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We study the light scattering by localized quasiplanar excitations of a cholesteric liquid crystal known as
spherulites. We quantitatively evaluate the cross section of the axis rotation for polarized light by taking into
account the anisotropic optical properties of the medium and the peculiar shape of the excitations. Because of the
complexity of the system under consideration, we exploit also a simplified analytical description of the spherulite
and evaluate the scattering cross sections in the Born approximation. We compare the scattering data by the
analytical and the numerical skyrmion solutions for several choices of the model paramenters. The effects of
changing values of the driving external static electric (or magnetic) field is also considered. Possible applications
of the phenomenon are envisaged.
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I. INTRODUCTION

In the past few years great efforts have been made to
develop new materials for optoelectronics and photonics ap-
plications. A relevant role in this work has been played by
liquid crystals (LC) physics [1,2] for a quite a long time. In
fact, nowadays LC are widely used in all types of display
applications and, in addition, their unique nonlinear electro-
optical properties make them suitable material for nondisplay
applications [3,4], like optical filters and switches, beam-
steering devices, spatial light modulators, lasers, optical wave-
guiding, and nonlinear components. On the other hand, there
is also wide interest on a variety of new textures appearing
both in quasi-two-dimensional (2D) layers of chiral liquid
crystals (CLCs) like two-dimensional cholesteric fingers [5],
and 3D ones, like cholesteric bubbles or spherulites [6–8]
and nematicons [9]. On the experimental side, Carboni et al.
[10] detected a phase transition between the finger and the
skyrmion textures, strongly depending on the thickness of
the confining cell. They showed that the texture changes are
driven by temperature through a parameter ζ proportional to
the thickness and to a proper chirality parameter. Moreover,
Smalyukh et al. recently generated a new type of defects in the
director field configurations, called triple-twisted torons (T3s),
by geometrical frustration and by using Laguerre-Gaussian
vortex laser beams. They also showed numerically their ex-
istence [11,12], but here we will not consider such type of
textures.

Spherulites have been studied from a theoretical point of
view in Refs. [13,14] and here we consider them for their
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potential optotechnological applications. Spherulites in CLCs
share some properties with the 2D skyrmions in magnetic
systems [15,16] and can be derived in the framework of the
Frank-Oseen continuum theory [17,18]. By applying external
fields and imposing homeotropic anchoring boundary con-
ditions (BCs) [19,20], the free helicoidal equilibrium con-
figurations can be deformed into the isolated axisymmetric
skyrmionic structures [21,22], stabilized by the underlying
molecular chirality and boundary conditions, which in turn
reflect into topological conservation laws. However, they are
very sensitive to the external fields and may possess slow
modulations in certain preferred direction. The theory also
describes the cholesteric fingers [23,24], or helicoids, with
disclination-type defects, which can be described, at least in
some approximate settings, in terms of integrable nonlinear
equations [25,26], stabilized both by topological and nontopo-
logical conservation laws. This does not seem to be the case
for the spherulites, which we investigated under this aspect in
Ref. [14].

More recently, in Ref. [27], Smalyukh et al. have reviewed
the spontaneous and optical generation of several types of
defects in CLCs, classifying them by their topological charge
and the kind of disclinations they exhibit. In detail, they
observed the above-mentioned structures through confocal
and standard polarized microscopy techniques. They pre-
sented both the vertical and in-plane cross-sectional images
and 3D reconstructions of the defects. They exhibited direct
observations and schematic representations of a topological
defect similar to the one obtained in Refs. [13,14] in both
the XY and XZ plane projections. From our point of view,
this latter result is particularly significant, since we would like
to study it on a theoretical basis. Those studies are extended
and complemented by a wide set of investigations, both on
the theoretical and experimental, which have been devoted
to the subject of localized configurations appearing in CLCs
under several external conditions [26,28,29]. However, so far,
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the light scattering from helicoidal CLC structures has been
studied only in the bulk [30,31] and, in confined geometries
like thin films or droplets, it has been considered only on the
experimental side [32–34].

Thus, the aim of the present paper is to characterize, from
the basic principles, the main properties of the scattering of
light, propagating into a CLCs layer, by an isolated spherulite.
Assuming a constant value of the temperature and of the spon-
taneous chirality, the external factors, as the thickness, the
anchoring interactions, and the external electric and magnetic
fields, are the controlling parameters for the investigated phe-
nomena. These properties may suggest better control of the
spherulites’ optical properties and their possible applications.

Very recently, the authors of Ref. [35] investigated nu-
merically the optical properties of a hexagonal half-skyrmion
lattice in confined CLCs, and they found resonant structures
in the reflectivity. However, we notice that the physical setting
considered in that work is quite different from ours, since they
took into account the scattering along the axis of the skyrmion.
Here we consider the interaction of an isolated spherulite with
light propagating transversally to its axis.

The present paper is organized as follows. In Sec. II we
introduce the continuum elastic model of the CLC, and we
obtain the corresponding equilibrium equations and analyze
the skyrmion (spherulite) solutions, either by analytical or
numerical methods. In Sec. III we address the problem of light
scattering in the plane orthogonal to the axis of a spherulite.
In Sec. IV we provide perturbative solutions for the light-
scattering equations in a Born approximation. In particular
in Sec. IV A we compute the cross section of the conversion
process of incoming polarized light in the incidence plane into
the outgoing polarized light in the perpendicular direction.
Analogously, in Sec. IV B we consider the complementary
problem of the change of polarization axis from the orthog-
onal direction to the liquid crystal to the a planar direction.
Finally, in the Conclusions we summarize our results and
address some possible experimental realizations.

