org/10.1021/jp505364d
https://doi.org/10.1021/jp505364d
https://doi.org/10.1021/jp505364d
https://doi.org/10.1016/0039-6028(82)90705-1
https://doi.org/10.1016/0039-6028(82)90705-1
https://doi.org/10.1016/0039-6028(82)90705-1
https://doi.org/10.1016/0039-6028(82)90705-1
https://doi.org/10.1038/ncomms6388
https://doi.org/10.1038/ncomms6388
https://doi.org/10.1038/ncomms6388
https://doi.org/10.1038/ncomms6388
https://doi.org/10.1209/0295-5075/91/56002
https://doi.org/10.1209/0295-5075/91/56002
https://doi.org/10.1209/0295-5075/91/56002
https://doi.org/10.1209/0295-5075/91/56002
https://doi.org/10.1039/C4CP04048A
https://doi.org/10.1039/C4CP04048A
https://doi.org/10.1039/C4CP04048A
https://doi.org/10.1039/C4CP04048A
https://doi.org/10.1063/1.4961460
https://doi.org/10.1063/1.4961460
https://doi.org/10.1063/1.4961460
https://doi.org/10.1063/1.4961460
https://doi.org/10.1021/am506465b
https://doi.org/10.1021/am506465b
https://doi.org/10.1021/am506465b
https://doi.org/10.1021/am506465b
https://doi.org/10.1103/PhysRevB.90.045410
https://doi.org/10.1103/PhysRevB.90.045410
https://doi.org/10.1103/PhysRevB.90.045410
https://doi.org/10.1103/PhysRevB.90.045410
https://doi.org/10.1088/1361-648X/29/4/043003
https://doi.org/10.1088/1361-648X/29/4/043003
https://doi.org/10.1088/1361-648X/29/4/043003
https://doi.org/10.1088/1361-648X/29/4/043003
https://doi.org/10.1002/adma.201604382
https://doi.org/10.1002/adma.201604382
https://doi.org/10.1002/adma.201604382
https://doi.org/10.1002/adma.201604382
https://doi.org/10.1016/0022-0248(69)90071-2
https://doi.org/10.1016/0022-0248(69)90071-2
https://doi.org/10.1016/0022-0248(69)90071-2
https://doi.org/10.1016/0022-0248(69)90071-2
https://doi.org/10.1103/PhysRevB.67.155403
https://doi.org/10.1103/PhysRevB.67.155403
https://doi.org/10.1103/PhysRevB.67.155403
https://doi.org/10.1103/PhysRevB.67.155403
https://doi.org/10.1103/PhysRevLett.86.3092
https://doi.org/10.1103/PhysRevLett.86.3092
https://doi.org/10.1103/PhysRevLett.86.3092
https://doi.org/10.1103/PhysRevLett.86.3092
https://doi.org/10.1016/0022-3697(94)90115-5
https://doi.org/10.1016/0022-3697(94)90115-5
https://doi.org/10.1016/0022-3697(94)90115-5
https://doi.org/10.1016/0022-3697(94)90115-5
https://doi.org/10.1016/S0010-4655(02)00428-9
https://doi.org/10.1016/S0010-4655(02)00428-9
https://doi.org/10.1016/S0010-4655(02)00428-9
https://doi.org/10.1016/S0010-4655(02)00428-9
https://doi.org/10.1103/PhysRevB.82.201401
https://doi.org/10.1103/PhysRevB.82.201401
https://doi.org/10.1103/PhysRevB.82.201401
https://doi.org/10.1103/PhysRevB.82.201401
https://doi.org/10.1103/PhysRevB.86.085403
https://doi.org/10.1103/PhysRevB.86.085403
https://doi.org/10.1103/PhysRevB.86.085403
https://doi.org/10.1103/PhysRevB.86.085403
https://doi.org/10.1103/PhysRevB.69.033401
https://doi.org/10.1103/PhysRevB.69.033401
https://doi.org/10.1103/PhysRevB.69.033401
https://doi.org/10.1103/PhysRevB.69.033401
https://doi.org/10.1063/1.4961264
https://doi.org/10.1063/1.4961264
https://doi.org/10.1063/1.4961264
https://doi.org/10.1063/1.4961264
https://doi.org/10.1016/j.surfrep.2005.08.004
https://doi.org/10.1016/j.surfrep.2005.08.004
https://doi.org/10.1016/j.surfrep.2005.08.004
https://doi.org/10.1016/j.surfrep.2005.08.004
https://doi.org/10.1103/PhysRevLett.74.2066
https://doi.org/10.1103/PhysRevLett.74.2066
https://doi.org/10.1103/PhysRevLett.74.2066
https://doi.org/10.1103/PhysRevLett.74.2066
https://doi.org/10.1080/14786437308219242
https://doi.org/10.1080/14786437308219242
https://doi.org/10.1080/14786437308219242
https://doi.org/10.1080/14786437308219242
https://doi.org/10.1103/PhysRevA.40.2088
https://doi.org/10.1103/PhysRevA.40.2088
https://doi.org/10.1103/PhysRevA.40.2088
https://doi.org/10.1103/PhysRevA.40.2088
https://doi.org/10.1103/PhysRevA.40.2096
https://doi.org/10.1103/PhysRevA.40.2096
https://doi.org/10.1103/PhysRevA.40.2096
https://doi.org/10.1103/PhysRevA.40.2096
https://doi.org/10.1103/PhysRevB.50.8781
https://doi.org/10.1103/PhysRevB.50.8781
https://doi.org/10.1103/PhysRevB.50.8781
https://doi.org/10.1103/PhysRevB.50.8781
https://doi.org/10.1103/PhysRevB.91.045436
https://doi.org/10.1103/PhysRevB.91.045436
https://doi.org/10.1103/PhysRevB.91.045436
https://doi.org/10.1103/PhysRevB.91.045436
https://doi.org/10.1021/la063059d
https://doi.org/10.1021/la063059d
https://doi.org/10.1021/la063059d
https://doi.org/10.1021/la063059d
https://doi.org/10.1063/1.3506898
https://doi.org/10.1063/1.3506898
https://doi.org/10.1063/1.3506898
https://doi.org/10.1063/1.3506898
https://doi.org/10.1063/1.4795316
https://doi.org/10.1063/1.4795316
https://doi.org/10.1063/1.4795316
https://doi.org/10.1063/1.4795316
https://doi.org/10.1209/0295-5075/27/6/011
https://doi.org/10.1209/0295-5075/27/6/011
https://doi.org/10.1209/0295-5075/27/6/011
https://doi.org/10.1209/0295-5075/27/6/011
https://doi.org/10.1103/PhysRevLett.76.4195
https://doi.org/10.1103/PhysRevLett.76.4195
https://doi.org/10.1103/PhysRevLett.76.4195
https://doi.org/10.1103/PhysRevLett.76.4195
https://doi.org/10.1016/0039-6028(96)00820-5
https://doi.org/10.1016/0039-6028(96)00820-5
https://doi.org/10.1016/0039-6028(96)00820-5
https://doi.org/10.1016/0039-6028(96)00820-5
https://doi.org/10.1103/PhysRevB.56.R4406
https://doi.org/10.1103/PhysRevB.56.R4406
https://doi.org/10.1103/PhysRevB.56.R4406
https://doi.org/10.1103/PhysRevB.56.R4406
https://doi.org/10.1116/1.1834617
https://doi.org/10.1116/1.1834617
https://doi.org/10.1116/1.1834617
https://doi.org/10.1116/1.1834617
https://doi.org/10.1038/srep19870
https://doi.org/10.1038/srep19870
https://doi.org/10.1038/srep19870
https://doi.org/10.1038/srep19870
https://doi.org/10.1038/nmat4575
https://doi.org/10.1038/nmat4575
https://doi.org/10.1038/nmat4575
https://doi.org/10.1038/nmat4575
https://doi.org/10.1063/1.4907037
https://doi.org/10.1063/1.4907037
https://doi.org/10.1063/1.4907037
https://doi.org/10.1063/1.4907037
https://doi.org/10.1103/PhysRevB.94.241404
https://doi.org/10.1103/PhysRevB.94.241404
https://doi.org/10.1103/PhysRevB.94.241404
https://doi.org/10.1103/PhysRevB.94.241404
https://doi.org/10.1021/jp507776h
https://doi.org/10.1021/jp507776h
https://doi.org/10.1021/jp507776h
https://doi.org/10.1021/jp507776h
https://doi.org/10.1039/C6CP05251G
https://doi.org/10.1039/C6CP05251G
https://doi.org/10.1039/C6CP05251G
https://doi.org/10.1039/C6CP05251G
https://doi.org/10.1021/cg500234r
https://doi.org/10.1021/cg500234r