II. SKYRMIONS IN CHIRAL LIQUID CRYSTALS

A LC is described by a unimodular director field n(r)
belonging to RP2 [17,18], which in polar representation is
given by

n(r) = sin θ (r)(cos ψ (r)i + sin ψ (r)j) + cos θ (r)k. (2.1)

In the bulk a CLC director field n(r) is governed by the Frank-
Oseen free-energy density

ωFO = K1

2
(∇ · n)2 + K2

2
(n · ∇ × n − q0)2

+ K3

2
(n × ∇ × n)2

+ (K2 + K4)

2
∇ · [(n · ∇ )n − (∇ · n)n] − ε

2
(n · E)2,

(2.2)

where q0 is the chirality parameter of the cholesteric phase
and the positive reals K1, K2, K3, and K4 are the Frank elastic
constants, which we set to be K1 = K2 = K3 = K and K4 =
0 for sake of simplicity. The last term in (2.2) represents

the interaction energy density with an external static electric
field E (here supposed to be spatially uniform along the k
direction) or, equivalently, a magnetic field H. Of course, in
the presence of the external electric (magnetic) field, the gen-
eral rotational symmetry is broken and reduced to rotations
around the direction of E (H). In the absence of anchoring
conditions, the field n(r) would form a cholesteric helix with
the axis orthogonal to E (H). However, supposing the CLC

confined within a layer B = {(x, y, z) ∈ R3, | z |� L

2
}, also

the translational symmetry in the direction of k is broken and
the interaction of the CLC with the planar bounding surfaces
can be encoded by the additional Rapini and Papoular surface
energy contribution [36]

ωs = 1
2Ks[1 + α(n · ν)2], (2.3)

where Ks > 0, α > 0, and ν is the unit outward normal to the
boundary surface. Strong homeotropic anchoring is obtained
for Ks → ∞, which corresponds to the Dirichlet bound-
ary conditions n(x, y, z ± L

2 ) = k. So helices are deformed
and confined within B: Extended structures called helicoids
(or helicons and, sometimes, fingers) or localized spherulites
(also skyrmions) may form, depending on the existence or not
of a preferred direction in the perturbation of n.

In order to find equilibrium configurations of the CLC we
have to minimize the Frank-Oseen free energy plus a surface
term, under the appropriate boundary conditions at infinity.
We choose to limit ourselves to axisymmetric isolated solu-
tions. More precisely, we assume θ = θ (ρ, z) and ψ = ψ (φ),
where ρ, z, and φ are the usual cylindrical coordinates around
the axis k.Very recently, in Ref. [25] the authors considered
the more general case of the azimuthal angle ψ depending also
on ρ and z and, accordingly, they numerically minimized the
free energy (2.2) in order to find axysimmetric solutions. On
the other hand, for the purpose of the optical phenomena ana-
lyzed in this paper, the above ansatz is sufficiently reasonable,
also in order to comply with the simplifying hypothesis (v)
made in Sec. 3. Under our assumptions, the Euler-Lagrange
equations for the fields θ and ψ are

θρρ + θzz + 1

ρ
θρ + 1

ρ
q0 sin(φ − ψ )(ψφ cos 2θ − 1)

+ ψ2
φ sin 2θ

2ρ2
− εE2

2K
sin 2θ = 0 (2.4)

and

2
sin2 θ

ρ2
ψφφ − 2q0

(
θρ + 1

2

sin 2θ

ρ

)
cos(ψ − φ) = 0. (2.5)

The compatibility of systems (2.4) and (2.5) is provided by
setting

ψ (φ) = φ ± π

2
, φ ∈ [0, 2π ]. (2.6)

Without losing generality, we choose the positive determina-
tion in the previous equation. Accordingly, the director field
takes the simpler form

n = n(ρ, φ, z) = cos θ (ρ, z)k + sin θ (ρ, z)φ,

φ = − sin φi + cos φj (2.7)
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and all the admissible equilibrium configurations are solu-
tions of the boundary value problem (BVP) in dimensionless
variables

∂2θ

∂z2
+ ∂2θ

∂ρ2
+ 1

ρ

∂θ

∂ρ
− 1

ρ2
sin θ cos θ ∓ 4π

ρ
sin2 θ

−π4

(
E

E0

)2

sin θ cos θ = 0, (2.8)

θ (0, z) = π, θ (∞, z) = 0,

∂zθ
(
ρ,±ν

2

)
= ∓2πks sin θ

(
ρ,±ν

2

)
cos θ

(
ρ,±ν

2

)
, (2.9)

where the lengths are rescaled with respect to the so-called

pitch length p = 2π
|q0| . Here E0 = π | q0 |

2

√
K

ε
is the criti-

cal unwinding field for the cholesteric-nematic transition in
nonconfined CLCs [37], ν = L/p is the normalized thickness
of the layer, and ks = Ks/(Kq0) the rescaled strength of the
interaction liquid-boundary surfaces. The ∓ sign in Eq. (2.8)
reflects the sign of q0: In the following we take q0 < 0, with no
loss of generality. Finally, it is convenient to simplify the nota-

tion by setting
1

ρ1
= π2 E

E0
, an adimensional parameter which

measures the relative strength of the electric field with respect
to the critical one. Systems (2.8) and (2.9) are a 3D perturbed
sine-Gordon-type equation: Chirality and BCs do not allow
integration in analytical form. The main deformation comes
from the fifth term in (2.8), associated to the chirality of the
system.

However, to get information about the shape of a
spherulite, one can evaluate the asymptotic behavior of the
solutions near ρ → 0 and ρ → ∞ for the pure cylindrical
reduction of (2.8), i.e., θz = 0, which holds when ν is suffi-
ciently large and modulations in the z variable are discarded.

Near ρ → 0 both the chiral and the electric interaction can
be neglected with respect to the other terms. Thus setting both
q0 = 0 and E = 0, Eq. (2.8) reduces to the conformally in-
variant O(3)-sigma model in polar representation [38] whose
solution is the Belavin-Polyakov one [39], namely

θ = arccos

(
ρ̃2 − 4

ρ̃2 + 4

)
, ρ̃ = ρ

ρ0
, (2.10)

where ρ0 is an arbitrary scale factor which will be fixed by the
breaking terms of the conformal symmetry, namely the fourth
and the fifth terms in (2.8). Thus, substituting solution (2.10)
into Eq. (2.8) we obtain the estimation

ρ0 = 4

π3

(
E0

E

)2

= 4πρ2
1 , (2.11)

which can be interpreted as the typical scale of a spherulite,
and at the lowest order the solution of (2.8) and (2.9) is
approximated by

θ (ρ) = π − ρ

ρ0
+ O

[(
ρ

ρ0

)3
]
. (2.12)

Following Ref. [13], in order to describe z modulations, we
assume a rough approximation of the solution by deforming
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Numerical solution - / 0 K1( / 1)

FIG. 1. Comparison for E

E0
= 1.02 among the numerical solution

of (2.8), the linearly piecewise approximation (2.12), and the analytic
solution of the linearized equation.

(2.12) as

θ (ρ, z) =
{

π − ρ

ρ0Z(z) ρ/Z(z) < πρ0

0 ρ/Z(z) > πρ0
. (2.13)

Replacing (2.13) into the Frank-Oseen energy and minimizing
it, one gets the following z modulation:

Z(z) = 1 −
2πks cosh

(
z
ρ1

)
2πks cosh

(
ν

2ρ1

) + 1
ρ1

sinh
(

ν
2ρ1

) . (2.14)

We note that the sizes of the vortices decrease as |z| and
ks increase. However, we remark that numerical calculations
show that the function Z(z) in (2.14) does not fit accurately
the actual behavior of the solutions, except for high external
electric fields E, whose effects are much stronger than those
related to the anchoring ks .

In the asymptotic limit ρ → ∞ the dominant term comes
from the external electric field, which affects the shape of
skyrmion by the reduced equation

∂2θ

∂ρ2
+ 1

ρ

∂θ

∂ρ
− 1

2ρ2
1

sin 2θ = 0, (2.15)

which is known as cylindrical sine-Gordon equation [40].
The most relevant fact about this equation is its connection
with the celebrated Painlevé III equation [14,41,42] (see also
Ref. [43], chap. 32), and thus it can be analytically solved.
However, in correspondence to the boundary conditions at ∞
stated in (2.9), this equation has always singular solutions at
ρ → 0. Thus the validity of such an approximation is limited
to a neighborhood of ∞, where its asymptotics is the same as
for the first-order modified Bessel functions of second kind,
namely

θ � c2

√
ρ1

ρ
exp

[
− ρ

ρ1

]
. (2.16)

The above results give us useful indications about the shape
of the spherulite or skyrmion, but many important details
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FIG. 2. Comparison for E

E0
= 1.5 among the numerical solution

of (2.8), the linearly piecewise approximation (2.12), and the analytic
solution of the linearized equation.

are missed. In fact, to have a good account of them and to
estimate the goodness of the approximations made above, we
need to perform numerical calculations on the BVP (2.8) and
(2.9). To this aim, we use the standard central finite-difference
discretization and the Newton-Raphson method [44,45], ini-
tialized by the shooting method for the planar reduction of the
system (i.e., θz = 0).

It turns out that for sufficiently large electric fields, i.e.,
E
E0

> 1 the linear approximations matches with the numerical
solution quite closely, as represented in Fig. 1. On the other
hand, the approximations become very rough for relatively
weak fields, i.e., E

E0
≈ 1, as shown in Fig. 2. As far as the

numerical cases considered in the present work, this behavior
denotes the underestimation of the chiral term in the linear
approximation, in particular at the intermediate scales ρ1 �
ρ � ρ0. The numerical solutions of the BVP (2.8) for dif-

ferent values of the couple (
E

E0
, ks ) are depicted in Figs. 3

and 4. In each figure the profiles θ (ρ) for different values
of z ∈ [−ν/2, ν/2] are represented. We note that when the
strength of the anchoring is small, the profiles are almost
the same for every value of coordinate z. This means that
when the interfaces at the boundaries of the cell have a really
small homeotropic effect on the director’s configuration, a
quasiperfect cylindrical shape holds for axisymmetric solu-
tions. In this case, the planar vortices described by θ (ρ) have
the same, maximum, size for every value of z. However, if we
impose a quite stronger homeotropic effect at the boundaries,
then the vortices tend to have a reduced size, which becomes
smaller as |z| reaches the value ν

2 . We stress that for greater
external fields the size of all vortices narrows. This provides
the main features of the spherulites which we will exploit in
next section, when considering the light scattering by such a
type of defects in a CLC. More details are given in Ref. [14].
A 3D representation of the texture of a spherulite or skyrmion
is given in Fig. 5 for a particular choice of the parameters.

III. SCATTERING OF LIGHT ON A CLC
CYLINDRICAL STRUCTURE

In this section we consider the scattering of an electro-
magnetic (e.m.) wave, propagating through a confined CLC,
which is under the suitable conditions for a spherulite to be
formed. The geometry is the same as in the previous section,
as the same is the choice of the Cartesian axes. We assume that
the wave vector of the incoming field is parallel to the (x, y)
plane. The propagation of the wave is described in terms of the
oscillating electric field �E, to be distinguished from the static
electric field E, and by the associated electric displacement
field �D via the equation [46]

∇(∇ · �E) − ∇2 �E = −∂tt
�D. (3.1)

As usual, this equation has been obtained by substituting
the magnetic field by the Maxwell equations. The electric
anisotropy of the CLC is made explicit by the existence
of a permeability tensor, which locally has an orthogonal
component ε⊥ if �E⊥n and a parallel one ε‖ if �E‖n. Then the
costitutive relation is given by [17,18,47]

�D = ε⊥ �E + �ε n( �E · n), �ε = ε‖ − ε⊥. (3.2)
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FIG. 3. Profiles θ (ρ ) for E/E0 = 1.02, ks = 0.1 (a), and ks = 6 (b). Different curves refer to different values of | z |. Dashed curves have
to be referred to z = 0 (the thin one) and to | z |= ν/2 (the thicker one).
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FIG. 4. Profiles θ (ρ ) for E/E0 = 1.5, ks = 0.1 (a), and ks = 6 (b). Different curves refer to different values of | z |. Dashed curves have
to be referred to z = 0 (the thin one) and to | z |= ν/2 (the thicker one). We note that the effect of a greater external electric field is to narrow
the size of the vortices for fixed values of ks .