https://doi.org/10.1021/cg500234r
https://doi.org/10.1021/cg500234r
https://doi.org/10.1063/1.341041
https://doi.org/10.1063/1.341041
https://doi.org/10.1063/1.341041
https://doi.org/10.1063/1.341041
https://doi.org/10.1103/PhysRevB.87.235430
https://doi.org/10.1103/PhysRevB.87.235430
https://doi.org/10.1103/PhysRevB.87.235430
https://doi.org/10.1103/PhysRevB.87.235430
https://doi.org/10.1103/PhysRevLett.107.146401
https://doi.org/10.1103/PhysRevLett.107.146401
https://doi.org/10.1103/PhysRevLett.107.146401
https://doi.org/10.1103/PhysRevLett.107.146401
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4976308
https://doi.org/10.1063/1.4976308
https://doi.org/10.1063/1.4976308
https://doi.org/10.1063/1.4976308
https://doi.org/10.1103/PhysRevB.81.205310
https://doi.org/10.1103/PhysRevB.81.205310
https://doi.org/10.1103/PhysRevB.81.205310
https://doi.org/10.1103/PhysRevB.81.205310
https://doi.org/10.1126/science.1159455
https://doi.org/10.1126/science.1159455
https://doi.org/10.1126/science.1159455
https://doi.org/10.1126/science.1159455
https://doi.org/10.1103/PhysRevLett.51.1123
https://doi.org/10.1103/PhysRevLett.51.1123
https://doi.org/10.1103/PhysRevLett.51.1123
https://doi.org/10.1103/PhysRevLett.51.1123
https://doi.org/10.1021/acs.jpcb.6b01789
https://doi.org/10.1021/acs.jpcb.6b01789
https://doi.org/10.1021/acs.jpcb.6b01789
https://doi.org/10.1021/acs.jpcb.6b01789
https://doi.org/10.1088/0305-4470/21/17/018
https://doi.org/10.1088/0305-4470/21/17/018
https://doi.org/10.1088/0305-4470/21/17/018
https://doi.org/10.1088/0305-4470/21/17/018
https://doi.org/10.1088/0305-4470/22/6/006
https://doi.org/10.1088/0305-4470/22/6/006
https://doi.org/10.1088/0305-4470/22/6/006
https://doi.org/10.1088/0305-4470/22/6/006
https://doi.org/10.1103/PhysRevA.39.5409
https://doi.org/10.1103/PhysRevA.39.5409
https://doi.org/10.1103/PhysRevA.39.5409
https://doi.org/10.1103/PhysRevA.39.5409
https://doi.org/10.1080/10586458.2014.947053
https://doi.org/10.1080/10586458.2014.947053
https://doi.org/10.1080/10586458.2014.947053
https://doi.org/10.1080/10586458.2014.947053
https://doi.org/10.1080/02786826.2010.516032
https://doi.org/10.1080/02786826.2010.516032
https://doi.org/10.1080/02786826.2010.516032
https://doi.org/10.1080/02786826.2010.516032
https://doi.org/10.1103/PhysRevE.86.011407
https://doi.org/10.1103/PhysRevE.86.011407
https://doi.org/10.1103/PhysRevE.86.011407
https://doi.org/10.1103/PhysRevE.86.011407
https://doi.org/10.1515/pac-2013-0201
https://doi.org/10.1515/pac-2013-0201
https://doi.org/10.1515/pac-2013-0201
https://doi.org/10.1515/pac-2013-0201
https://doi.org/10.1006/jcis.1996.4664
https://doi.org/10.1006/jcis.1996.4664
https://doi.org/10.1006/jcis.1996.4664
https://doi.org/10.1006/jcis.1996.4664
https://doi.org/10.1103/PhysRevLett.52.2371
https://doi.org/10.1103/PhysRevLett.52.2371
https://doi.org/10.1103/PhysRevLett.52.2371
https://doi.org/10.1103/PhysRevLett.52.2371
https://doi.org/10.1021/jp2065612
https://doi.org/10.1021/jp2065612
https://doi.org/10.1021/jp2065612
https://doi.org/10.1021/jp2065612
https://doi.org/10.1021/ma00148a028
https://doi.org/10.1021/ma00148a028
https://doi.org/10.1021/ma00148a028
https://doi.org/10.1021/ma00148a028