Here both ε⊥ and ε‖ are independent of the electric field
strength E, so that �D is a linear function of �E. Let us assume
that the incident wave is described by the electric field

�E � Ey eı(kx−ωt )j + eı(k̃x−ωt )k = �E∞e−ıωt x→ − ∞,

(3.3)

where k = ω
c

√
ε⊥ and k̃ = k

√
1 + �ε

ε⊥
.

We suppose that the spherulite is not perturbed by
the wave, but we need to assume certain supplementary
conditions:

(i) the liquid crystal molecules are not deformed or rotated
by the wave, which implies ω � 1

τ
, τ being any “relaxation

time” of the CLC.

FIG. 5. Frontal and equatorial sections of the director field dis-
tribution for a spherulite in CLC. Here the parameters are the same

as in Fig. 3(b), i.e., (
E

E0
) = 1.02, ks = 6, ν = 1.8. Notice how the

transversal radius of the spherulite decreases near the bounding plane
surfaces.

(ii) We assume that the wavelength λ is comparable with
ρ0 or smaller [i.e., k(ω) � 1

ρ0
], ρ0 being the typical spherulite

size defined in Eq. (2.11).
(iii) We assume that the effects of the bounding surfaces

are negligible while calculating solutions of Eq. (3.1).
(iv) A strong supplementary condition we introduce is

∇ · �E = 0, which may imply ∇ · �D = ρfree = 0 somewhere
in the domain, especially in the core of the spherulites, where
we expect significant variations of the fields. However, at this
stage of our analysis we prefer to adopt such an assumption,
because, by this way, the equations can be considered a 0-
order approximation. Then an a posteriori evaluation of the
local free charge density will clarify how good our hypothesis
is.

(v) A final remark concerns the functional dependence of
the shape of the spherulite, which we assume to be simply θ =
θ (ρ). Thus, for sake of simplicity we neglect the modulation
along the z axis described by (2.14). Also in this case higher-
order corrections should be considered later.

Under the conditions above, for the enveloping field �E =
�E (�r ) Eq. (3.1) becomes

∇2 �E = −k2A �E, �E � �E∞ as x → −∞, (3.4)

where the coupling matrix is

A = 13 + �ε

ε⊥
n ⊗ n. (3.5)

Since at the postulated level of approximation we have
n = n(ρ, φ) = cos θ (ρ)k + sin θ (ρ)φ, we are naturally led to
express also the electric field as

�E = Eρ (ρ, φ, z) ρ + Eφ (ρ, φ, z) φ + Ez(ρ, φ, z) k. (3.6)

Then, it is easier to explicit the off-diagonal contributions to
(3.4). Indeed, provided that

(n · �E ) n = (sin θ Eφ + cos θ Ez)(cos θ k + sin θ φ), (3.7)

(3.4) reads
(∇2 + k2)(Eρ ρ + Eφ φ + Ez k)

= −k2 �ε

ε⊥
[(sin θ Eφ + cos θ Ez) cos θ k

+ (sin θ Eφ + cos θ Ez) sin θ φ]. (3.8)
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However, now the Laplacian operator acts on the cylindrical
components of a vector field, then it takes different expres-
sions according to the component index. In particular, by
defining ∇2

0 · = 1
ρ
∂ρ (ρ ∂ρ ·) + 1

ρ2 ∂
2
φ + ∂2

z , Eq. (3.8) becomes

(∇2
0 + k2

)
Eρ = 1

ρ2
(Eρ + 2 ∂φ Eφ ), (3.9)

(∇2
0 + k2

)
Eφ = 1

ρ2
(Eφ − 2 ∂φ Eρ )

− k2 �ε

ε⊥

(
sin2 θ Eφ + 1

2
sin 2θ Ez

)
, (3.10)

(∇2
0 + k̃2)Ez = −k2 �ε

ε⊥

(
1

2
sin 2θ Eφ − sin2 θ Ez

)
. (3.11)

In order to describe the scattering of the light on the spherulite,
the above equations have to be solved under the asymptotic
conditions

Eρ � E∞ρ sin φ eıkρ cos φ, Eφ � E∞φ cos φ eıkρ cos φ,

Ez � E∞ze
ık̃ρ cos φ for φ → ±π and ρ → ∞. (3.12)

Of course, such asymptotic conditions are exact solutions of
the homogeneous system above, i.e., when �ε

ε⊥
→ 0. As the

problem of finding a complete analytical solution to (3.10)
and (3.11) is quite hard, let us consider a perturbative setting.
The basic idea is to first give a Born-approximated solution
of Eq. (3.11), keeping an implicit dependence on Eφ . Then
we can use it in (3.10) which will become a closed linear
equation, even if nonlocal, in Eφ . Solving it, in the same
approximation, one can use these results into (3.9) for Eρ and
finally solve it in the same scheme.

IV. PERTURBATIVE SOLUTIONS OF THE
LIGHT-SCATTERING EQUATIONS BY A SPHERULITE

A. The out-plane conversion

Following the standard method by Lippmann-Schwinger
[48], let us rewrite Eq. (3.11) as the integral equation

Ez(�r )=E∞ze
ık̃ρ cos φ+

∫
G(�r, �r ′)U [Ez(�r ′), Eφ (�r ′), θ (ρ ′)] d�r ′,

(4.1)

where U [Ez(�r ), Eφ (�r ), θ (ρ)] = −k2 �ε
ε⊥

[ 1
2 sin 2θ (ρ) Eφ (�r ) −

sin2 θ (ρ) Ez(�r )] and the Green function G(�r, �r ′) has the
general form

G = 1

2πν

∞∑
m, n=−∞

e
2πın

ν
(z−z′ )eım(φ−φ′ ) hm, n(ρ, ρ ′), (4.2)

where the functions hn,m satisfy the Bessel-type equation with
singular inhomogeneity [43][

1

ρ
∂ρ (ρ ∂ρ ·) − m2

ρ2
+k̃2 −

(
2πn

ν

)2
]

hm, n = 1

ρ ′ δ(ρ − ρ ′).

(4.3)

Thus, cutoff frequencies κn =
√

k̃2 − ( 2πn
ν

)
2

are induced by
the finite transverse size of the CLC layer.

We require G to be a continuous function with a bounded
behavior at ρ → 0 and, additionally, to be a cylindrical pro-
gressive wave as ρ → ∞, i.e., of the form ∝ eıκρ√

κρ
. Furthe-

more, G can have discontinuities only in the first derivatives
at ρ → ρ ′.

Without further calculations, drastic simplifications stem
from our assumption 5 in Sec. 3, implying that the only nonva-
nishing contributions come from the n = 0 mode. Moreover,
we are actually interested in the behavior of the wave at radii
much larger than the effective size of the spherulite, which
decreases very fast, as we noticed in (2.14). Thus the form of
Green function we have to use is

Gsimpl(�r, �r ′) = −ı

4

∞∑
m=−∞

eım(φ−φ′ ) H (1)
m (k̃ ρ)Jm(k̃ ρ ′),

(4.4)

where Jm denotes the Bessel function of first kind with integer
order m and H (1)

m (ζ ) = Jm(ζ ) + ı Ym(ζ ) the corresponding
Hankel function of first kind [43].

Now, replacing the above formula into (4.1), introducing
the explicit form of the potential U , and considering the
anisotropy ratio �ε

ε⊥
as a perturbation parameter, we express

the wave function as a power series of it. At the 0 order the
solution is given by asymptotics (3.12), which, replaced into
(4.1), provides the first-order (Born approximation) correc-
tions to the plane wave.

Thus, in the Born limit, by the identity eıζ cos p =∑∞
l=−∞ e

ı π l
2 eı l p Jl (ζ ), one can integrate on φ′ and obtain the

approximated expression EB
z (�r ) of the Ez(�r ) component, i.e.,

EB
z (�r ) = E∞ze

ık̃ρ cos φ + π

2

�εk2

ε⊥

∞∑
m=−∞

eimφH (1)
m (k̃ ρ)

×
∫ {

E∞φ

ım

4
sin[2θ (ρ ′)]Jm(k̃ ρ ′)

× [Jm−1(k ρ ′) − Jm+1(k ρ ′)]

− E∞zı
m+1 sin2[θ (ρ ′)]J 2

m(k̃ ρ ′)
}

ρ ′dρ ′. (4.5)

In order to have a simple estimation of the integrals in the
above expression, let us resort to the asymptotic expressions
of the spherulite given by (2.12) and (2.16). Actually, the
simplest rough choice is (2.13) [with Z(z) = 1], which we
will adopt here in order to estimate the more relevant contri-
butions to the scattering amplitudes. Thus, we have to evaluate
integrals of the form

Iφ
m = −

∫ πkρ0

0
sin

(
2

s

kρ0

)
Jm(s)[Jm−1(s) − Jm+1(s)] s ds

= −
∫ πkρ0

0
sin

(
2

s

kρ0

)
[Jm(s)2]′ s ds, (4.6)

Iz
m =

∫ πkρ0

0
sin2

(
s

kρ0

)
J 2

m(s) s ds, (4.7)

where the substitution k̃ → k is justified, since a further
correction of the order �ε

ε⊥
is introduced.
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FIG. 6. The numerical values of Iφ
m as function of 0 � m �

50 for three different values of kρ0 = 8, 10, 12. They can be ap-
proximated by continuous functions in m, for instance, by linear
combinations of Gaussian functions but still a clear pattern for a
systematic approximation has to be developed. It is evident a linear
dependence, with a slope ∼4, on the number of significant terms
with the size parameter kρ0. This is in agreement with the scattering
features on localized central potentials.

At the moment the above matrix elements do not have yet
an analytical expression and should be computed numerically.

Examples of the numerical evaluation of a certain number
of integrals (4.6) is given in Fig. 6.

Before proceeding in such a calculation let us show the
form of the cross section of conversion of a in plane polarized
wave into a out plane polarized one. In fact, if we suppose
E∞z = 0, then the scattered amplitude along the z axis (4.5)
reads

EB
z (�r ) = E∞φ

π �ε

8 ε⊥

∞∑
m=−∞

ım Iφ
m eimφH (1)

m (k̃ ρ).