IMPACT OF ANISOTROPIC INTERACTIONS ON … PHYSICAL REVIEW E 98, 042801 (2018)

[91] D. Fry, A. Chakrabarti, W. Kim, and C. M. Sorensen, Phys.
Rev. E 69, 061401 (2004).

[92] D. Fry, A. Mohammad, A. Chakrabarti, and C. M. Sorensen,
Langmuir 20, 7871 (2004).

[93] J. A. Venables, G. D. Spiller, and M. Hanbucken, Rep. Prog.
Phys. 47, 399 (1984).

[94] T. A. Witten, Jr., and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

[95] T. A. Witten and L. M. Sander, Phys. Rev. B 27, 5686
(1983).

[96] P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).
[97] T. Vicsek, Phys. Rev. Lett. 53, 2281 (1984).
[98] G. Daccord, J. Nittmann, and H. E. Stanley, Phys. Rev. Lett.

56, 336 (1986).

[99] J. Shen, Z. Gai, and J. Kirschner, Surf. Sci. Rep. 52, 163
(2004).

[100] J. Krug, P. Politi, and T. Michely, Phys. Rev. B 61, 14037
(2000).

[101] R. E. Caflisch, Weinan E, M. F. Gyure, B. Merriman, and C.
Ratsch, Phys. Rev. E 59, 6879 (1999).

[102] C. Castellano and P. Politi, Phys. Rev. Lett. 87, 056102
(2001).

[103] P. Politi and C. Castellano, Phys. Rev. E 66, 031605 (2002).
[104] P. Politi and C. Castellano, Phys. Rev. E 66, 031606 (2002).
[105] P. Politi and C. Castellano, Phys. Rev. B 67, 075408 (2003).
[106] A. Bupathy, V. Banerjee, and S. Puri, Europhys. Lett. 122,

36002 (2018).
[107] M. Cheon and I. Chang, Phys. Rev. Lett. 86, 4576 (2001).

042801-15

https://doi.org/10.1103/PhysRevE.69.061401
https://doi.org/10.1103/PhysRevE.69.061401
https://doi.org/10.1103/PhysRevE.69.061401
https://doi.org/10.1103/PhysRevE.69.061401
https://doi.org/10.1021/la0494369
https://doi.org/10.1021/la0494369
https://doi.org/10.1021/la0494369
https://doi.org/10.1021/la0494369
https://doi.org/10.1088/0034-4885/47/4/002
https://doi.org/10.1088/0034-4885/47/4/002
https://doi.org/10.1088/0034-4885/47/4/002
https://doi.org/10.1088/0034-4885/47/4/002
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevB.27.5686
https://doi.org/10.1103/PhysRevB.27.5686
https://doi.org/10.1103/PhysRevB.27.5686
https://doi.org/10.1103/PhysRevB.27.5686
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.53.2281
https://doi.org/10.1103/PhysRevLett.53.2281
https://doi.org/10.1103/PhysRevLett.53.2281
https://doi.org/10.1103/PhysRevLett.53.2281
https://doi.org/10.1103/PhysRevLett.56.336
https://doi.org/10.1103/PhysRevLett.56.336
https://doi.org/10.1103/PhysRevLett.56.336
https://doi.org/10.1103/PhysRevLett.56.336
https://doi.org/10.1016/j.surfrep.2003.10.001
https://doi.org/10.1016/j.surfrep.2003.10.001
https://doi.org/10.1016/j.surfrep.2003.10.001
https://doi.org/10.1016/j.surfrep.2003.10.001
https://doi.org/10.1103/PhysRevB.61.14037
https://doi.org/10.1103/PhysRevB.61.14037
https://doi.org/10.1103/PhysRevB.61.14037
https://doi.org/10.1103/PhysRevB.61.14037
https://doi.org/10.1103/PhysRevE.59.6879
https://doi.org/10.1103/PhysRevE.59.6879
https://doi.org/10.1103/PhysRevE.59.6879
https://doi.org/10.1103/PhysRevE.59.6879
https://doi.org/10.1103/PhysRevLett.87.056102
https://doi.org/10.1103/PhysRevLett.87.056102
https://doi.org/10.1103/PhysRevLett.87.056102
https://doi.org/10.1103/PhysRevLett.87.056102
https://doi.org/10.1103/PhysRevE.66.031605
https://doi.org/10.1103/PhysRevE.66.031605
https://doi.org/10.1103/PhysRevE.66.031605
https://doi.org/10.1103/PhysRevE.66.031605
https://doi.org/10.1103/PhysRevE.66.031606
https://doi.org/10.1103/PhysRevE.66.031606
https://doi.org/10.1103/PhysRevE.66.031606
https://doi.org/10.1103/PhysRevE.66.031606
https://doi.org/10.1103/PhysRevB.67.075408
https://doi.org/10.1103/PhysRevB.67.075408
https://doi.org/10.1103/PhysRevB.67.075408
https://doi.org/10.1103/PhysRevB.67.075408
https://doi.org/10.1209/0295-5075/122/36002
https://doi.org/10.1209/0295-5075/122/36002
https://doi.org/10.1209/0295-5075/122/36002
https://doi.org/10.1209/0295-5075/122/36002
https://doi.org/10.1103/PhysRevLett.86.4576
https://doi.org/10.1103/PhysRevLett.86.4576
https://doi.org/10.1103/PhysRevLett.86.4576
https://doi.org/10.1103/PhysRevLett.86.4576