Recalling that at infinity the asymptotic behavior of the Han-

kel functions is H (1)
m (ζ ) � (1−i)eiζ− iπm

2√
π ζ

+ O(ζ−3/2), the above

FIG. 7. The numerical evaluation of the conversion cross section
(4.9), in arbitrary units, for the three different values of kρ0 used in
Fig. 6.

expression becomes

EB
z (�r ) = (1−ı) E∞φ

π �ε

8 ε⊥

eı k̃ ρ√
π k̃ ρ

(
Iφ

0 +2
+∞∑
m=1

Iφ
m cos mφ

)
,

(4.8)

where the identity Iφ
−m = Iφ

m holds because J−m = (−1)m Jm.
Now, it is clear that a sufficient condition for (4.8) to be
a good approximation is that Ez be small also in the core
region delimited by ρ � ρ0, where the integral in (4.1) re-
ceives significant contributions. Thus, taking into account the
behavior of the Green functions around the origin, we con-
clude that we must have πk3/2|�ε

ε⊥
| ∫ π ρ0

0 ρ1/2| sin 2θ (ρ)| dρ �
2
3π5/2|�ε

ε⊥
| (k ρ0)3/2 << 1, which provides a bounding re-

lationship between the size parameter and the relative
anisotropy.

The cross section of the conversion of linear in plane
polarized ŷ light into the out plane ẑ one is given by

d σ

dφ
(r̂ , k̂; î, ĵ ) = π

32

√
ε⊥
ε||

(
�ε

ε⊥

)2
ν ρ0

k ρ0

×
(
Iφ

0 + 2
+∞∑
m=1

Iφ
m cos mφ

)2

, (4.9)

where we have singled out the dependence on the geometrical
size of the spherulites, i.e., the area ν ρ0, from its relative size
parameter k ρ0 with respect the used light wavelength. Thus a
residual dependency on the static external field E/E0 is still
present in the above function.

The calculations of the conversion cross section in the
direction r̂ (φ) indicates that there is a quite well-defined
small angle, around 10◦ in our numerical examples (Fig. 7),
within which the rotation of the polarization is efficiently
performed. The angle of maximum conversion is ∝ (kρ0)−1,
thus it becomes smaller as the wavelength becomes shorter.
The backscattering cross section is a quite regular function
slowly decreasing as k ρ0 increases. This dependency on k ρ0

can be related to the well-known CLCs property of selective
reflection within a specific bandwidth, depending on the ma-
terial parameters q0, ε‖, ε⊥ [19]. The effective value of the
scattering cross section depends basically on the square of the
anisotropy ratio ( �ε

ε⊥
)
2
. Actually the total cross section takes

the expression

σ (k̂, ĵ ) = π2

16

√
ε⊥
ε||

(
�ε

ε⊥

)2
ν ρ0

kρ0

[(
Iφ

0

)2 + 2
∞∑

m=1

(
Iφ

m

)2

]
,

(4.10)

which is a decreasing function of the size parameter k ρ0.
Let us turn our attention again to Eq. (4.5). By using the

numerical solutions for the spherulite (Figs. 3 and 4), we can
obtain a more accurate evaluation of the differential cross
section in (4.9), for the scattering of an electromagnetic wave
by a skyrmion. A direct comparison between the differential
cross sections, computed with the use of the numerical and
the approximated solutions, is reported in Figs. 8 and 9 in
arbitrary units. As it can be seen, the numerical solution for the
spherulites makes the angle of maximum conversion smaller
than the one computed through the use of the approximated
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FIG. 8. The numerical evaluation of the conversion cross section
(4.9), in arbitrary units, for ρ0 fixed by (2.11) and the ratio E/E0 =
1.02, kρ0 = 10, for the numerical solution (solid line) and the
approximated solution (2.12) (dashed line).

solution. Furthermore, recalling that as the external electric
field increases, the size of the spherulite decreases [as de-
scribed by Eq. (2.11)], we note that the larger the size of the
skyrmion is, the more efficient the polarization conversion is
with respect to the approximated one.

B. The in-plane conversion

Assuming E∞ρ = E∞φ = 0, let us turn our attention to the
subsystem (3.9) and (3.10), which could be represented in the
form (

L + k2 −M

M L + k2

)(Eρ

Eφ

)

= k2 �ε

ε⊥

(
0

sin2 θ Eφ + 1
2 sin 2θ Ez

)
, (4.11)

FIG. 9. The numerical evaluation of the conversion cross sec-
tion (4.9), in arbitrary units, for ρ0 fixed by (2.11) and the ratio
E/E0 = 1.5, kρ0 = 10, for the numerical solution (solid line) and
the approximated solution (2.12) (dashed line).

where L = ∇2
0 − 1

ρ2 and M = 2
ρ2 ∂φ . Following the same

reasoning as above, we limit ourselves to evaluating the
scattering of light by the spherulite in the Born approxima-
tion. Accordingly, the conversion from out-plane to in-plane
polarized light scattering leads to the following approximated
expression:(
EB

ρ

EB
φ

)
= E∞z

k2

2πν

�ε

2 ε⊥

×
∞∑

m, n=−∞

∫
sin 2θ (ρ ′) eık̃ρ ′ cos φ′

e
2πın

ν (z−z′)eım(φ−φ′)

×
[−ı fm, n(ρ, ρ ′)

hm, n(ρ, ρ ′)

]
d�r ′, (4.12)

where hm, n and fm, n are solutions of a suitable differential
system (see below). Again, using the simplification induced
by the assumption 5 in Sec. 3 and by using the expansion of
the plane wave factor in terms of Bessel functions, one gets(

EB
ρ

EB
φ

)
= E∞z

�ε k2

2 ε⊥

∞∑
m=−∞

ım eım φ

∫
sin 2θ (ρ ′) Jm(k̃ρ ′)

×
[

−ı fm(ρ, ρ ′)

hm(ρ, ρ ′)

]
ρ ′ dρ ′, (4.13)

where we dropped the subscript n from both hm, n and fm, n

as the only nonvanishing contributions come from the n = 0
mode. The squared modulus of the above quantity, properly
managed, will produce the cross section of the out-plane–in-
plane scattering process.

The equations for hm and fm are as follows:

h′′
m(ρ) + h′

m(ρ)
ρ

+
(

k2 − m2+1
ρ2

)
hm(ρ) + 2mfm(ρ)

ρ2 = δ(ρ−ρ ′)
ρ ′ ,

f ′′
m(ρ) + f ′

m(ρ)
ρ

+
(

k2 − m2+1
ρ2

)
fm(ρ) + 2mhm(ρ)

ρ2 = 0.

(4.14)
The general solution of the system above is

h±
m = c±

1 Jm−1(k ρ) + ıc±
2 Ym−1(k ρ)

+ d±
1 Jm+1(k ρ) + ıd±

2 Ym+1(k ρ),

f ±
m = c±

1 Jm−1(k ρ) + ıc±
2 Ym−1(k ρ)

− d±
1 Jm+1(k ρ) − ıd±

2 Ym+1(k ρ), (4.15)

where (c−
i , d−

i ) and (c+
i , d+

i ) are two quadruples of arbi-
trary constants in the regions ρ < ρ ′ or ρ > ρ ′, respectively.
Continuity of the solutions and discontinuity of their first
derivatives at ρ ′ imply a functional dependence of those
coefficients on this variable. Moreover, as in the previous
section, we require regularity at ρ → 0 and radiative behavior
at ρ → ∞.

All conditions above lead to a linear system, from which
one obtains the values of the unknown coefficients, namely

c+
1 = − ı π

4
H

(1)
m−1(k ρ ′),

d+
1 = − ı π

4
H

(1)
m+1(k ρ ′), c+

2 = d+
2 = 0,
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(a) (b)

FIG. 10. The numerical values of I (ρ )
m as function of 0 � m � 150, for two different values of E/E0 with fixed kρ0, computed through the

use of the numerical solution (stars) and the approximated solution (2.12) (circles).

c−
1 = c−

2 = − ı π

4
Jm−1(k ρ ′),

d−
1 = d−

2 = − ı π

4
Jm+1(k ρ ′). (4.16)

Now we are in position to evaluate (4.13), namely

E∞z

√
π �ε k2

2
5
2 ε⊥

e−ı π
4

eı k ρ

√
k ρ

∞∑
m =−∞

eım φ

∫
sin 2θ (ρ ′) Jm(k̃ρ ′)

×
{−ı [Jm−1(k ρ ′) + Jm+1(k ρ ′)]

Jm−1(k ρ ′) − Jm+1(k ρ ′)

}
ρ ′ dρ ′. (4.17)

Setting

1

k̃2
I (ρ)
m = 1

k2

∫
sin 2θ

(
s

k̃

)
Jm(s)

×
[
Jm−1

(
k

s

k̃

)
+ Jm+1

(
k

s

k̃

)]
s ds dφ′ (4.18)

1

k̃2
I (φ)
m = 1

k2

∫
sin 2θ

(
s

k̃

)
Jm(s)

×
[
Jm−1

(
k

s

k̃

)
− Jm+1

(
k

s

k̃

)]
s ds, (4.19)

Eq. (4.17) can be rewritten as

E∞z

√
π �ε

2
5
2 ε⊥

e−ı π
4

eı k ρ

√
k ρ

∞∑
m=−∞

eım φ

[
−ı I

(ρ)
m

I
(φ)
m

]
. (4.20)

Recalling the identity J−m = (−1)mJm, it is easy to show that
I

(ρ)
0 = 0, I (ρ)

m = −I
(ρ)
−m, and I

(φ)
m = I

(φ)
−m, so that Eq. (4.20) now

reads

E∞z

√
π �ε

2
5
2 ε⊥

e−ı π
4

eı k ρ

√
k ρ

[
2
∑∞

m=1 I
(ρ)
m sin mφ

I
(φ)
0 + 2

∑∞
m =1 I

(φ)
m cos mφ

]
.

(4.21)

Performing again the substitution k̃ → k, we notice that I
(φ)
m

is the same as Iφ
m in Eq. (4.6). On the other hand, the values of

the first 300 matrix elements (4.18) are presented in Fig. 10.
The in plane-conversion cross section is then given by

d σ

dφ
(r̂ , φ̂; î, ĵ , k̂)

= π

32

√
ε⊥
ε||

(
�ε

ε⊥

)2
ν ρ0

k ρ0

⎧⎨
⎩4

[ ∞∑
m=1

I (ρ)
m sin mφ

]2

+
[
I

(φ)
0 + 2

+∞∑
m=1

I (φ)
m cos mφ

]2
⎫⎬
⎭ (4.22)

FIG. 11. The numerical evaluation of the conversion cross sec-
tion (4.22), in arbitrary units, for E/E0 = 1.02 and kρ0 = 10. The
numerical solution corresponds to the solid line and the approxi-
mated solution (2.12) to the dashed one.
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FIG. 12. The numerical evaluation of the conversion cross sec-
tion (4.22), in arbitrary units, for E/E0 = 1.02 and kρ0 = 10. The
numerical solution corresponds to the solid line and the approxi-
mated solution (2.12) to the dashed one.

and the total cross section reads

σ (φ̂, k̂) = π2

16

√
ε⊥
ε||

(
�ε

ε⊥

)2
ν ρ0

k ρ0

{[
I

(φ)
0

]2

+ 2
∞∑

m=1

[
I (ρ)
m

]2 + 2
+∞∑
m=1

[
I (φ)
m

]2

}
. (4.23)

The numerical results, in arbitrary units, for the computation
of the differential cross section (4.22) are depicted in Figs. 11
and 12 for two different values of the ratio E/E0. Conversely
to what happens for the out-plane conversion cross section, in

this case the use of the numerical solution for the computation
of the differential cross section (4.22) keeps the angle of
maximum conversion substantially unchanged.

The same results are represented as a log-polar plot in
Fig. 13 for the choice of the size parameter kρ0 = 10. The
plots are referred to certain suitably chosen units. Both ap-
proximated linear (dashed line) and numerical (solid line)
solutions for the skyrmion are presented for two different
values of the electric field. Of course, since our calculations
were performed considering an incident light beam on an
object of variable refractive index in a localized region and
rapidly tending to a constant asymptotic value, the scattering
cross sections look very similar to those obtained for the light
scattering by water or nematic droplets in the Mie regime. In
particular, our cross sections share some common properties
with those obtained in the Rayleigh-Gans approximation for
nematic droplets [49,50]. In fact, our results are in good
agreement with those reported in Fig. 3(c) of Ref. [49] for
an aligned polymer-dispersed liquid crystal (PDLC) droplet,
except for the presence of a significant backscattering. On
the other hand, the dependence of the cross section on the
incident light wavelength is similar to ours, i.e., the angle of
maximum conversion becomes smaller as the wavelength de-
creases. The size parameter ranges in an intermediate interval
of the magnitude O(1). As for a comparison with the water
droplet scattering, the first striking difference is the absence
of a prominent main lobe at 0◦. On the contrary the strong
direct forward transmission is replaced by a dip between
two side lobes, one order of magnitude larger. The angular
position of the first side lobes increases with the intensity
of the applied electric field. Recalling that actually we are
looking for the scattered light with an orthogonal polarization
with respect to the incident one, limiting the angle within
∼ ±30◦, Fig. 13 provides a computed intensity distribution
as observed at the eyepiece of a polarizing microscope. An

FIG. 13. Comparison of the log-polar plots of the in-plane–out-plane conversion differential cross sections for two different values of the
external electric field. In both cases the solid line curves refer to the numerical spherulite profile, while the dashed ones correspond to the
piecewise linear approximation of it.
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FIG. 14. The density plot has been obtained computing the cross
section (4.22) at different values of 0 � z � 1

2 L/p, kρ0 = 10 and
E/E0 = 1.5, without any modification in (4.22) but changing the
spherulite radius accordingly to ρ0Z(z) in (2.13)and (2.14).

attempt to reproduce such distribution is reported in Fig. 14
as a density plot. This plot has been obtained by computing
the cross section (4.22) at different values of 0 � z � 1

2 L/p,
without any modification in (4.22) but changing the spherulite
radius accordingly to ρ0Z(z) in (2.13) and (2.14). Thus, the
two side lobes are clearly visible. But the secondary minima
become more and more distant as z approaches the upper
bounding surface. This is the opposite of what one can see in
the pictures in Ref. [27]. The reason is quite simple: Actually,
we are considering a sequence of scattering cross sections of
infinitely long cylinders of decreasing radii. That, of course,
implies a corresponding increase of the angular positions of
the minima. To improve such a result we should consider the
diffraction by an anisotropic ellipsoidal-like obstacle [51,52].

A further interesting feature of the plots in Fig. 13 is
the presence of a significant lobe at π , of the same order
in magnitude, or larger than, as the two closest side lobes.
As opposed to the case of the water droplet, they are not
strong enough and well distinct from the backward reflection
coefficient to assure a significant visibility to a rainbow. This
effect should be easily observed by the experimentalists.

V. CONCLUSIONS

In the present work we showed that the spherulites in CLC
can be used to change the polarization axes of incoming light
with a certain efficiency. To the best of our knowledge, this
phenomenon is quite new. In detail we first described the
shape of the spherulites for different values of the controlling
parameters, in particular the external applied electric (or mag-
netic) field. From that we have been able to compute the cross

section of the polarization axes conversions in Born approx-
imation. We found that the conversion processes have max-
imum differential cross section at small nonzero deflection
angles. Thus, the effect we described can be detected off the
forward direction. Furthermore, we compared the differential
cross sections for different values of the external electric field,
proving that the scattering is significantly influenced by such
a parameter. Thus, we can use it as a tuning controller of the
scattering. In particular, the conversion is more efficient for
fields above the threshold of the critical unwinding field of
the cholesteric-nematic transition. This is due to the quadratic
inverse dependence on the external field of the spherulite
core size. In order to obtain these results, we used both a
piecewise linear approximation of the spherulite profile and
the corresponding numerical solution. On the other hand,
we showed that the spherulite is badly approximated by a
piecewise linear function, especially for electric fields near
to E0. Actually, there are many questions to be answered.
First, it would be important to study the cross sections for all
channels, beyond the Born approximation, and to suppress the
several simplifications we made. In particular, the spherulite
is not a cylinder, as we assumed in the present work, but it
resembles a barrel. Correspondingly, new diffractive effects
may arise from the actual shape, especially close the confining
plates. This is related to the type of anchoring, which is
parametrized by a further controlling parameter in the Rapini-
Papoular conditions. In fact, we showed that the shape of the
spherulite depends significantly on it, even if the ratio E/E0

is kept fixed. Second, as stated in Sec. 2 around Eq. (2.6),
we assumed here that the azimuthal angle ψ depends only
on φ. More complex dependence are to be considered as in
Ref. [25], where the authors take into account the effect of
additional dependence on ρ and z . Finally, it is well known
that in specific ranges for the values of the model parameters
lattice configurations of spherulites can appear [13,26]. This
fact suggests to explore the light-scattering processes in such
a regime in order to enhance the effects we described above
or to have better control of them. Also, in the near future
we are planning to extend the results obtained in this paper
to the study of light interaction with a lattice of skyrmions.
The results in the case of skyrmion lattices may be exploited
eventually in designing switchable micromirrors and optical
filters by photonic band gap materials based on CLC’s. In such
a field several current investigations concern the scattering of
polarized light by localized and helicoidal structures, as sug-
gested in Refs. [53,54]. Moreover, localized defects in CLCs,
topologically stabilized and electrically controlled, may pro-
vide functional substrates for dispersed nanoparticles [55].
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